
Online Parallel Boosting

Jesse A. Reichler1, Harlan D. Harris2, and Michael A. Savchenko3

1Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA, reichler@uiuc.edu
2Department of Psychology, Columbia University, New York, NY 10027, USA, harlan@psych.columbia.edu

3Department of Aeronautical and Astronautical Engineering, University of Illinois, Urbana, IL 61801, USA, savchenk@uiuc.edu

Abstract
This paper presents a new boosting (arcing) algorithm called
POCA, Parallel Online Continuous Arcing. Unlike
traditional boosting algorithms (such as Arc-x4 and
Adaboost), that construct ensembles by adding and training
weak learners sequentially on a round-by-round basis,
training in POCA is performed over an entire ensemble
continuously and in parallel. Since members of the
ensemble are not frozen after an initial learning period (as in
traditional boosting) POCA is able to adapt rapidly to non-
stationary environments, and because POCA does not
require the explicit scoring of a fixed exemplar set, it can
perform online learning of non-repeating data. We present
results from experiments conducted using neural network
experts that show POCA is typically faster and more
adaptive than existing boosting algorithms. Results
presented for the UCI letter dataset are, to our knowledge,
the best published scores to date.

Introduction
Boosting (also known as arcing) is an ensemble learning
strategy that works by iteratively constructing and
combining experts that are increasingly forced to
concentrate on “difficult” training exemplars.
 Traditionally, boosting proceeds in a series of sequential
rounds. During each round, a new expert is trained and
added to the ensemble. Training data for all experts is
drawn from a single fixed data set with weights on each
exemplar. After each round, exemplars are re-weighted to
increase the importance of those exemplars that have been
the most difficult for prior experts to learn. Ensemble
output is a weighted combination of all expert outputs.
 It has been shown that efficient boosting algorithms
exist for constructing arbitrarily accurate (on training data)
ensembles from individual learners which perform no
better than chance (Schapire 1999). One such algorithm,
Adaboost, has received a great deal of attention because of
its efficiency and unexpectedly good generalization
properties (Freund and Schapire 1998). Recently, Breiman
introduced Arc-x4 (Breiman 1997), a similar but simpler
algorithm, that assigns fixed, equal voting weights for each
expert, and re-weights exemplars using a simpler function
of the number of mistakes made by prior experts. Breiman

Copyright © 2004, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

(Breiman 1999) has demonstrated that Arc-x4 usually
performs as well as Adaboost, and has argued that the
success of boosting algorithms is due to the general
process of increasing weights on difficult exemplars, rather
than to any specific re-weighting or recombination scheme.
Pseudo-code for Arc-x4 is shown in Table 1-A.
 Current boosting algorithms require that explicit
performance scores for each exemplar be calculated after
each training round. This can require large memory
resources and is unsuitable for use with changing concepts
or in environments that lack a fixed, finite training set.
 This paper introduces a new multi-class boosting
algorithm, POCA (Parallel Online Continuous Arcing),
that does not require the use of a fixed, finite training set,
and is thus capable of learning in online environments with
non-repeating data. Unlike traditional boosting, where
prior experts are frozen as new experts are added, POCA
continuously trains an entire ensemble in parallel, allowing
ensembles to adapt rapidly to non-stationary environments.
 Results from multi-class classification tests show that
even with a fixed data set POCA performs competitively
with existing boosting algorithms and learns faster in terms
of improvement per training iteration. Results on the UCI
letter dataset are, to our knowledge, the best published
scores to date.
 Other work on parallel boosting includes parallel
boosting of binary concepts using decision trees (Fern and
Givan 2003), and boosting with disjoint distributed data
sets (Fan et al. 1999; Lazarevic and Obradovic 2001;
Chawla et al. 2002).

POCA: Parallel Online Continuous Arcing
The basic idea behind the POCA algorithm is
straightforward: Each exemplar is received from the
environment and delivered to an entire ensemble of experts
in parallel. Every expert is trained on every exemplar as it
is delivered, and experts dynamically modulate each other's
learning rates in a manner that approximates traditional
boosting schemes for re-weighting training data. In
essence, experts form a virtual chain (Figure 1), such that
the learning rate of an expert is a function of the
performance, on that exemplar only, of the experts
preceding it in the chain. After an exemplar is used for
training, it is discarded from memory. Pseudo-code for
POCA is shown in Table 1-B.

366 LEARNING

training vector

expert error

learning-rate
modulation

input vector

experts

weighting
nodes

Figure 1: The POCA architecture. Each expert processes the
input in parallel and computes its own prediction error. This error
is forwarded in parallel to all rightward weighting nodes. Each
weighting node computes some function over the incoming errors
and projects this value down to its paired expert in order to
modulate the learning rate for the current exemplar.

Table 1-A. Arc-x4 Algorithm
Given: Training dataset {<x1,y1>,…,<xn,yn>}
 Maximum # of rounds, R, Expert (weak) learning algorithm
Initialize weights and mistakes:
 1() 1/w i n i= ∀ 0 () 0m i i= ∀
For r=1 to R:
 Build new expert h with weighted dataset.
 Calc. weighted error of current expert:

 () 1 () 0r r i ie i if h x y else i= ≠ ∀
 () ()r r r

i
w i e iε =∑

 If weighted error is greater than chance:
 Reset weights, delete expert, loop

 Update exemplar mistakes, weights:
 1() () ()r r rm i m i e i i−= + ∀
 4

1() 1 ()r rw i m i i+ = + ∀
 Normalize exemplar weights:

1 1 1() () / ()r r r
i

w i w i w i i+ + += ∀∑
End for loop.
Ensemble output: { }() arg max : ()r r

y Y
h x h h x y

∈
= =

Table 1-B. POCA Algorithm
Given: Expert learning algorithm,
 # of experts, R; Decay, d
Build experts h1,…,hR
Initialize weighted error approximations:
 () () 0.5 () 1r q r r s r rε = = ∀ = ∀
While there is an available training exemplar <x,y>:
 Calc. expert errors on <x,y>: () 1 () 0re r if h x y else r= ≠ ∀
Calc. expert weights for <x,y>:

{ : () 0.5}
() ()

i i r i
m r e i r

ε< ∧ <
= ∀∑

4() 1 ()tw r m r r= + ∀

() max((),..., ())t windowsize tz r w r w r−≈

Train experts on <x,y> using wt(r)/z(r)
Update norm. weighted error estimates of experts:

() ()(1) () ()tq r q r d w r e r d r= − + ∀
() ()(1) ()ts r s r d w r d r= − + ∀
() () / ()r q r s r rε = ∀

End while loop.
Ensemble output: { }() arg max : ()r r

y Y
h x h h x y

∈
= =

Table 1: Pseudo-code for (two-class) Arc-x4 and POCA. Indices in table 1-A index over exemplars in the fixed training set; indices in
table 1-B index over experts in the ensemble. See text for discussion of decay, windowsize, and normalization constants in POCA.

A Virtual Chain
POCA was designed to approximate the behavior of
standard boosting algorithms, but in a parallelizable
manner. Here we provide a brief inductive proof outline
for the assertion that POCA approximates traditional
boosting. Consider the case of learning a fixed set of
training data. The first (leftmost) expert in POCA is
trained on the un-weighted data, exactly as in traditional
boosting. That expert will converge to the same solution
as would the initial expert in Adaboost or Arc-x4, except
that its training never ends. After the first expert has
converged, it sends to the rightward experts an error signal
that is weighted in the same way that exemplar mistakes
are weighted in standard boosting. Therefore, as experts
sequentially converge from left to right, POCA ensembles
come to mirror traditional boosting ensembles. While this
equivalence holds in the limit, we will show that POCA
benefits from not waiting until experts converge before
initiating the training of subsequent experts.

Choice of Experts and Weighting Functions
Because the POCA algorithm must operate in non-
stationary environments, it requires experts that are capable
of gradual and continuous non-monotonic learning. Here
we have used backpropagation and small multi-layer
neural network experts, where the learning rate of each
expert is simply a baseline rate multiplied by the current
output of the expert’s paired weighting node. In multi-
class classification, weighting nodes compute vector
weightings by treating each output class as a separate

classification task (Schapire 1999), and we use a slightly
modified form of backpropagation described in a
subsequent section.
 For experts that cannot accept explicit learning rates, a
variant of POCA analogous to boosting-by-resampling
(Freund and Schapire 1999) can be used: The value
computed by each weighting node (scaled from 0 to 1) is
used as the probability of training the paired expert on each
exemplar, and each expert makes an independent and
probabilistic decision about whether to train on each
exemplar as it is delivered from the environment.

LEARNING 367

0 5 1 0 1 5 2 0 2 5

9 0

9 1

9 2

9 3

9 4

9 5

9 6

9 7

9 8

9 9

1 0 0

0 5 1 0 1 5 2 0 2 5

7 6

7 8

8 0

8 2

8 4

8 6

8 8

9 0

0 5 1 0 1 5 2 0 2 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

0 5 1 0 1 5 2 0 2 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0
K r v s . K p

Ac
cu

ra
cy

 (%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

)

P res en tation s x 6 0 ,0 0 0 (on e rou n d o f s tan dard boos tin g)

 P O C A
 A rc x4
 P ara lle l B agg in g

S ate lite

Ac
cu

ra
cy

 (%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

)

P res en ta tion s x 6 0 ,0 0 0 (on e rou n d o f s tan dard boos tin g)

 P oc a
 A rc x4
 P ara lle l B agg in g

S egm en t
Ac

cu
ra

cy
 (%

 c
or

re
ct

 c
la

ss
ifi

ca
tio

ns
)

P res en tation s x 6 0 ,0 0 0 (on e rou n d o f s tan dard boos tin g)

 P O C A
 A rc x4
 P ara lle l B agg in g

DC

BA

G lass

Ac
cu

ra
cy

 (%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

)

P res en ta tion s x 6 0 ,0 0 0 (on e rou n d o f s tan dard boos tin g)

 P O C A
 A rc x4
 P ara lle l B agg in g

Figure 2: Does POCA boost? Performance on some UCI datasets using simple experts (standard deviations are omitted for clarity, but are
generally within one percentage point). Note that significantly better results can easily be obtained on these datasets with more powerful
experts; simple experts were chosen to examine the effect of boosting.

 In addition to selecting a particular architecture for the
experts, it is necessary to choose a particular function to be
computed by the weighting nodes. We have implemented
parallelizable (Fern and Givan 2003) weighting functions
that emulate both the Arc-x4 and Adaboost weighting
schemes, and found only minor differences in
performance. All experiments in this paper were
conducted using the Arc-x4 version of POCA.

Dynamic Normalization of Weighting Nodes
Traditional boosting algorithms employ an explicit
normalization step after each round to ensure that exemplar
weights form a valid distribution for sampling. This is
important because, depending on the performance of prior
experts, the highest weights that a given expert receives
may be very small. If left un-normalized, excessively
small weights could significantly slow down learning. The
difficulty for POCA is that it is impossible to
systematically normalize weighting node outputs (i.e.
learning rates or training probabilities) between rounds, not
only because POCA does not work in discrete rounds, but
because we assume an online environment with possibly
non-repeating, non-stationary training exemplars.

 We employ a heuristic mechanism to approximate the
normalization of weighting node outputs: Each expert
keeps track of the highest weight it has seen in the recent
past, and this value is used to normalize new weights as
they are generated. The heuristic ensures that the relative
weighting of exemplars is largely preserved, while each
expert rescales its weights so that the highest weighted
exemplars receive weights (probabilities or learning rates)
near 1. The optimal window size for normalization
depends on learning rates and concept drift rate, but
experimental results show little difference over a wide
range of window sizes; experiments presented in this paper
normalize over the last 2000 exemplars. Another
technique employed in boosting algorithms (Breiman
1999) is to exclude experts that perform worse than
chance. We emulate this by tracking each expert’s
“decaying-weighted-error” over time, which can be used
continuously and is suitable for non-stationary concepts.
Experiments presented here use a decay of .001.

Differentially Weighted Backpropagation
When training multi-class neural networks, one commonly
presents a vector where the correct class has a value near 1,

368 LEARNING

0 . 1 1 1 0

0

2

4

6

8

1 0

A d a b o o s t 1 6 - 7 0 - 5 0 - 2 6 (C G + W)

 P o c a 1 6 - 7 0 - 5 0 - 2 6

P o c a 1 6 - 1 0 0 - 1 0 0 - 2 6

H
ol

do
ut

 T
es

t E
rro

r %

P r e s e n t a t i o n s x 8 , 0 0 0 , 0 0 0 (o n e r o u n d o f s t a n d a r d a d a b o o s t)

A d a b o o s t 1 6 - 7 0 - 5 0 - 2 6 (S G + E)

Figure 3: Comparison with previously published (state-of-the-art) results on the UCI Letter dataset by Schwenk et al. Note that test scores
in Adaboost are calculated after the completion of each discrete round (which is accompanied by the addition of a new expert to the
ensemble), and therefore begin only after completion of the first round. For clarity, standard deviations are not shown, but are consistently
below 0.1 during the second half of POCA training. SG+E is stochastic-gradient descent training using weighted resampling; CG+W is
conjugate gradient descent training using weighted training exemplars; results taken from (Schwenk and Bengio 2000).

and other classes have a value near 0. Prediction error is
the mean-squared-error over the entire output vector.
When boosting such multi-class neural network experts,
the common practice is to calculate a scalar weight for
each training exemplar and use this scalar weight to either
modify the learning rate of the neural network or to weight
the exemplars for resampling (Drucker et al. 1994; Drucker
1999; Optiz and Maclin 1999; Schwenk and Bengio 2000).
 We have obtained slightly better results using a
modification of backpropagation that differentially weights
individual components of the error vector, rather than
modifying the global learning rate of the network. We
simply multiply the backpropagation error term on each
output node by the associated (normalized) weight of that
component, as calculated using the applicable weighting
rule (i.e. Arc-x4 variant or Adaboost variant), treating each
component of the output as an independent binary learning
task, along the lines of Adaboost.M2 (Schapire 1999).
This forces the neural networks to concentrate learning on
hard-to-distinguish output classes (specific output
components). Results using standard backpropagation (not
shown) are not qualitatively different, but tend to converge
slightly slower.

Results
This section presents some representative results
comparing POCA to other ensemble methods using
datasets from the UCI machine learning repository (Blake
and Merz 1998).

Does POCA Boost?
The first set of experiments compares POCA to Arc-x4 and
Parallel Bagging, using very simple experts. Experts are
standard MLP (multi-layer feed-forward perceptron) neural
networks with a single hidden layer of only 3 nodes;
training was performed using a slightly modified version of
stochastic backpropagation that multiplies output
component errors by the component output of the
weighting nodes, emulating Schapire’s Adaboost.M2
(Schapire 1999) training scheme for multi-class boosting.
The baseline learning rate was 0.4, with a momentum of
0.2; each run consists of 25 “rounds” with 60,000 training
presentations per round. Note that in POCA and parallel
bagging, rounds demarcate chunks of training exemplars
seen, and have no greater significance; all algorithms
receive the same number of total training exemplars.
 Figure 2 shows that POCA performs comparably to
standard Arc-x4, and is not simply averaging the votes of
independent experts, as in bagging. Plots show accuracy
over time, on held-out test data, averaged over 10 runs.
Results of Adaboost and POCA-adaboost were similar and
are not shown.
 It is important to note that significantly better results can
be achieved on these UCI datasets with more complex
experts; for this set of experiments we specifically chose
simple experts as base learners in order to tax the abilities
of individual experts and test the ability of POCA to boost.
As has been reported elsewhere, with more complex
individual experts, the advantages of boosting over
bagging become less pronounced (Optiz and Maclin 1999).

LEARNING 369

0 5 1 0 1 5 2 0 2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

0 5 1 0 1 5 2 0 2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

1 0 0S a t e l i t e

Ac
cu

ra
cy

 (%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

)

P r e s e n t a t i o n s x 6 0 , 0 0 0 (o n e r o u n d)

 P O C A
 A r c x 4
 P a r a l l e l B a g g i n g

BA
S e g m e n t

Ac
cu

ra
cy

 (%
 c

or
re

ct
 c

la
ss

ifi
ca

tio
ns

)

P r e s e n t a t i o n s x 6 0 , 0 0 0 (o n e r o u n d)

 P O C A
 A r c x 4
 P a r a l l e l B a g g i n g

Figure 4: Performance on datasets where the concept changes during training. In traditional boosting, only over time do new
experts “drown-out” the old incorrect ones.

Comparison with State-of-the-art
Recently, Schwenk and Bengio (Schwenk and Bengio
2000) presented state-of-the-art results on the large (20,000
cases) and difficult UCI Letter dataset using boosted neural
networks. Schwenk and Bengio’s results plateau at 1.47%
error after a total of 200 million training-exemplar
presentations (25 rounds of 500 epochs each, with 16,000
training exemplars per epoch), which they cite as the best
results obtained to date on this data.
 Figure 3 shows a comparison of POCA to the Schwenk
et al. Adaboost results, using identically sized ensembles
and experts (25 neural network experts of size 16-70-50-
26) , and also using larger ensembles (50 experts) of larger
neural networks (16-100-100-26). Other parameters were
identical to the previous experiment. To reduce training
time, results for POCA have been averaged over only 3
runs and we stopped training after 25 million exemplars
were presented, when learning seemed to plateau.
 With neural network experts of identical size to those
used in Schwenk et al., POCA plateaus at a slightly higher
error of 1.6%, but reaches this much more rapidly. With
larger networks, POCA plateaus at an error rate of 1.44%,
which is the best published score on this dataset to our
knowledge.
 We believe that the significance of the results shown in
figure 3 lies not so much in the final error rates, but rather
in the speed of the learning (in terms of improvement per
iteration and potential running time on parallel hardware),
and in the flexibility of the underlying algorithm (i.e.
suitability for online learning of non-repeating data).
 We further note that Schwenk et al. were unable to
obtain satisfactory results when using stochastic gradient
descent training with a directly-weighted cost function (not
shown), and had to use weighted sampling or conjugate-

gradient descent, both of which greatly increase
computational processing requirements. POCA is able to
achieve identical results using a computationally cheaper,
online-suitable gradient descent procedure with a directly-
weighted cost function (differentially weighted backprop).

Suitability for Changing Concepts
A major motivation for the development of the POCA
algorithm was the possibility of applying boosting
principles to online learning in non-stationary
environments. Standard boosting algorithms are ill-suited
for such tasks both because they require a fixed dataset
over which to track explicit performance scores, and
because traditional boosting algorithms build ensembles
sequentially, so that previously built experts are incapable
of adapting to changes in a target concept.
 Figure 4 compares the performance of POCA against the
standard Arc-x4 algorithm and Parallel Bagging on two
UCI Datasets, Satellite and Segment. After the 12th round
we change half of the target classes, for both training and
testing data, effectively changing the target concept. Arc-
x4 exhibits a catastrophic failure and can only recover
slowly by building enough new experts to drown out the
newly-incorrect votes of previously constructed experts.

Conclusions
In a recent paper, Breiman (Breiman 1999) states that “in
terms of handling large databases, an advantage for
bagging, randomized construction, and output
randomization is that they can be easily parallelized, while
boosting algorithms are essentially sequential.” Drucker
(Drucker 1999) similarly states that “The big advantage of

370 LEARNING

bagging over boosting is that each machine can be trained
independently, hence in parallel.” And in (Bauer and
Kohavi 1999), Bauer and Kohavi state that “In parallel
environments, Bagging has a strong advantage because the
sub-classifiers can be built in parallel” and go on to
question whether an efficient parallel implementation of
boosting/arcing is possible.
 We believe that POCA represents a viable, efficient,
parallelizable boosting algorithm. It requires no memory
for storing exemplars or exemplar scores and can be used
for online learning of difficult multi-class concepts in non-
stationary environments.
 Although the POCA algorithm itself is clearly parallel,
one might ask whether the actual adaptation of experts is
still in some sense inherently serial. Empirically, the
parallel training procedure yields consistently better results
over its serial counterpart. We speculate that this is due to
the fact that, even though a given expert cannot be
expected to completely stabilize until those preceding it in
the virtual chain completely stabilize, all experts in POCA
are learning gradually, as if tracking a drifting distribution.
When training begins, learning in the ensemble resembles
a form of parallel bagging, but as experts learn to
specialize on certain regions of the input space, they
perturb the distribution of weights seen by those experts
that follow them in the virtual chain, forcing those experts
to adapt to the changing distribution as if the target concept
had changed. Because of this, POCA typically learns
faster (in improvement per training iteration) than
traditional boosting algorithms like Arc-x4 and Adaboost,
as can be seen in Figures 2, 3, and 4.
 In traditional boosting, at the start of each round a new
expert is created, given the full data set, and “trained to
completion.” Because neural network experts (and similar
structures) can get stuck in local minima for prolonged
periods, traditional boosting algorithms must adopt criteria
for deciding when to stop training a given expert and move
on to the next round. Stopping prematurely may result in
an unnecessarily large number of rounds, while
overtraining experts wastes computational time. The
continuous training of experts in POCA ensures that no
time is wasted overtraining experts, while still providing
each expert with the entire training time in which to reach
asymptotic performance. We believe that the higher
overall accuracy of POCA seen in our results is due to the
ability of POCA to avoid the under and over training of
individual experts.
 A drawback of the POCA algorithm is that on a single
CPU it can run orders of magnitude slower in actual
runtime than traditional boosting algorithms. We are
currently working on a version of POCA that runs on
parallel hardware, using a pipeline system to minimize
communication bandwidth. We also hope to explore
alternative weight-propagation topologies and learning
schemes, which would allow POCA to generalize to
parallel forms of other ensemble algorithms such as
Multiboosting (Webb 2000) and Mixtures of Experts
(Jacobs et al. 1991).

References
Bauer, E., and Kohavi, R. 1999. An Empirical Comparison
of Voting Classification Algorithms: Bagging, Boosting,
and Variants. Machine Learning 36(1-2): 105-39.

Blake, C. L. and Merz, C. J. 1998. "UCI Repository of
machine learning databases." Web page. Available at
http://www.ics.uci.edu/~mlearn/MLRepository.html.

Breiman, L. 1997. Arcing the Edge, Technical Report
#486. University of California, Berkeley.

Breiman, L. 1999. Combining Predictors. Combining
Artificial Neural Nets. ed. A. J. C. Sharkey, 31-50.
London: Springer-Verlag.

Chawla, N. V, Hall, L. O, Bowyer, K. W, Moore, T. E, and
Kegelmeyer, W. P. 2002. Distributed Pasting of Small
Votes. In Proceedings of Multiple Classifier Systems 2002.

Drucker, H. 1999. Boosting Using Neural Networks.
Combining Artificial Neural Nets. ed. A. J. C. Sharkey, 51-
77. London: Springer-Verlag.

Drucker, H., Cortes, C., Jackel, L. D., Lecun, Y., and
Vapnik, V. 1994. Boosting and Other Ensemble Methods.
Neural Computation 6(6): 1289-301.

Fan, W., Stolfo, S. J., and Zhang, J. 1999. The Application
of AdaBoost for Distributed, Scalable and On-line
Learning. In Proceedings of the fifth ACM SIGKDD
International Conference on Knowledge discovery and
Data Mining, KDD-99, San Diego, California.

Fern, A., and Givan, R. 2003. Online Ensemble Learning:
an Empirical Study. Machine Learning 53(1-2): 71-109.

Freund, Y., and Schapire, R. E. 1998. Arcing Classifiers -
Discussion. Annals of Statistics 26(3): 824-32.

Freund, Y., and Schapire, R. E. 1999. A Short Introduction
to Boosting. Journal of the Japanese Society for Artificial
Intelligence 14(5): 771-80.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G.
E. 1991. Adaptive mixtures of local experts. Neural
Computation 3(1): 79-87.

Lazarevic, A, and Obradovic, Z. 2001. The Distributed
Boosting Algorithm. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining,
KDD-2001.

Optiz, D., and Maclin, R. 1999. Popular Ensemble
Methods: An Empirical Study. Journal of Artificial
Intelligence Research 11: 169-98.

Schapire, R. E. 1999. A Brief Introduction to Boosting. In
Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence.

Schwenk, H., and Bengio, Y. 2000. Boosting Neural
Networks. Neural Computation 12(8): 1869-87.

Webb, G. I. 2000. Multiboosting: a Technique for
Combining Boosting and Wagging. Machine Learning
40(2): 159-96.

LEARNING 371

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

