
Regression With Respect to Sensing Actions and Partial States

Le-chi Tuan, Chitta Baral, and Xin Zhang
Computer Science and Engineering

Arizona State University
Tempe, AZ 85287, USA

{lctuan,baral,xin.zhang }@asu.edu

Tran Cao Son
Computer Science Department
New Mexico State University
Las Cruces, NM 88003, USA

tson@cs.nmsu.edu

Abstract

In this paper, we present astate-based regression functionfor
planning domains where an agent does not have complete in-
formation and may have sensing actions. We consider binary
domains1, and employ the 0-approximation (Son & Baral
2001) to define the regression function. In binary domains,
the use of 0-approximation means using 3-valued states. Al-
though planning using this approach is incomplete with re-
spect to the full semantics, we adopt it to have a lower com-
plexity. We prove the soundness and completeness of our
regression formulation with respect to the definition of pro-
gression and develop a conditional planner that utilizes our
regression function.

Introduction and Motivation
An important aspect in reasoning about actions and in char-
acterizing the semantics of action description languages is to
define a transition function encoding the transition between
states due to actions. This transition function is often viewed
as aprogressionfunction in that it denotes the progression
of the world by the execution of actions. The ‘opposite’ or
‘inverse’ of progression is referred to asregression.

Even for the simple case where we have only non-sensing
actions and the progression transition function is determin-
istic, there are various formulations of regression. For ex-
ample, consider the following. LetΦ be the progression
transition function from actions and states to states. I.e., in-
tuitively Φ(a, s) = s′ means that if the actiona is executed
in states then the resulting state will bes′. One way to de-
fine a regression functionΨ1 is to define it with respect to
states. In that cases ∈ Ψ1(a, s

′) will mean that the states′ is
reached ifa is executed ins. Another way regression is de-
fined is with respect to formulas. In that caseΨ2(a, f) = g,
wheref andg are formulas, means that ifa is executed in a
state satisfyingg then a state satisfyingf will be reached.

For planning using heuristic search often a different for-
mulation of regression is given. Since most planning re-
search is about goals that are conjunction of literals, regres-
sion is defined with respect to a set of literals and an ac-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1Due to space limitation, we do not present the results for non-
binary domains here. Interested readers can find such results at
http://www.public.asu.edu/˜lctuan/TOCL/

tion. In that case the conjunction of literals (often specify-
ing the goal) denotes a set of states, one of which needs to
be reached. This regression is slightly different fromΨ2 as
the intention is to regress to another set of literals (not an
arbitrary formula), denoting a sub-goal.

With respect to the planning language STRIPS, where
each actiona has an add listAdd(a), a delete listDel(a),
and a precondition listPrec(a), the progression function is
defined asProgress(s, a) = s + Add(a) − Del(a); and
the regression function is defined asRegress(conj, a) =
conj+Prec(a)−Add(a), whereconj is a set of atoms. The
relation between these two, formally proven in (Pednault
1986), shows the correctness of regression based planners;
which in recent years through use of heuristics (e.g. (Bonet
& Geffner 2001; Nguyen, Kambhampati, & Nigenda 2002))
have done exceedingly well on planning competitions.

In this paper we are concerned with domains where the
agent does not have complete information about the world,
and may have sensing actions, which when executed do not
change the world, but rather give certain information about
the world to the agent.As a result, plans may now no longer
be simply a sequence of (non-sensing) actions but may in-
clude sensing actions and conditionals. Various formalisms
have been developed for such cases (e.g. (Lobo 1998;
Son & Baral 2001)) and progression functions have been
defined. Also, the complexity of planning in such cases has
been analyzed in (Baral, Kreinovich, & Trejo 2000). One
approach to planning in the presence of incomplete infor-
mation is conformant planning where no sensing action is
used, and a plan is a sequence of actions leading to the goal
from every possible initial situation. However, this approach
proves inadequate for many planning problems (Son & Baral
2001), i.e., there are situations where sensing actions are
necessary. In that case, one approach is to use belief states
or Kripke models instead of states. It is shown that the total
number of belief states is double exponential while the total
number of 3-valued states is exponential in the number of
fluents (Baral, Kreinovich, & Trejo 2000). Here, we pursue
a provably less complex formulation with sensing actions
and use 3-valued states. In this approach, we will miss cer-
tain plans, but that is the price we are willing to pay for re-
duced complexity. This is consistent with and similar to the
considerations behind conformant planning. With that trade-
off in mind, in this paper we consider the 0-approximation

556 PLANNING & SCHEDULING

semantics defined in (Son & Baral 2001) and define regres-
sion with respect to that semantics.We then formally relate
our definition of regression with the earlier definition of pro-
gression in (Son & Baral 2001) and show that planning using
our regression function will indeed give us correct plans. We
then use our regression function in planning with sensing ac-
tions and show that, even without using any heuristics, our
planner produces good results. To simplify our formulation,
we only consider STRIPS like actions where no conditional
effects are allowed.

In summary the main contributions of our paper are:
• A state-based regression function corresponding to the 0-

approximation semantics in (Son & Baral 2001);
• A formal result relating the regression function with the

progression transition function in (Son & Baral 2001);
• An algorithm that uses these regression functions to con-

struct conditional plans with sensing actions;
• Implementation of this algorithm; and
• Illustration of the performance of this algorithm with re-

spect to several examples in the literature.
Related Work Our work in this paper is related to dif-
ferent approaches to regression and planning in the pres-
ence of sensing actions and incomplete information. It dif-
fers from earlier formula regression such as (Pednault 1994;
Reiter 2001; Son & Baral 2001) in that it is a state-based
formulation and the other are formula based. Unlike the
conditional planners (Peot & Smith 1992; Cimatti, Roveri,
& Traverso 1998), our planner can deal with sensing actions
similar to the planners in (Etzioniet al. 1992; Lobo 1998;
Son, Tu, & Baral 2004; Weld, Anderson, & Smith 1998).
However, it does not deal with nondeterministic and prob-
abilistic actions such as the planners in (Bonet & Geffner
2001; Pryor & Collins 1996; Rintanen 2000; 2002). It is also
not a conformant planner as in (Cimatti, Roveri, & Traverso
1998; Eiteret al. 2000). For these reasons, we currently
compare our planner with those of (Son, Tu, & Baral 2004;
Weld, Anderson, & Smith 1998).

Background: 0-Approximation Semantics
For A STRIPS-like Language

Action and Plan Representation
We employ a STRIPS-like action representation (Fikes &

Nilson 1971) and represent a planning problem by a tuple
P = 〈A,O, I,G〉 whereA is a finite set of fluents,O is a
finite set of actions, andI andG encode an initial state and
a goal state, respectively. A fluent literal is either a positive
fluent f ∈ A or its negation (negative fluent)¬f . In this
paper, we are interested in the planning problem in whichI
andG are sets of fluent literals. An actiona ∈ O is either
a non-sensing actionor asensing actionand is specified as
follows:
• A non-sensing actiona is specified by an expression of

the form
action a :Pre Prea :Add Adda :Del Dela

wherePrea is a set of fluent literals representing the
precondition fora’s execution,Adda andDela are two
disjoint sets of positive fluents representing the positive
and negative effects ofa, respectively; and

• A sensing actiona is specified by an expression of the
form

action a :Pre Prea :Sense Sensa

wherePrea is a set of fluent literals andSensa is a set
of positive fluents that do not appear inPrea.
To illustrate the action representation and our search algo-

rithm, we will use a small example, a version of the “Getting
to Evanston” from (Weld, Anderson, & Smith 1998). Figure
(1) shows the actions of this domain.

Non-sensing action :Pre :Add :Del

goto-western-at-belmont at-start on-western at-start

on-belmont

take-belmont on-belmont, traffic-bad on-ashland on-western

take-ashland on-ashland at-evanston

take-western ¬traffic-bad, on-western at-evanston

Sensing action :Pre :Sense

check-traffic True traffic-bad

check-on-western True on-belmont

Figure 1: Actions of the “Getting to Evanston” domain

The notion of a plan in the presence of incomplete infor-
mation and sensing actions has been discussed in the liter-
ature (Levesque 1996; Son & Baral 2001). In this paper,
we considerconditional plansthat are formally defined as
follows.

Definition 1 (Conditional Plan) .
• An empty sequence of actions, denoted by[], is a condi-
tional plan.

• If a is a non-sensing action, thena is a conditional plan.
• If a is a sensing action, ϕ1, . . . , ϕn are mu-
tual exclusive conjunctions of fluent literals,
and c1, . . . , cn are conditional plans, then so is

a; case(ϕ1 → c1, . . . , ϕn → cn).
• if c1, c2 are conditional plans, then so isc1; c2.
• Nothing else is a conditional plan.

0-Approximation
The 0-approximation in (Son & Baral 2001) is defined

by a transition functionΦ that maps pairs of actions and
approximate states into sets of approximate states. Anap-
proximate state(or a-state) is a pair〈T, F 〉 whereT⊆A and
F⊆A are two disjoint sets of fluents. Intuitively, given an
a-stateσ=〈T, F 〉, T (resp.F), denoted byσ.T (resp.σ.F),
is the set of fluents which are true (resp. false) inσ; and
f∈A\(T ∪ F) is unknown inσ. Alternatively, we can also
view an a-state as the intersection of all states in a belief-
state. Letσ1=〈T1, F1〉 andσ2=〈T2, F2〉 be two a-states.
σ1∩σ2=〈T1∩T2, F1∩F2〉 is called the intersection ofσ1 and
σ2. We sayσ1 extendsσ2, denoted byσ2�σ1 if T2⊆T1 and
F2⊆F1. σ1\σ2 denotes the set(T1\T2)∪(F1\F2). For a set
of fluentsX, we writeX\〈T, F 〉 to denoteX\(T∪F). To
simplify the presentation, for a set of literalsL, by L+ and
L− we denote the set of fluents{f | f∈L, f is a fluent}
and{f | ¬f∈L, f is a fluent}.

Given a fluentf and an a-stateσ = 〈T, F 〉, we say thatf
is true (resp. false) inσ if f ∈ T (resp. f ∈ F). f (resp.
¬f) holds inσ if f is true (resp. false) inσ. f is known
(resp. unknown) inσ if f ∈ (T ∪ F) (resp.f 6∈ (T ∪ F)).
A setL of fluent literals holds in an a-stateσ = 〈T, F 〉 if

PLANNING & SCHEDULING 557

every member ofL holds inσ. A setX of fluents is known
in σ if every fluent inX is known in σ. An actiona is
executablein σ if Prea holds inσ. The transition function
(for progression) is defined next.

Definition 2 (Transition Function) For an a-stateσ =
〈T, F 〉 and an actiona, Φ(a, σ) is defined as follows:
• if a is not executable inσ thenΦ(a, σ) = {⊥}; and
• if a is executable inσ
– if a is a non-sensing action:Φ(a, σ) = {〈T \ Dela ∪
Adda, F \Adda ∪Dela〉};

– if a is a sensing action:Φ(a, σ) = {σ′|σ � σ′ and
Sensa \ σ = σ′ \ σ}.

The functionΦ can be extended to define the functionΦ∗

that maps each pair of a conditional planp and a-statesσ into
a set of a-states, denoted byΦ∗(p, σ). Intuitively, Φ∗(p, σ)
is the set of final a-states resulting from the execution ofp in
σ. Φ∗ is defined similarly tôΦ in (Son & Baral 2001).

Given a planning problemP = 〈A,O, I,G〉, the a-state
representingI is defined byσI = 〈I+ ∩A, I− ∩A〉. ΣG =
{σ | σG � σ}, whereσG = 〈G+ ∩ A,G− ∩ A〉, is the
set of a-states satisfying the goalG. A progression solution
to the planning problemP is a conditional planp such that
⊥ 6∈ Φ∗(p, σI) andΦ∗(p, σI) ⊆ ΣG.

Regression and Its Relation with Progression
In this section, we will present our formalization of a re-
gression function, denoted byRegress, and prove its cor-
rectness.Regress is a state-based regression function that
maps a pair of an action and a set of a-states into an a-
state. For this we introduce the notion of apartial state
(or p-state) as a pair[T, F] whereT andF are two dis-
joint sets of fluents. Intuitively, a p-stateδ=[T, F] represents
a collection of a-states which extends the a-state〈T, F 〉.
We denote this set byext(δ) and call it the extension set
of δ. Formally, ext(δ) = {〈T ′, F ′〉|T ⊆ T ′, F ⊆ F ′}.
σ′ ∈ ext(δ) is called an extension ofδ. Given a p-state
δ=[T, F], we say a p-stateδ′=[T ′, F ′] is a partial extension
of δ if T ⊆ T ′, F ⊆ F ′.

The regression function will be defined separately for
non-sensing actions and sensing actions. Since the applica-
tion of a non-sensing action in an a-state results in a single
a-state, the regression of a non-sensing action from a p-state
should result into a p-state. On the other hand, as application
of a sensing action in an a-state results in a set of a-states,the
regression of a sensing action should start from a set of p-
states and result into a p-state. Besides the regression should
be sound (i.e., plans obtained through regression must be
plans based on the progression) and complete (i.e., for each
plan based on progression,using regression one should ob-
tain that plan or an equivalent one) with respect to progres-
sion. To simplify the presentation, we define a partition of
a set of fluentsX as a pair(P,Q) such thatP ∩ Q = ∅
andP ∪Q = X. We begin with the applicability condition
of non-sensing actions and then give the definition of their
functionRegress.

Definition 3 (Applicability Condition - non-sensing action)
Given a p-stateδ = [T, F] and a non-sensing actiona.
We say thata is applicablein δ if (i) Adda ∩ T 6= ∅ or

Dela ∩ F 6= ∅, and (ii) Adda ∩ F = ∅, Dela ∩ T = ∅,
Pre+a ∩ F ⊆ Dela, andPre−a ∩ T ⊆ Adda.

The regression on a non-sensing action is defined next.

Definition 4 (Regression - non-sensing action)Given a p-
stateδ = [T, F] and a non-sensing actiona,
• if a is not applicable inδ thenRegress(a, δ) = ⊥;
• if a is applicable inδ thenRegress(a, δ) = [T \Adda∪
Pre+a , F \Dela ∪ Pre−a].

The regression functionRegress for non-sensing
actions with respect to a set of p-states is de-
fined as follows. Regress(a, {δ1, . . . , δn}) =
{Regress(a, δ1), . . . , Regress(a, δn)} where δ1, . . . , δn
are p-states anda is a non-sensing action.

Example 1 (Getting to Evanston - con’t) The actions
takewestern and takeashland are applicable inδ0 = [{at-
evanston}, {}]. We have Regress(takewestern,δ0) = [{on-
western}, {traffic-bad }] and Regress(takeashland,δ0) =
[{on-ashland}, {}]
We will now defineRegress for sensing actions. Recall
that the execution of a sensing actiona in an a-stateσ re-
quires thata is executable inσ and results in a set of a-states
Φ(a, σ) whose member extendsσ by the set of fluents in
sa ⊆ Sensa and everyf ∈ Sensa \ sa holds inσ. This
leads to the following definitions.

Definition 5 (Properness) Let a be a sensing action,∆ =
{δ1, . . . , δn} be a set of distinct p-states, and∅ 6= X ⊆
Sensa be a set of sensing fluents. We say that∆ is proper
w.r.t X if (i) Sensa is known in∆; (ii) n = 2|X|; (iii) for
every partition(P,Q) of X, there exists only oneδi ∈ ∆
(1 ≤ i ≤ n) s.t. δi.T ∩ X = P, δi.F ∩ X = Q; and
(iv) for every (1 ≤ i 6= j ≤ n), δi.T \ X = δj .T \ X,
δi.F \X = δj .F \X. We callX a sensed set of∆ w.r.t a.

Lemma 1 (Sensed Set)Consider a sensing actiona and a
set of p-states∆. If there exists a sensed set of∆ w.r.t a then
it is unique.

Given a sensing actiona and a set of p-states∆, we denote
p(a,∆) as the unique sensed set of∆ w.r.t a; if there exists
no sensed set w.r.ta and∆, we writep(a,∆) = ⊥.

Definition 6 (Strong Applicability Condition - sensing action)
Let a be a sensing action and∆ = {δ1, . . . , δn} be a set
of p-states. We say thata is strongly applicablein ∆
if (i) p(a,∆) 6= ⊥; and (ii) Pre+a ∩ δi.F = ∅ and
Pre−a ∩ δi.T = ∅.

In the above definition, (i) corresponds to the fact that ex-
ecuting a sensing actiona in an a-stateσ results in a set
of 2|p(a,∆)| a-states that are represented by2|p(a,∆)| corre-
sponding p-states of∆ wherep(a,∆) denotes the set of flu-
ents that are not yet known, whileSensa\p(a,∆) is already
known whena is executed; (ii) guarantees thatamust be ex-
ecutable prior to its execution.

Although this strong applicability condition guarantees
the soundness of regression over sensing actions, it does
not guarantee the completeness. We now provide a weaker
applicability condition that guarantees both soundness and
completeness of regression.

558 PLANNING & SCHEDULING

Definition 7 (Applicability Condition - sensing action)
Let a be a sensing action and∆ = {δ1, . . . , δn} be a set of
p-states. We say thata is applicablein ∆ if (i) there exists
a set∆′={δ′1, . . . , δ

′
n}, whereδ′i is a partial extension ofδi

(i = 1, . . . , n), such thata is strongly applicable in∆′; and
(ii) Sensa is known in∆.

Lemma 2 (Unique Sensed Set)Consider a sensing action
a and a set of p-states∆ such thata is applicable in∆.
Let ∆′={δ′1, . . . , δ

′
n}, whereδ′i is a partial extension ofδi

(i = 1, . . . , n), ∆′′={δ1
′′, . . . , δn

′′}, whereδi
′′ is a par-

tial extension ofδi (i = 1, . . . , n). If p(a,∆′) 6= ⊥ and
p(a,∆′′) 6= ⊥ thenp(a,∆′) = p(a,∆′′).

Given a sensing actiona and a set of p-states∆. If there
exists a∆′={δ′1, . . . , δ

′
n}, whereδ′i is a partial extension of

δi (i = 1, . . . , n) such thatp(a,∆′) 6= ⊥ then, by Lemma
2, p(a,∆′) = p(a,∆′′) for all ∆′′ = {δ1

′′, . . . , δn
′′},

whereδi
′′ is a partial extension ofδi (i = 1, . . . , n) and

p(a,∆′′) 6= ⊥. We refer to the setp(a,∆′) by Sa,∆. If
there exists no suchp(a,∆′), we writeSa,∆ = ⊥. Note
that, from Definition 7, ifa is applicable in∆ thenSa,∆ is
defined. In that case, we also often say thata is applicable
in ∆ w.r.t Sa,∆ to make the applicability condition clearer
from the context.

Definition 8 (Regression - sensing action)Leta be a sens-
ing action and∆ = {δ1, . . . , δn} be a set of p-states.
• if a is not applicable in∆, thenRegress(a,∆) = ⊥;
• if a is applicable in∆, thenRegress(a,∆) =
[(
⋃n

i=1 δi.T) \ Sa,∆ ∪ Pre+a , (
⋃n

i=1 δi.F) \ Sa,∆ ∪ Pre−a].

Example 2 (Getting to Evanston - con’t) Let ∆={δ1, δ2}
where δ1 = [{at-start, traffic-bad}, {on-western, on-
belmont, on-ashland, at-evanston}] and δ2 = [{at-start},
{traffic-bad, at-evanston}].

We have that check-traffic is applicable in∆ w.r.t
{traffic-bad} and that Regress(check-traffic, ∆) =
[{at-start)}, {on-western, on-belmont, on-ashland, at-
evanston}].

We now relate our regression functionRegress with the
progression functionΦ.

Proposition 1 (Non-sensing action)Let δ and δ′ be p-
states, leta be a non-sensing action. IfRegress(a, δ) = δ′

whereδ′ 6= ⊥, then for everyσ′′ ∈ ext(δ′) we have that (i)
⊥ 6∈ Φ(a, σ′′), and (ii) Φ(a, σ′′) ⊆ ext(δ).

Proposition 2 (Sensing action)Let∆ = {δ1, . . . , δn} be a
set of p-states,δ′ be a p-state, anda be a sensing action. If
Regress(a,∆) = δ′ whereδ′ 6= ⊥, then for everyσ′′ ∈
ext(δ′), we have that (i)⊥ 6∈ Φ(a, σ′′), and (ii) Φ(a, σ′′) ⊆
ext(δ1) ∪ . . . ∪ ext(δn).

We next extendRegress to defineRegress∗ that allows
us to perform regression with respect to conditional plans.

Definition 9 (Extended Regression Function)Let δ and
{δ1, . . . , δn} be a p-state and a set of p-states, respectively.
The extended transition functionRegress∗ is defined as fol-
lows:
• Regress∗([], δ) = δ;
• For a non-sensing actiona, Regress∗(a, δ) =
Regress(a, δ);

• For a conditional plan
p = a; case(ϕ1→c1, . . . , ϕn→cn),
– ifRegress∗(ci, δ)=⊥ for somei,Regress∗(p, δ) = ⊥
– if Regress∗(ci, δ)=[Ti, Fi] i = 1, . . . , n, then

Regress∗(p, δ) = Regress(a, {R(c1, δ), . . . , R(cn, δ)})
whereR(ci, δ) = [Ti ∪ ϕ

+
i , Fi ∪ ϕ

−
i] if ϕ+

i ∩ Fi = ∅
andϕ−

i ∩ Ti = ∅; otherwise,R(ci, δ) = ⊥. Here,ϕ+
i

andϕ−
i denote the sets of fluents occurring positively

and negatively inϕi, respectively;
• For p = c1; c2, wherec1, c2 are conditional plans,

Regress∗(p, δ) = Regress∗(c1, Regress
∗(c2, δ)); and

• Regress∗(p,⊥) =⊥ for every planp.

For a planning problemP = 〈A,O, I,G〉, let δG be the p-
state[G+ ∩ A,G− ∩ A], and∆I be the set of p-states such
that for everyδ ∈ ∆I , σI ∈ ext(δ). (Recall thatσI is the
a-state representingI andΣG is the set of a-states in which
G holds). Aregression solutionto the planning problemP
is a conditional planc that upon applying from the p-state
δG will result to one of the p-states in∆I . In other words, if
⊥ 6= δ = Regress∗(c, δG) thenδ is a p-state belonging to
∆I .

We now formalize the soundness of the regression solu-
tion with respect to the progression transition functionΦ∗.

Theorem 3 (Soundness of Regression)For a planning
problemP = 〈A,O, I,G〉 and a regression solutionp ofP ,
then⊥ 6∈ Φ∗(p, σI) andΦ∗(p, σI) ⊆ ext(δG).

We now proceed towards a completeness result. Intu-
itively our completeness result states that if a conditional
plan can be found through progression we can also find a
conditional plan through regression. The plan found through
regression may not be the same one though. It will be one
which does not have redundancies, both in terms of extra
actions and extra branches. We now formalize these condi-
tions. First we need the following notions. Given a sensing
action a, a sub sensing action ofa is a sensing actiona′

wherePrea′ = Prea andSensa′ ⊂ Sensa.

Definition 10 (Sub-plan) Let c be a conditional plan. A
conditional planc′ is a sub-plan ofc if
• c′ can be obtained fromc by (i) removing an instance
of a non-sensing action fromc; (ii) replacing a sensing
actiona with a sub sensing actionsubSense(a) of a; or
(iii) removing a case plan or a branchϕi → ci from a
case plan inc; or

• c′ is a sub-plan ofc′′ wherec′′ is a sub-plan ofc.

Definition 11 (Redundancy) Let c be a conditional plan,
σ be an a-state, andδ be a p-state. We say thatc contains
redundancy w.r.t(σ, δ) if

• ⊥ 6∈ Φ∗(c, σ) andΦ∗(c, σ) ⊆ ext(δ); and
• there exists a sub-planc′ of c such that⊥ 6∈ Φ∗(c′, σ) and

Φ∗(c′, σ) ⊆ ext(δ).

For a non-empty set of fluentsS = {f1, ..., fk}, a binary
representation ofS is a formula of the forml1 ∧ . . . ∧ lk
whereli ∈ {fi,¬fi} for i = 1, . . . , k. For a non-empty set
of fluentsS, let us denoteBIN(S) as the set of all different
binary representations ofS. We say a conjunctionφ of lit-
erals is consistent if there exists no fluentf such thatf and

PLANNING & SCHEDULING 559

¬f appear inφ. A set of consistent conjunctions of literals
χ = {ϕ1, . . . , ϕn} is said to span overS if there exists a
consistent conjunction of literalsϕ 6∈ χ, such that:

1. S ∩ (ϕ+ ∪ ϕ−) = ∅ whereϕ+ (resp.ϕ−) denote the sets
of fluents occurring positively (resp. negatively) inϕ;

2. ϕi = ϕ ∧ ψi whereBIN(S) = {ψ1, . . . , ψn}.

We say that a setχ = {ϕ1, . . . , ϕn} is factorable if it spans
over some non-empty set of fluentsS.

Lemma 4 Let χ = {ϕ1, . . . , ϕn} be a non-empty set of
consistent conjunctions of literals. Ifχ is factorable, then
there exists a unique non-empty set of fluentsS such thatχ
spans overS.

Definition 12 (Possibly Regressable Case Plan)Given a
case planp = a; case(ϕ1 → c1, . . . , ϕn → cn). We say
that p is possibly regressable if (i) there exists a non-empty
set∅ 6= Sa ⊆ Sensa and{ϕ1, . . . , ϕn} spans overSa, and
(ii) for 1 ≤ i ≤ n Sensa ⊆ (ϕ+

i ∪ ϕ−
i).

Definition 13 (Possibly Regressable Conditional Plan)A
conditional planc is possibly regressable if every case plan
occurring in c is possibly regressable.

We now formulate the completeness result for regressable
conditional plans that have no redundancy.

Theorem 5 (Completeness of Regression)Let
P = 〈A,O, I,G〉 be a planning problem. Ifc is a
progression solution which is a possibly regressable condi-
tional plan without redundancy w.r.t(σI , δG) thenc is also
a regression solution ofP .
We now present an algorithm that uses these regression func-
tions to construct conditional plans with sensing actions.

Conditional Planning Using Regression
In this section, we present a regression search algorithm

for constructing conditional plans with sensing actions that
makes use of theRegress function described in the previous
section. For a conditional planc and a p-stateδ, we call the
pair 〈c, δ〉 andr-state. For a set of r-statesX, byXs we de-
note the set of all the p-states occurring inX. The main idea
of the algorithm is as follows. At any step, we will maintain
a setN of r-states〈c, δ〉 such thatδ = Regress∗(c, δG).
We print a solution if we find a r-state〈c, δ〉 ∈ N such that
σI ∈ ext(δ) sincec would be one solution (Theorem 3).
Otherwise, we regress fromNs (the set of all the p-states
occurring inN). This process involves the regression using
non-sensing actions and sensing actions which are applica-
ble in Ns. The algorithm will stop with failure if (i) we
cannot regress from any p-state (or a set of p-states) inNs;
or (ii) no new p-state can be added toNs. Below, we list the
main steps of the algorithm:

Solve(P) whereP = 〈A, O, I, G〉
1. Let N = {〈[], δG〉} (Ns = {δG}).
2. Repeat
3. If there exists some〈c, δ〉 ∈ N s.t.σI ∈ ext(δ) then printsc as

a solution.
4. Do one of the following:

4.1 Find a〈c, δ〉 ∈ N , a non-sensing actiona s.t.a is applicable
in δ andδ′ = Regress(a, δ) 6∈ Ns. Add 〈a; c, δ′〉 to N .

4.2 Find a set∆ = {〈c1, δ1〉, . . . , 〈cn, δn〉} ⊆ N and a sensing
actiona such thata is applicable in∆s w.r.t some∅ 6= Sa ⊆
Sensa, i.e.: (i) Sensa is known in∆s and there exists a set
Sa = {f1, . . . , fk} ⊆ Sensa, 2k = n; (ii) there exists an
ordering of the set of conjunctions constructed using literals
out of Sa, {ϕ1, . . . , ϕ2k}, such thatϕi holds in δ′i where
δ′i is a partial extension ofδi anda is strongly applicable in
∆′ = {δ′1, . . . , δ

′

n} w.r.t Sa. If δ′=Regress(a, ∆s)6∈Ns,
add〈a; case(ϕ1→c1, . . . , ϕn→cn), δ′〉 to N .

5. Until N does not change.
6. Return NO SOLUTION.
Below, we demonstrate how our algorithm works.

Example 3 (Getting to Evanston - con’t) We have that
G = { at-evanston} and the initial conditionI = { at-start,
¬ on-western,¬ on-belmont,¬ on-ashland,¬ at-evanston,
}. So, δG = [{ at-evanston}, {}]. The algorithm goes
through the iterations (#I) in Figure (2).

#I Action (a) Regressed-from member ofN

0 〈[], δG〉

1 a1 =take-ashland 〈[], δG〉

2 b1 =take-western 〈[], δG〉

3 a2 =take-belmont 〈a1, δ11〉

4 b2 =goto-western-at-belmont 〈b1, δ21〉

5 a3 =goto-western-at-belmont 〈a2; a1, δ12〉

6 check-traffic 〈a3; a2; a1, δ13〉, 〈b2; b1, δ22〉

#I Regress(a, δ)/Regress(a, ∆) New member ofN

0

1 δ11 = [{on-ashland}, {}] 〈a1, δ11〉

2 δ21 = [{on-western}, {traffic-bad}] 〈b1, δ21〉

3 δ12 = [{on-belmont, traffic-bad}, {}] 〈a2; a1, δ12〉

4 δ22 = [{at-start}, {traffic-bad}] 〈b2; b1, δ22〉

5 δ13 = [{at-start,traffic-bad}, {}] 〈a3; a2; a1, δ13〉

6 δ14 = [{at-start}, {}] 〈p, δ14〉

where∆ = {δ1, . . . , δn} and p = check-traffic; case(traffic-bad →

a3; a2; a1, ¬ traffic-bad → b2; b1).

Figure 2: Algorithm illustration
The following theorem establishes the correctness of our

algorithm.

Theorem 6 For every 〈c, δ〉 ∈ N where N repre-
sents the search space of the planning algorithm, then
Regress∗(c, δG) = δ.

Since the algorithm search through all possible regression
path, we have the following theorem.

Theorem 7 For a planning problemP = 〈A,O, I,G〉,
• if P has a regression solution thenSolve(P) will return
a conditional plan; and

• if P has no regression solution thenSolve(P) will return
NO SOLUTION.

Experimentation
We have experimentally compared our system with the

two systems (Weld, Anderson, & Smith 1998; Son, Tu, &
Baral 2004) in domains withsensing actions and incomplete
information but did not compare our planner with (Pryor
& Collins 1996) since the planner in (Weld, Anderson, &
Smith 1998) is significantly better than that of (Pryor &
Collins 1996). We also did not compare our system with oth-
ers that deal with nondeterministic or probabilistic actions as
our action representation does not have this capability.

560 PLANNING & SCHEDULING

We run our Java-based planner with three well knowndo-
mains with sensing actions: Cassandra, Bomb in the toilet,
and Sickness domain.These domains are obtained from the
SGP distribution (Weld, Anderson, & Smith 1998). All ex-
periments are run on a Compaq laptop 1.8Ghz CPU with 512
MbRAM. The experimental result (obtained without using
heuristics) is presented in Figure (4). It is necessary to note
that, Figure (4) is a crude comparison as the other two use
static causal laws and boolean sensing fluents (e.g. in Bomb
in the toilet domain) while ours uses multi-valued sensing
fluents; and the Logic Programming based planner (π(P))
uses conditional effects but ours does not.

Domains/ aSense π(P) SGP

Problem preprocessing search total

Cassandraa1-prob 50 10 60 510 130

a2-prob 50 10 60 891 60

a3-prob 70 0 70 119 70

a4-prob 60 220 280 1030 431

a5-prob 30 10 40 130 20

a6-prob 200 1392 1592 18036 NA 2

a7-prob 40 10 50 150 110

Bomb bt-1sa 40 0 40 15812 751

bt-2sa 40 10 50 18676 1161

bt-3sa 40 10 50 18445 1512

bt-4sa 200 10 210 22391 1892

Figure 4: Performance comparison (time in milliseconds).

Conclusion and Future Work
In this paper, we used the 0-approximation semantics

(Son & Baral 2001) and defined regression with respect
to that semantics. We considered domains where an agent
does not have complete information about the world, and
may have sensing actions. We first started with domains
having only Boolean fluents and formally related our def-
inition of regression with the earlier definition of progres-
sion in (Son & Baral 2001). We showed that planning using
our regression function would indeed give us correct plans.
We then presented a search algorithm for generating condi-
tional plans. Lastly, we presented preliminary experimen-
tal results and discussed difficulties we faced as well as fu-
ture enhancements. To simplify our formulation, we used
the STRIPS-like action representation and considered flu-
ents with finite domains.

Our planner is sound, however the use of 0-approximation
leads to its incompleteness w.r.t. the full semantics3. This
is a trade-off to counter the higher complexity thus leading
to the efficiency of search for plans. Other limitations due
to state space regression are difficulties in handling static
causal laws and conditional effects. To further improve the
search efficiency, we have derived several heuristics by ex-
tending the work of (Bonet & Geffner 2001) to handle sens-
ing actions. However, due to the space limitation, we do
not present them here. We will include them in the full pa-
per. An issue that needs to be addressed in the future is to
find sufficiency conditions that would guarantee the com-
pleteness of our approach with respect to the full semantics.
We also need to directly consider actions with conditional

3Note that 0-approximation reduces the complexity of the plan-
ning problem toNP

effects, nondeterministic actions, and static causal lawsand
develop regression operators for these cases.

Acknowledgement
This work was supported by NSF grant number 0070463
and NASA grant number NCC2-1232. Tran Cao Son was
supported by NSF grants EIA-0130887 and EIA-0220590.

References
Baral, C.; Kreinovich, V.; and Trejo, R. 2000. Computational
complexity of planning and approximate planning in the presence
of incompleteness.AI-00122:241–267.
B. Bonet and H. Geffner. Planning with Incomplete Information
as Heuristic Search in Belief Space AIPS-00, 52-61, 2000.
Bonet, B., and Geffner, H. 2001. Planning As Heuristic Search.
Artificial Intelligence129:5–33.
Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Au-
tomatic OBDD-based Generation of Universal Plans in Non-
Deterministic. AAAI-98, 875–891.
T. Eiter; W. Faber; N. Leone; G. Pfeifer; and A. Polleres. 2000.
Planning under incomplete information. CL-2000, 807–821.
Etzioni, O.; Hanks, S.; Weld, D.; Draper, D.; Lesh, N.; and
Williamson, M. 1992. An approach to planning with incomplete
information. KR-92, 115–125.
Fikes, R., and Nilson, N. 1971. STRIPS: A new approach to the
application of theorem proving to problem solving.AI-71.
Goldman, R., and Boddy, M. 1994. Conditional linear planning.
Planning AIPS-94.
Levesque, H. 1996. What is planning in the presence of sensing.
AAAI-96.
Lobo, J. 1998. COPLAS: a COnditional PLAnner with Sensing
actions. Technical Report FS-98-02, AAAI.
Nguyen, X.L; Kambhampati, S., and Nigenda, R. 2002. Planning
graph as the basis for deriving heuristics for plan synthesis by
state space and CSP search. AIJ, 135(1-2):73–123.
Pednault, E. 1986.Toward a Mathematical Theory of Plan Syn-
thesis. Ph.D. Dissertation.
Pednault, E. 1994. ADL and the state-transition model of actions.
Journal of Logic and Computation4(5):467–513.
Peot, M., and Smith, D. 1992. Conditional Nonlinear Planning.
AIPS-92, 189–197.
Pryor, L., and Collins, G. 1996. Planning for contingencies: A
decision-based approach.JAIR-96, 4:287–339.
Reiter, R. KNOWLEDGE IN ACTION: Logical Foundations for
Describing and Implementing Dynamical Systems. MIT Press.
Rintanen, J. 2000. Constructing conditional plans by a theorem
prover.Journal of Artificial Intelligence Research10:323–352.
Rintanen, J. 2002. Backward Plan Construction for Planning with
Partial Observability. Planning AIPS’02.
Scherl, R., and Levesque, H. 1993. The frame problem and
knowledge producing actions. Artificial AAAI-93, 689–695.
Scherl, R., and Levesque, H. 2003. Knowledge, Action, and the
Frame Problem.Artificial Intelligence144(1-2).
Son, T., and Baral, C. 2001. Formalizing sensing actions - a
transition function based approach. AIJ, 125(1-2):19–91.
Son, T.; Tu, P.; and Baral, C. 2004. Planning with Sensing
Actions and Incomplete Information using Logic Programming.
Logic LPNMR’04, 261–274.
Weld, D.; Anderson, C.; and Smith, D. 1998. Extending graph-
plan to handle uncertainity and sensing actions. AAAI 98.

PLANNING & SCHEDULING 561

