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Abstract 
This paper presents a new boosting (arcing) algorithm called 
POCA, Parallel Online Continuous Arcing.  Unlike 
traditional boosting algorithms (such as Arc-x4 and 
Adaboost), that construct ensembles by adding and training 
weak learners sequentially on a round-by-round basis, 
training in POCA is performed over an entire ensemble 
continuously and in parallel.  Since members of the 
ensemble are not frozen after an initial learning period (as in 
traditional boosting) POCA is able to adapt rapidly to non-
stationary environments, and because POCA does not 
require the explicit scoring of a fixed exemplar set, it can 
perform online learning of non-repeating data.  We present 
results from experiments conducted using neural network 
experts that show POCA is typically faster and more 
adaptive than existing boosting algorithms.  Results 
presented for the UCI letter dataset are, to our knowledge, 
the best published scores to date. 

Introduction 
Boosting (also known as arcing) is an ensemble learning 
strategy that works by iteratively constructing and 
combining experts that are increasingly forced to 
concentrate on “difficult” training exemplars. 
 Traditionally, boosting proceeds in a series of sequential 
rounds.  During each round, a new expert is trained and 
added to the ensemble.  Training data for all experts is 
drawn from a single fixed data set with weights on each 
exemplar.  After each round, exemplars are re-weighted to 
increase the importance of those exemplars that have been 
the most difficult for prior experts to learn.  Ensemble 
output is a weighted combination of all expert outputs. 
 It has been shown that efficient boosting algorithms 
exist for constructing arbitrarily accurate (on training data) 
ensembles from individual learners which perform no 
better than chance (Schapire 1999).  One such algorithm, 
Adaboost, has received a great deal of attention because of 
its efficiency and unexpectedly good generalization 
properties (Freund and Schapire 1998).  Recently, Breiman 
introduced Arc-x4 (Breiman 1997), a similar but simpler 
algorithm, that assigns fixed, equal voting weights for each 
expert, and re-weights exemplars using a simpler function 
of the number of mistakes made by prior experts.  Breiman 
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(Breiman 1999) has demonstrated that Arc-x4 usually 
performs as well as Adaboost, and has argued that the 
success of boosting algorithms is due to the general 
process of increasing weights on difficult exemplars, rather 
than to any specific re-weighting or recombination scheme.  
Pseudo-code for Arc-x4 is shown in Table 1-A. 
 Current boosting algorithms require that explicit 
performance scores for each exemplar be calculated after 
each training round.  This can require large memory 
resources and is unsuitable for use with changing concepts 
or in environments that lack a fixed, finite training set. 
 This paper introduces a new multi-class boosting 
algorithm, POCA (Parallel Online Continuous Arcing), 
that does not require the use of a fixed, finite training set, 
and is thus capable of learning in online environments with 
non-repeating data.  Unlike traditional boosting, where 
prior experts are frozen as new experts are added, POCA 
continuously trains an entire ensemble in parallel, allowing 
ensembles to adapt rapidly to non-stationary environments. 
 Results from multi-class classification tests show that 
even with a fixed data set POCA performs competitively 
with existing boosting algorithms and learns faster in terms 
of improvement per training iteration.  Results on the UCI 
letter dataset are, to our knowledge, the best published 
scores to date. 
 Other work on parallel boosting includes parallel 
boosting of binary concepts using decision trees (Fern and 
Givan 2003), and boosting with disjoint distributed data 
sets (Fan et al. 1999; Lazarevic and Obradovic  2001; 
Chawla et al.  2002). 

POCA: Parallel Online Continuous Arcing 
The basic idea behind the POCA algorithm is 
straightforward: Each exemplar is received from the 
environment and delivered to an entire ensemble of experts 
in parallel.  Every expert is trained on every exemplar as it 
is delivered, and experts dynamically modulate each other's 
learning rates in a manner that approximates traditional 
boosting schemes for re-weighting training data.  In 
essence, experts form a virtual chain (Figure 1), such that 
the learning rate of an expert is a function of the 
performance, on that exemplar only, of the experts 
preceding it in the chain.  After an exemplar is used for 
training, it is discarded from memory.  Pseudo-code for 
POCA is shown in Table 1-B. 
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Figure 1: The POCA architecture.  Each expert processes the 
input in parallel and computes its own prediction error.  This error 
is forwarded in parallel to all rightward weighting nodes.  Each 
weighting node computes some function over the incoming errors 
and projects this value down to its paired expert in order to 
modulate the learning rate for the current exemplar. 

Table 1-A. Arc-x4  Algorithm 
Given:  Training dataset {<x1,y1>,…,<xn,yn>} 
     Maximum # of rounds, R, Expert (weak) learning algorithm 
Initialize weights and mistakes: 
     1( ) 1/w i n i= ∀  0 ( ) 0m i i= ∀  
For r=1 to R: 
     Build new expert h with weighted dataset. 
     Calc. weighted error of current expert: 

     ( ) 1 ( ) 0r r i ie i if h x y else i= ≠ ∀  
     ( ) ( )r r r

i
w i e iε =∑  

     If weighted error is greater than chance: 
     Reset weights, delete expert, loop 

     Update exemplar mistakes, weights: 
     1( ) ( ) ( )r r rm i m i e i i−= + ∀  
     4

1( ) 1 ( )r rw i m i i+ = + ∀  
     Normalize exemplar weights: 

1 1 1( ) ( ) / ( )r r r
i

w i w i w i i+ + += ∀∑  
End for loop. 
Ensemble output:  { }( ) arg max : ( )r r

y Y
h x h h x y

∈
= =  

Table 1-B. POCA Algorithm 
Given:  Expert learning algorithm, 
            # of experts, R;  Decay, d 
Build experts h1,…,hR  
Initialize weighted error approximations: 
     ( ) ( ) 0.5 ( ) 1r q r r s r rε = = ∀ = ∀  
While there is an available training exemplar <x,y>: 
      Calc. expert errors on <x,y>: ( ) 1 ( ) 0re r if h x y else r= ≠ ∀  
Calc. expert weights for <x,y>: 

{ : ( ) 0.5}
( ) ( )

i i r i
m r e i r

ε< ∧ <
= ∀∑  

4( ) 1 ( )tw r m r r= + ∀  

( ) max( ( ),..., ( ))t windowsize tz r w r w r−≈  

Train experts on <x,y> using wt(r)/z(r) 
Update norm. weighted error estimates of experts: 

( ) ( )(1 ) ( ) ( )tq r q r d w r e r d r= − + ∀  
( ) ( )(1 ) ( )ts r s r d w r d r= − + ∀  
( ) ( ) / ( )r q r s r rε = ∀  

End while loop. 
Ensemble output:  { }( ) arg max : ( )r r

y Y
h x h h x y

∈
= =  

Table 1: Pseudo-code for (two-class) Arc-x4 and POCA.  Indices in table 1-A index over exemplars in the fixed training set; indices in 
table 1-B index over experts in the ensemble.  See text for discussion of decay, windowsize, and normalization constants in POCA. 

A Virtual Chain 
POCA was designed to approximate the behavior of 
standard boosting algorithms, but in a parallelizable 
manner.  Here we provide a brief inductive proof outline 
for the assertion that POCA approximates traditional 
boosting.  Consider the case of learning a fixed set of 
training data.  The first (leftmost) expert in POCA is 
trained on the un-weighted data, exactly as in traditional 
boosting.  That expert will converge to the same solution 
as would the initial expert in Adaboost or Arc-x4, except 
that its training never ends.  After the first expert has 
converged, it sends to the rightward experts an error signal 
that is weighted in the same way that exemplar mistakes 
are weighted in standard boosting.  Therefore, as experts 
sequentially converge from left to right, POCA ensembles 
come to mirror traditional boosting ensembles.  While this 
equivalence holds in the limit, we will show that POCA 
benefits from not waiting until experts converge before 
initiating the training of subsequent experts. 

Choice of Experts and Weighting Functions 
Because the POCA algorithm must operate in non-
stationary environments, it requires experts that are capable 
of gradual and continuous non-monotonic learning.  Here 
we have used backpropagation and small multi-layer 
neural network experts, where the learning rate of each 
expert is simply a baseline rate multiplied by the current 
output of the expert’s paired weighting node.  In multi-
class classification, weighting nodes compute vector 
weightings by treating each output class as a separate 

classification task (Schapire 1999), and we use a slightly 
modified form of backpropagation described in a 
subsequent section. 
 For experts that cannot accept explicit learning rates, a 
variant of POCA analogous to boosting-by-resampling 
(Freund and Schapire 1999) can be used: The value 
computed by each weighting node (scaled from 0 to 1) is 
used as the probability of training the paired expert on each 
exemplar, and each expert makes an independent and 
probabilistic decision about whether to train on each 
exemplar as it is delivered from the environment. 
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Figure 2: Does POCA boost?  Performance on some UCI datasets using simple experts (standard deviations are omitted for clarity, but are 
generally within one percentage point).  Note that significantly better results can easily be obtained on these datasets with more powerful 
experts; simple experts were chosen to examine the effect of boosting. 

 In addition to selecting a particular architecture for the 
experts, it is necessary to choose a particular function to be 
computed by the weighting nodes.  We have implemented 
parallelizable (Fern and Givan 2003) weighting functions 
that emulate both the Arc-x4 and Adaboost weighting 
schemes, and found only minor differences in 
performance.  All experiments in this paper were 
conducted using the Arc-x4 version of POCA. 

Dynamic Normalization of Weighting Nodes 
Traditional boosting algorithms employ an explicit 
normalization step after each round to ensure that exemplar 
weights form a valid distribution for sampling.  This is 
important because, depending on the performance of prior 
experts, the highest weights that a given expert receives 
may be very small.  If left un-normalized, excessively 
small weights could significantly slow down learning.  The 
difficulty for POCA is that it is impossible to 
systematically normalize weighting node outputs (i.e. 
learning rates or training probabilities) between rounds, not 
only because POCA does not work in discrete rounds, but 
because we assume an online environment with possibly 
non-repeating, non-stationary training exemplars. 

 We employ a heuristic mechanism to approximate the 
normalization of weighting node outputs: Each expert 
keeps track of the highest weight it has seen in the recent 
past, and this value is used to normalize new weights as 
they are generated.  The heuristic ensures that the relative 
weighting of exemplars is largely preserved, while each 
expert rescales its weights so that the highest weighted 
exemplars receive weights (probabilities or learning rates) 
near 1.  The optimal window size for normalization 
depends on learning rates and concept drift rate, but 
experimental results show little difference over a wide 
range of window sizes; experiments presented in this paper 
normalize over the last 2000 exemplars.  Another 
technique employed in boosting algorithms (Breiman 
1999) is to exclude experts that perform worse than 
chance.  We emulate this by tracking each expert’s 
“decaying-weighted-error” over time, which can be used 
continuously and is suitable for non-stationary concepts.  
Experiments presented here use a decay of .001. 

Differentially Weighted Backpropagation 
When training multi-class neural networks, one commonly 
presents a vector where the correct class has a value near 1, 
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Figure 3: Comparison with previously published (state-of-the-art) results on the UCI Letter dataset by Schwenk et al.  Note that test scores 
in Adaboost are calculated after the completion of each discrete round (which is accompanied by the addition of a new expert to the 
ensemble), and therefore begin only after completion of the first round.  For clarity, standard deviations are not shown, but are consistently 
below 0.1 during the second half of POCA training.  SG+E is stochastic-gradient descent training using weighted resampling; CG+W is 
conjugate gradient descent training using weighted training exemplars; results taken from (Schwenk and Bengio 2000). 

and other classes have a value near 0.  Prediction error is 
the mean-squared-error over the entire output vector.  
When boosting such multi-class neural network experts, 
the common practice is to calculate a scalar weight for 
each training exemplar and use this scalar weight to either 
modify the learning rate of the neural network or to weight 
the exemplars for resampling (Drucker et al. 1994; Drucker 
1999; Optiz and Maclin 1999; Schwenk and Bengio 2000). 
 We have obtained slightly better results using a 
modification of backpropagation that differentially weights 
individual components of the error vector, rather than 
modifying the global learning rate of the network.  We 
simply multiply the backpropagation error term on each 
output node by the associated (normalized) weight of that 
component, as calculated using the applicable weighting 
rule (i.e. Arc-x4 variant or Adaboost variant), treating each 
component of the output as an independent binary learning 
task, along the lines of Adaboost.M2 (Schapire 1999).  
This forces the neural networks to concentrate learning on 
hard-to-distinguish output classes (specific output 
components).  Results using standard backpropagation (not 
shown) are not qualitatively different, but tend to converge 
slightly slower. 

Results 
This section presents some representative results 
comparing POCA to other ensemble methods using 
datasets from the UCI machine learning repository (Blake 
and Merz 1998). 

Does POCA Boost? 
The first set of experiments compares POCA to Arc-x4 and 
Parallel Bagging, using very simple experts.  Experts are 
standard MLP (multi-layer feed-forward perceptron) neural 
networks with a single hidden layer of only 3 nodes; 
training was performed using a slightly modified version of 
stochastic backpropagation that multiplies output 
component errors by the component output of the 
weighting nodes, emulating Schapire’s Adaboost.M2 
(Schapire 1999) training scheme for multi-class boosting.  
The baseline learning rate was 0.4, with a momentum of 
0.2; each run consists of 25 “rounds” with 60,000 training 
presentations per round.  Note that in POCA and parallel 
bagging, rounds demarcate chunks of training exemplars 
seen, and have no greater significance; all algorithms 
receive the same number of total training exemplars.
 Figure 2 shows that POCA performs comparably to 
standard Arc-x4, and is not simply averaging the votes of 
independent experts, as in bagging.  Plots show accuracy 
over time, on held-out test data, averaged over 10 runs.  
Results of Adaboost and POCA-adaboost were similar and 
are not shown. 
 It is important to note that significantly better results can 
be achieved on these UCI datasets with more complex 
experts; for this set of experiments we specifically chose 
simple experts as base learners in order to tax the abilities 
of individual experts and test the ability of POCA to boost.  
As has been reported elsewhere, with more complex 
individual experts, the advantages of boosting over 
bagging become less pronounced (Optiz and Maclin 1999). 
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Figure 4: Performance on datasets where the concept changes during training.  In traditional boosting, only over time do new 
experts “drown-out” the old incorrect ones. 

Comparison with State-of-the-art 
Recently, Schwenk and Bengio (Schwenk and Bengio 
2000) presented state-of-the-art results on the large (20,000 
cases) and difficult UCI Letter dataset using boosted neural 
networks.  Schwenk and Bengio’s results plateau at 1.47% 
error after a total of 200 million training-exemplar 
presentations (25 rounds of 500 epochs each, with 16,000 
training exemplars per epoch), which they cite as the best 
results obtained to date on this data. 
 Figure 3 shows a comparison of POCA to the Schwenk 
et al. Adaboost results, using identically sized ensembles 
and experts (25 neural network experts of size 16-70-50-
26) , and also using larger ensembles (50 experts) of larger 
neural networks (16-100-100-26).  Other parameters were 
identical to the previous experiment.  To reduce training 
time, results for POCA have been averaged over only 3 
runs and we stopped training after 25 million exemplars 
were presented, when learning seemed to plateau. 
 With neural network experts of identical size to those 
used in Schwenk et al., POCA plateaus at a slightly higher 
error of 1.6%, but reaches this much more rapidly.  With 
larger networks, POCA plateaus at an error rate of 1.44%, 
which is the best published score on this dataset to our 
knowledge. 
 We believe that the significance of the results shown in 
figure 3 lies not so much in the final error rates, but rather 
in the speed of the learning (in terms of improvement per 
iteration and potential running time on parallel hardware), 
and in the flexibility of the underlying algorithm (i.e. 
suitability for online learning of non-repeating data). 
 We further note that Schwenk et al. were unable to 
obtain satisfactory results when using stochastic gradient 
descent training with a directly-weighted cost function (not 
shown), and had to use weighted sampling or conjugate-

gradient descent, both of which greatly increase 
computational processing requirements.  POCA is able to 
achieve identical results using a computationally cheaper, 
online-suitable gradient descent procedure with a directly-
weighted cost function (differentially weighted backprop). 

Suitability for Changing Concepts 
A major motivation for the development of the POCA 
algorithm was the possibility of applying boosting 
principles to online learning in non-stationary 
environments.  Standard boosting algorithms are ill-suited 
for such tasks both because they require a fixed dataset 
over which to track explicit performance scores, and 
because traditional boosting algorithms build ensembles 
sequentially, so that previously built experts are incapable 
of adapting to changes in a target concept. 
 Figure 4 compares the performance of POCA against the 
standard Arc-x4 algorithm and Parallel Bagging on two 
UCI Datasets, Satellite and Segment.  After the 12th round 
we change half of the target classes, for both training and 
testing data, effectively changing the target concept.  Arc-
x4 exhibits a catastrophic failure and can only recover 
slowly by building enough new experts to drown out the 
newly-incorrect votes of previously constructed experts. 

Conclusions 
In a recent paper, Breiman (Breiman 1999) states that “in 
terms of handling large databases, an advantage for 
bagging, randomized construction, and output 
randomization is that they can be easily parallelized, while 
boosting algorithms are essentially sequential.”  Drucker 
(Drucker 1999) similarly states that “The big advantage of 
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bagging over boosting is that each machine can be trained 
independently, hence in parallel.”  And in (Bauer and 
Kohavi 1999), Bauer and Kohavi state that “In parallel 
environments, Bagging has a strong advantage because the 
sub-classifiers can be built in parallel” and go on to 
question whether an efficient parallel implementation of 
boosting/arcing is possible. 
 We believe that POCA represents a viable, efficient, 
parallelizable boosting algorithm.  It requires no memory 
for storing exemplars or exemplar scores and can be used 
for online learning of difficult multi-class concepts in non-
stationary environments. 
 Although the POCA algorithm itself is clearly parallel, 
one might ask whether the actual adaptation of experts is 
still in some sense inherently serial.  Empirically, the 
parallel training procedure yields consistently better results 
over its serial counterpart.  We speculate that this is due to 
the fact that, even though a given expert cannot be 
expected to completely stabilize until those preceding it in 
the virtual chain completely stabilize, all experts in POCA 
are learning gradually, as if tracking a drifting distribution.  
When training begins, learning in the ensemble resembles 
a form of parallel bagging, but as experts learn to 
specialize on certain regions of the input space, they 
perturb the distribution of weights seen by those experts 
that follow them in the virtual chain, forcing those experts 
to adapt to the changing distribution as if the target concept 
had changed.  Because of this, POCA typically learns 
faster (in improvement per training iteration) than 
traditional boosting algorithms like Arc-x4 and Adaboost, 
as can be seen in Figures 2, 3, and 4. 
 In traditional boosting, at the start of each round a new 
expert is created, given the full data set, and “trained to 
completion.”  Because neural network experts (and similar 
structures) can get stuck in local minima for prolonged 
periods, traditional boosting algorithms must adopt criteria 
for deciding when to stop training a given expert and move 
on to the next round.  Stopping prematurely may result in 
an unnecessarily large number of rounds, while 
overtraining experts wastes computational time.  The 
continuous training of experts in POCA ensures that no 
time is wasted overtraining experts, while still providing 
each expert with the entire training time in which to reach 
asymptotic performance.  We believe that the higher 
overall accuracy of POCA seen in our results is due to the 
ability of POCA to avoid the under and over training of 
individual experts. 
 A drawback of the POCA algorithm is that on a single 
CPU it can run orders of magnitude slower in actual 
runtime than traditional boosting algorithms.  We are 
currently working on a version of POCA that runs on 
parallel hardware, using a pipeline system to minimize 
communication bandwidth.  We also hope to explore 
alternative weight-propagation topologies and learning 
schemes, which would allow POCA to generalize to 
parallel forms of other ensemble algorithms such as 
Multiboosting (Webb 2000) and Mixtures of Experts 
(Jacobs et al. 1991). 
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