
A Framework for Optimal Sequential Planning in Multiagent Settings

Prashant J. Doshi∗
Dept. of Computer Science

Univ of Illinois, Chicago, IL 60607
pdoshi@cs.uic.edu

Introduction
Research in autonomous agent planning is gradually mov-
ing from single-agent environments to those populated by
multiple agents. In single-agent sequential environments,
partially observable Markov decision processes (POMDPs)
provide a principled approach for planning under uncer-
tainty. They improve on classical planning by not only
modeling the inherent non-determinism of the problem do-
main, but also by producing ”universal” plans or policies
which represent complete control mechanisms. We are moti-
vated by these reasons to generalize POMDPs from their tra-
ditional single-agent application setting to an environment
populated by several interacting autonomous agents.

The formalism of Markov decision processes has been ex-
tended to multiple agents previously, giving rise to stochas-
tic games or Markov games. Other extensions of POMDPs
to multiple agent environments have also appeared and are
called DEC-POMDPs (Bernsteinet al. 2002) in the liter-
ature. Both these formalisms employ the solution concept
of Nash equilibria. Specifically, solutions are plans (poli-
cies) that are in mutual equilibrium with each other. How-
ever, while Nash equilibria are useful for describing a mul-
tiagent system when, and if, it has reached a stable state,
this solution concept is not sufficient as a general control
paradigm. The main reasons are that there may be multiple
equilibria with no clear way to choose among them (non-
uniqueness), and the fact that equilibria do not specify ac-
tions in cases in which agents believe that other agents may
not act according to their equilibrium strategies (incomplete-
ness). Furthermore, at present, researchers have inadequate
understanding of the intermediate stages before Nash equi-
librium is reached.

In this thesis, we present a new framework called Inter-
active POMDPS (I-POMDPs) for optimal planning by an
agent interacting with other autonomous agents in a sequen-
tial environment and maximizing its reward that depends on
joint actions of all agents. As expected, the generalization
of POMDPs from a single-agent setting to multiple agents
is not trivial. In addition to maintaining beliefs about the
physical environment, each agent must also maintain be-
liefs about the other agents: their sensing capabilities, be-
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liefs, preferences, and intentions. Analogously to POMDPs,
each agent will locally compute its actions that optimize its
preferences given what it believes in. The resulting con-
trol paradigm complements and generalizes the traditional
equilibrium approach in that, if the agent believes that other
agents will act according to an equilibrium, then it will also
act out its part of the equilibrium. However, if it believes
that other agents will diverge from equilibrium, then it will
choose the appropriate optimal response. The unique aspect
of I-POMDPs is that, by prescribing actions based on the
agent’s belief about other agents’ beliefs and parameters, an
agent maintains a possibly infinitely nested interactive belief
system.

Interactive POMDPs
The proposed framework attempts to bring together game-
theoretic solution concepts of equilibrium and decision-
theoretic control paradigms such as policies as put forward
by frameworks like POMDPs. The conceptual pieces of our
framework are similar to those of POMDPs, thereby facili-
tating its easy adoption by the research community for multi-
agent settings. In the next few paragraphs, we briefly discuss
our framework, its properties, and preliminary results.

For simplicity of presentation let us consider an agent,i,
that is interacting with one other agent,j. An interactive
POMDPof agenti, I-POMDPi, is:

I-POMDPi = 〈ISi, A, Ti,Ωi, Oi, Ri〉

where:
• ISi is a set ofinteractive states defined asISi = S ×Θj ,
whereS is the set of states of the physical environment, and
Θj is the set of possible intentional models of agentj. An
intentional model ofj is, θj = 〈bj , A, Ωj , Tj , Oj , Rj , OCj〉
whereOCj is agentj’s optimality criterion, together with
the assumption that agentj is Bayesian rational. For the
sake of simplicity, let us rewriteθj as,θj = 〈bj , θ̂j〉 where
θ̂j is the agentj’s frame. Agent j’s belief is a probabil-
ity distribution over the states of the world and the models
of the agenti, bj ∈ ∆(S × Θi). Each interactive state of
agenti therefore contains possibly infinitely nested beliefs
over others’ types and their beliefs about others. This nest-
ing may be terminated by assuming that at some arbitrary
level, an agent (sayi) models the other agent (sayj) using
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a no-informationmodel –i considers all ofj’s actions to be
equally likely.
• A = Ai ×Aj is the set of joint moves of all agents.
• Ti is a transition functionTi : ISi × A × ISi → [0, 1]
which describes results of agents’ actions. Actions can
change the physical state, as well as the frames of other
agents, for example by changing their observation function.
• Ωi is the set of agenti’s observations.
• Oi is an observation functionOi : ISi ×A×Ωi → [0, 1].
• Ri is defined asRi : ISi × A → R. We allow the agent
to have preferences over physical states and models of other
agents, but usually only the physical state will matter.

In a manner similar to POMDPs, we can show that agent’s
beliefs over their interactive states aresufficient statistics
i.e. they fully summarize the agent’s observable histories.
Furthermore, we propose the following equation which cap-
tures the belief update process of an agent modeled as an
I-POMDP.
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probability of other agent’s action given its model.
Though our proposed belief update has a lot in common

with that of POMDPs, two important differences manifest
due to the multiagent application setting. First, since the
predicted state of the environment depends on the actions
performed by both agents, a probability measure on the other
agent’s actions (Pr(at−1

j |θt−1
j )) must be obtained. Second,

changes in the models of the other agent must be included in
the update. Specifically, update of the other agent’s beliefs
due to its observations (τθt

j
(bt−1

j , at−1
j , ot

j , b
t
j)) is included.

A formal derivation of our belief update appears in (Gmy-
trasiewicz & Doshi 2004). We note that this updaterecurses
through the entire belief nesting, with the recursion bottom-
ing out when a no-information model is encountered.

The local policy of each agent is computed by solving
the associated I-POMDP using value iteration. Agenti’s
optimal action,a∗, for the case of infinite horizon criterion
with discounting, is an element of the set of optimal actions
for the belief state,OPT (θi), which is defined as:

OPT (θi) = argmax
ai∈Ai
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It turns out that, as in POMDPs, the value function is
piecewise linear and convex (PWLC) w.r.t. the belief. Ad-
ditionally, the sequence of value functions converges as the
horizon approaches infinity. However, both these properties
hold in the case of a finite belief nesting only. By establish-
ing these critical properties, we can apply the wide array of
POMDP solution techniques to I-POMDPs as well.

We have applied the I-POMDP framework to the multi-
agent tiger game (Tambeet al. Aug 2002). Our prelimi-
nary results have shown that an agent’s policy changes as
its belief about the other agent’s beliefs changes. For ex-
ample, if the agents are operating as a team (coordination
is rewarded), and if agenti believes that agentj likely be-
lieves that the tiger is behind the left door, theni gives pref-
erence to opening the right door. However, ifi believes that
j likely believes that the tiger is behind the right door, theni
prefers opening the left door. In addition to modeling multi-
ple agents as a team, we have also modeled them as enemies,
and as being neutral towards each other.

Future Work
We have adopted a two-stage approach towards my thesis re-
search. The first stage involved developing the framework,
identifying and formalizing its properties and solution tech-
niques, and conducting preliminary experiments on interest-
ing problem domains. High computational complexity of
solving I-POMDPs forces us to search for efficient approxi-
mation techniques. The second stage of this thesis will con-
centrate on developing these approximation techniques.

A promising approximation technique seems to be
stochastic sampling methods such as particle filters. Par-
ticle filters utilize Monte Carlo sampling to approximate a
belief state, and propagate it forwards in time. As frequently
is the case when it comes to Bayesian update methods, here
over the space of possible models of agents, the choice of
the ”right” prior arises. To address this issue we have turned
to algorithmic probability and Kolmogorov complexity (Li
& Vitanyi 1997).

Conclusion
We have proposed a new framework, called Interactive
POMDPs, for optimal sequential decision-making in multi-
agent settings. Our framework is applicable to autonomous
agents operating in partially observable environments, who
locally compute actions they should execute to optimize
their preferences given what they believe. I-POMDPs in-
fuse decision-theoretic planning with notions of game theory
thereby blending strategic and long term planning into a sin-
gle framework. We have established its definition, its prop-
erties, and gathered some preliminary empirical data. Future
work will revolve around developing approximate solution
techniques that will tradeoff complexity with the quality of
the solution, and performing more experimentation.
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