
Optimizing Parameter Learning using Temporal Differences

James F. Swafford II

Department of Computer Science
East Carolina University
Greenville, NC 27858
jfs0301@mail.ecu.edu

Abstract
Temporal difference algorithms are useful when attempting
to predict outcome based on some pattern, such as a vector
of evaluation parameters applied to the leaf nodes of a state
space search. As time progresses, the vector begins to
converge towards an optimal state, in which program
performance peaks. Temporal difference algorithms
continually modify the weights of a differentiable,
continuous evaluation function. As pointed out by De Jong
and Schultz, expert systems that rely on experience-based
learning mechanisms are more useful in the field than
systems that rely on growing knowledge bases (De Jong
and Schultz 1988). This research focuses on the application
of the TDLeaf algorithm to the domain of computer chess.
In this poster I present empirical data showing the
evolution of a vector of evaluation weights and the
associated performance ratings under a variety of
conditions.

The playing strength of modern chess playing programs
is really a function of the quality of its search and its
evaluation of leaf nodes. The search defines the shape of
the search space, and the manner in which the program
navigates through that space. The evaluation function
attempts to quantitatively measure the value of a chess
position, and therefore assign values to the search tree's leaf
nodes. Given that computer chess programs must assign
values to positions, it becomes necessary to break a chess
position down into tiny parts, giving points for some
attributes, and penalizing for others. The more evaluation
terms included in the evaluation function, the more capable
the evaluator is to distinguish between positions. This
precision comes at a cost, and that cost is complexity. The
more terms in the evaluator, the more difficult it becomes
to properly tune a new weight relative to existing weights.

 Figure 1: The TDLeaf Algorithm

Traditional (non-learning) methods of tuning evaluation
parameters become increasingly impractical as the
number of parameters increases. Consequently, a great deal
of research has been done to find methods for the self
tuning of evaluation parameters, particularly in the domain
of a state space search. One such algorithm is TDLeaf
(Figure 1), first introduced by Beal (Beal 1997), and
applied to chess by Baxter et al. with “Knightcap” (Baxter,
Tridgell, and Weaver 2000). While conventional prediction
learning methods are driven by the error between predicted
and actual outcomes, TD methods are driven by the error
between temporally successive predictions (Sutton 1998).
One advantage to this approach is that learning is applied
incrementally, once per searched move. The learning is
applied to the leaf node of the principal variation, adjusting
the evaluation vector at that node “towards” the vector of
another principal variation leaf node occurring later in the
game. The algorithm allows for some tailoring with the λ
value (a decay rate parameter) and α (a scaling factor).
Setting λ close to one tends to adjust the vector towards the
final position’s vector. This could be useful if the evaluator
can not be trusted. Conversely, a λ close to zero causes the
vector to be adjusted towards the next position’s vector.

 Temporal difference algorithms have had some success
in game playing. Despite the overall success of temporal
difference algorithms, none of the top ranked computer
chess programs utilize them, suggesting they are still
unable to produce a set of evaluation parameters superior
to a set of carefully hand tuned parameters. Though
Schaeffer reports promising results with “Chinook” (a
world class checkers program), it should be noted that
Chinook contains relatively few evaluation parameters
compared to a competitive chess program. The most
promising results reported of temporal differences applied
to chess are those of “Knightcap”, which is far below the
grandmaster level in playing strength. (Schaeffer, Hlynka,
and Jussila 2001). Perhaps by better understanding the
conditions under which temporal difference algorithms are

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Student Abstracts 965

From: AAAI-02 Proceedings. Copyright © 2002, AAAI (www.aaai.org). All rights reserved.

mailto:jfs0301@mail.ecu.edu

able to converge the parameter vector to an optimal state,
we will be able to use temporal
difference algorithms more effectively and in a wider
variety of applications.

Figure 2: Ratings Progression Beginning with a
Material only Vector

Initial data, though showing TDLeaf to be effective,
suggest limits to the algorithm’s ability to adjust the
evaluation vector to an optimal state. Figure 2 plots the
ratings progression beginning from a vector in which only
the values of the pieces are nonzero. To get a baseline, the
engine first played online (against human opponents) with
the material-only vector without learning. After 340 games
the engine’s mean rating was 1504. A separate run of 265
games with learning on (shown in Figure 2) ended with a
mean rating of 1558 – substantially higher than the
previous non-learning run. The results of a subsequent
experiment were, unfortunately, not as promising. Figure 3
illustrates the progression of a separate run of games that
was started using a hand-tuned vector of evaluation
parameters. After another 265 games the engine had
achieved a mean rating of 1715. This is substantially lower
than the 1775 mean rating from a previous run of a non-
learning engine using the same hand-tuned vector. In this
case, the learning was not only ineffective, but was
harmful. The vector was moving away from optimal.

Figure 3: Ratings Progression Beginning with a Hand-
Tuned Vector

 Copyright © 2002, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

There are a number of conditions that may delay or even
prevent convergence. Shallow searches, for example, leave
the program vulnerable to the horizon effect, eventually
causing the program to lose for tactical rather than
positional reasons. In these cases it is likely the TD
algorithm is adjusting the vector to predict tactical
blunders, and consequently limiting the effectiveness of the
program’s ability to predict outcome based strictly on
positional features. The idea that search depth adversely
affects the algorithm’s ability to converge to optimality can
be tested by running several series of training sessions,
each session beginning with an engine that plays at a higher
caliber than the last, using the hand tuned vector.
Evaluation complexity, distance from the optimal vector,
quality of opponents, or length of training games may also
delay convergence. Tesauro reported continually improving
performance with TD-Gammon after hundreds of
thousands of games (Tesauro 1995). Other dynamic or
nondeterministic aspects of the program may also confound
the algorithm’s ability to converge to optimality. Examples
include null-move forward pruning, aspiration windows,
and principal variation search.

Acknowledgements

The author wishes to acknowledge Dr. Ronnie Smith and
Dr. Mike Spurr of East Carolina University for their
guidance and helpful insight, and his wife Amy for her
support and unending patience.

References
Beal, D. 1997. Learning Piece Values Using Temporal
Differences. International Computer Chess Association
Journal, 20:147-151

Baxter, J., Tridgell, A., and Weaver, L. 2000. Learning to
Play Chess using Temporal Differences, in Machine
Learning, 40:243-263.

Sutton, R. 1998. Learning to Predict by the Methods of
Temporal Differences, Boston, Kluwer Academic
Publishers

Schaeffer J., Hlynka M., and Jussila V. 2001. Temporal
Difference Learning Applied to a High-Performance Game-
Playing Program, in Proceedings of the 2001 International
Joint Conference on Artificial Intelligence (IJCAI-2001),
529-534.

De Jong, K. and Schultz, Alan C. 1988. Using
Experience-Based Learning in Game Playing, in
Proceedings of the Fifth International Machine Learning
Conference, 284-290.

Tesauro G. 1995. Temporal Difference Learning and TD-
Gammon, in Communications of the ACM, 38:58-68.

966 Student Abstracts

