
An Inference Model for Semantic Entailment in Natural Language

Rodrigo de Salvo Braz Roxana Girju Vasin Punyakanok
Dan Roth Mark Sammons

Department of Computer Science
University of Illinois at Urbana-Champaign

Urbana, IL, 61801, USA
{braz, girju, punyakan, danr, mssammon}@cs.uiuc.edu

Abstract

Semantic entailment is the problem of determining if the
meaning of a given sentence entails that of another. This is a
fundamental problem in natural language understanding that
provides a broad framework for studying language variability
and has a large number of applications. This paper presents
a principled approach to this problem that builds on induc-
ing representations of text snippets into a hierarchical knowl-
edge representation along with a sound optimization-based
inferential mechanism that makes use of it to decide seman-
tic entailment. A preliminary evaluation on the PASCAL text
collection is presented.

Introduction
Semantic entailment is the task of determining, for example,
that the sentence: “WalMart defended itself in court today
against claims that its female employees were kept out of
jobs in management because they are women” entails that
“WalMart was sued for sexual discrimination”.

Determining whether the meaning of a given text snippet
entails that of another or whether they have the same mean-
ing is a fundamental problem in natural language under-
standing that requires the ability to abstract over the inherent
syntactic and semantic variability in natural language (Da-
gan & Glickman 2004). This challenge is at the heart of
many high level natural language processing tasks including
Question Answering, Information Retrieval and Extraction,
Machine Translation, and others that attempt to reason about
and capture the meaning of linguistic expressions.

Research in natural language processing in the last few
years has concentrated on developing resources that provide
multiple levels of syntactic and semantic analysis, resolve
context sensitive ambiguities, and identify relational struc-
tures and abstractions (from syntactic categories like POS
tags to semantic categories such as named entities).

Several decades of research in natural language process-
ing and related fields have made clear that the use of deep
structural, relational and semantic properties of text is a nec-
essary step towards supporting higher level tasks. However,
beyond these resources, in order to support fundamental
tasks such as inferring semantic entailment between two text
snippets, there needs to be a unified knowledge representa-
tion of the text that (1) provides a hierarchical encoding of
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the structural, relational and semantic properties of the given
text, (2) is integrated with learning mechanisms that can be
used to induce such information from raw text, and (3) is
equipped with an inferential mechanism that can be used to
support inferences over such representations. Just resorting
to general purpose knowledge representations – FOL, prob-
abilistic or hybrids – along with their corresponding general
purpose inference algorithms, requires the ability to map
surface representations into these languages, and may lead
to brittleness and complexity problems.

We describe an integrated approach that provides solu-
tions to the challenges mentioned above. Unlike traditional
approaches to inference in natural language (Schubert 1986;
Moore 1986; Hobbs et al. 1988) our approach (1) makes
use of machine learning based resources to induce an ab-
stract representation of the input data, as well as to support
multiple inference stages and (2) models inference as an op-
timization process that provides robustness against inherent
variability in natural language, inevitable noise in inducing
the abstract representation, and missing information.

We present a principled computational approach to se-
mantic entailment in natural language that addresses some
of the key problems encountered in traditional approaches
– knowledge acquisition and brittleness. The solution in-
cludes a hierarchical knowledge representation language
into which we induce appropriate representations of the
given text and required background knowledge. The other
main element is a sound inferential mechanism that makes
use of the induced representation to determine an extended
notion of subsumption, using an optimization approach that
supports abstracting over language variability and represen-
tation inaccuracies. Along with describing the key elements
of our approach, we present a preliminary system that im-
plements it, and a preliminary evaluation of this system.

General Description of Our Approach
Given two text snippets S (source) and T (target) (typically,
but not necessarily, S consists of a short paragraph and T ,
a sentence) we want to determine if S|=T , which we read
as “S entails T ” and, informally, understand to mean that
most people would agree that the meaning of S implies that
of T . Somewhat more formally, we say that S entails T
when some representation of T can be “matched” (modulo
some meaning-preserving transformations to be defined be-
low) with some (or part of a) representation of S, at some
level of granularity and abstraction. The approach consists
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of the following components:
KR: A Description Logic based hierarchical knowledge rep-
resentation, into which we represent the surface level text,
augmented with induced syntactic and semantic parses and
word and phrase level abstractions.
KB: A knowledge base consisting of syntactic and semantic
rewrite rules. Each rule is written as lhs � rhs describ-
ing subsumption relation between two representations, lhs
(body of the rule) and rhs (the head of the rule).
Subsumption: An extended subsumption algorithm which
determines subsumption between two representations. “Ex-
tended” here means that the basic unification operator is ex-
tended to support several word level and phrase level ab-
stractions.

Our process starts with a set of machine learning based
resources used to induce the representation for S and T .
The entailment algorithm then proceeds in two phases: (1) it
incrementally generates new representations of the original
surface representation of the source text S by augmenting it
with heads of subsumed re-write rules, and (2) it makes use
of an optimization based (extended) subsumption algorithm
to check whether any of the alternative representations of
the source entails the representation of the target T . The ex-
tended subsumption algorithm is used both in checking final
entailment and in determining when and how to generate a
new representation in slightly different ways.

Figure 1 provides a graphical example of the representa-
tion of two text snippets, along with a sketch of the extended
subsumption approach to decide the entailment.

This paper focuses on the inference algorithm, mostly in
the second stage, and leaves many of the other details to
a companion paper (Braz et al. 2005), for obvious space
constraints. Along with the formal definition and justi-
fication developed here for our computational approach to
semantic entailment, our knowledge representation and al-
gorithmic approach provide a novel (preliminary) solution
that addresses some of the key issues the natural language
research community needs to resolve in order to move for-
ward towards higher level tasks of this sort. Namely, we
provide ways to represent knowledge, either external or in-
duced, at multiple levels of abstractions and granularity, and
reason with it at the appropriate level. The preliminary eval-
uation of our approach is very encouraging and illustrates
the significance of some of its key contributions.

Algorithmic Semantic Entailment
Let R be a knowledge representation language with a well
defined syntax and semantics over any domain D. Specifi-
cally, we think of elements in R as expressions in the lan-
guage or, equivalently, as the set of interpretations that sat-
isfy it (Lloyd 1987). Let r be a mapping from a set of text
snippets T to a set of expressions in R. Denote the rep-
resentations of two text snippets S, T , under this mapping
by rS , rT , respectively. Note that we will use the word ex-
pression and representation interchangeably. Given the set
of interpretations over D, let M be a mapping from an ex-
pression in R to the corresponding set of interpretations it
satisfies. For expressions rS , rT , the images of S, T under

R, their model theoretic representations thus defined are de-
noted M (rs), M (rt).

Conceptually, as in the traditional view of semantic en-
tailment, this leads to a well defined notion of entailment,
formally defined via the model theoretic view; traditionally,
the algorithmic details are left to a theorem prover that uses
the syntax of the representation language, and may also in-
corporate additional knowledge in its inference. We follow
this view, and use a notion of subsumption between elements
in R, denoted u � v, for u, v ∈ R, that is formally defined
via the model theoretic view – when M(u) ⊆ M(v). Sub-
sumption between representations provides an implicit way
to represent entailment, where additional knowledge is con-
joined with the source to “prove” the target.

However, the proof theoretic approach corresponding to
this traditional view is unrealistic for natural language. Sub-
sumption is based on unification and requires, in order to
prove entailment, that the representation of T is entirely em-
bedded in the representation of S. Natural languages allow
for words to be replaced by synonyms, for modifier phrases
to be dropped, etc., without affecting meaning. An extended
notion of subsumption is therefore needed which captures
sentence, phrase, and word-level abstractions.

Our algorithmic approach is thus designed to alleviate
these difficulties in a proof theory that is too weak for natural
language. Conceptually, a weak proof theory is overcome
by entertaining multiple representations that are equivalent
in meaning. We provide theoretical justification below, fol-
lowed by the algorithmic implications.

We say that a representation r ∈ R is faithful to S if r
and rS have the same model theoretic representation, i.e.,
M(r) = M(rs). Informally, this means that r is the image
under R of a text snippet with the same meaning as S.

Definition 1 Let S, T be two text snippets with representa-
tions rS , rT in R. We say that S|=T (read: S semantically
entails T ) if there is a representation r ∈ R that is faithful
to S and that is subsumed by rT .

Clearly, there is no practical way to exhaust the set of all
those representations that are faithful to S. Instead, our ap-
proach searches a space of faithful representations, gener-
ated via a set of rewrite rules in our KB.

A rewrite rule is a pair (lhs, rhs) of expressions in R,
such that lhs � rhs. Given a representation rS of S and a
rule (lhs, rhs) such that rS � lhs, the augmentation of rS

via (lhs, rhs) is the representation r′S = rS ∧ rhs.
Claim: The representation r′S generated above is faithful to
S.

To see this, note that as expressions in R, r′S = rS ∧ rhs,
therefore M(r′S) = M(rS)∩M(rhs). However, since rS �
lhs, and lhs � rhs, then rS � rhs which implies that
M(rS) ⊆ M(rhs). Consequently, M(r′S) = M(rS) and
the new representation is faithful to S.

The claim gives rise to an algorithm, which suggests
incrementally augmenting the original representation of S
via the rewrite rules, and computing subsumption using the
“weak” proof theory between the augmented representation
and rT . Informally, this claim means that while, in gen-
eral, augmenting the representation of S with an expression
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Figure 1: Example of Source & Target pairs represented as concept graphs. The original source sentence S generated several
alternatives including S′

1 and the sentence in the figure (S′
2). Our algorithm was not able to determine entailment of the first

alternative (as it fails to match in the extended subsumption phase), but it succeeded for S′
2. The dotted nodes represent phrase

level abstractions. S′
2 is generated in the first phase by applying the following chain of inference rules: #1 (genitives): “Z’s

W → W of Z”; #2: “X put end to Y’s life → Y die of X”. In the extended subsumption, the system makes use of WordNet
hypernymy relation (“lung cancer” IS-A “carcinoma”) and NP-subsumption rule (“Jazz singer Marion Montgomery’” IS-A
“singer”). The rectangles encode the hierarchical levels (H0,H1,H2) at which we applied the extended subsumption. Also
note that in the current experiments we don’t consider noun plurals and verb tenses in the extended subsumption, although our
system has this capability.

rhs may restrict the number of interpretations the resulting
expression has, in this case, since we only augment the rep-
resentation when the left hand side lhs subsumes rS , we
end up with a new representation that is in fact equivalent
to rS . Therefore, given a collection of rules {(lhs � rhs)}
we can chain their applications, and incrementally generate
faithful representations of S. Consequently, this algorithm
is a sound algorithm1 for semantic entailment according to
Def. 1, but it is not complete. Its success depends on the size
and quality of the rule set2 applied in the search.

Two important notes are in order. First, since rewrite rules
typically “modify” a small part of a sentence representation
(see Fig. 1), the augmented representation provides also a
compact way to encode a large number of possible represen-
tations. Second, note that while the rule augmentation mech-
anism provides a justification for an algorithmic process, in
practice, applying rewrite rules is somewhat more compli-
cated. The key reason is that many rules have a large fan-out;
that is, a large number of heads are possible for a given rule
body. Examples include synonym rules, equivalent ways
to represent names of people (e.g., John F. Kennedy and

1Soundness depends on a “correct” induction of the representa-
tion of the text; we do not address this theoretically here.

2The power of this search procedure is in the rules. lhs and
rhs might be very different at the surface level, yet, by satisfying
model theoretic subsumption they provide expressivity to the re-
representation in a way that facilitates the overall subsumption.

JFK), etc. We therefore implement the mechanism in two
ways; one process which supports chaining well, in which
we explicitly augment the representation with low fan-out
rules (e.g., Passive-Active rules); and a second, appropri-
ate to the large fan-out rules. In the latter, we abstain from
augmenting the representation with the many possible heads
but take those rules into account when comparing the aug-
mented source with the target. For example, if a represen-
tation includes the expression “JFK/PER”, we do not aug-
ment it with all the many expressions equivalent to “JFK”
but, when comparing it to a candidate in the target, such
as “President Kennedy”, these equivalencies are taken into
account. Semantically, this is equivalent to augmenting the
representation. Instead of an explicit list of rules, the large
fan-out rules are represented as a functional black box that
can, in principle, contain any procedure for deciding com-
parisons. For this reason, this mechanism is called func-
tional subsumption.

The resulting algorithmic approach is therefore:
(1) Once a representation for S and T is induced, the algo-

rithm incrementally searches the rewrite rules in KB to find
a rule with a body that subsumes the representation of S. In
this case, the head of the rule is used to augment the rep-
resentation of S and generate a new (equivalent) represen-
tation of S. KB consists of syntactic and semantic rewrite
rules expressed at the word, syntactic and semantic cate-
gories, and phrase levels; applying them results in new rep-
resentations S′

i that capture alternative ways of expressing
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the surface level text.
(2) Representation S′

is are processed via the extended
subsumption algorithm against the representation of T .
The notion of extended subsumption captures, just like the
rewrite rules, several sentence, phrase, and word-level ab-
stractions. The extended subsumption process is also used
when determining whether a rewrite rule applies.

Rewrite rules and extended subsumption decisions take
into account relational and structural information encoded
in the hierarchical representation, which is discussed below.
In both cases, decisions are quantified as input to an opti-
mization algorithm that attempts to generate a “proof” that
S entails T , and is discussed later in the paper.

Hierarchical Knowledge Representation
Our semantic entailment approach relies heavily on a hi-
erarchical representation of natural language sentences, de-
fined formally over a domain D = 〈V,A, E〉 which consists
of a set V of typed elements, a set A of attributes of ele-
ments, and a set E of relations among elements. We use a
Description-Logic inspired language, Extended Feature De-
scription Logic (EFDL), an extension of FDL (Cumby &
Roth 2003). As described there, expressions in the language
have an equivalent representation as concept graphs, and we
refer to the latter representation here for comprehensibility.

Nodes in the concept graph represent elements – words
or (multiple levels of) phrases. Attributes of nodes repre-
sent properties of elements. Examples of attributes include
{LEMMA, WORD, POS, PREDICATE VALUE, PHTYPE, PH-
HEAD, NETYPE, ARGTYPE , NEG}. The first three are word
level and the next three are phrase level. PREDICATE VALUE
is the string corresponding to a predicate, NETYPE is the
named entity of a phrase, ARGTYPE is the type of seman-
tic argument as defined in PropBank (Kingsbury, Palmer, &
Marcus 2002) and NEG is a negation attribute of predicates.

Relations (roles) between two elements are represented
by labeled edges between the corresponding nodes. Exam-
ples of roles include: {BEFORE, MOD, ARG0, . . . ARGM};
BEFORE indicates the order between two individuals, MOD
represents a contains relation between a word and a phrase
where the word, respectively, is or is not the head, and
ARG0, . . . ARGM link predicates to their arguments.

Concept graphs are used both to describe instances (sen-
tence representations) and rewrite rules. Details are omitted
here; we just mention that the expressivity of these differ -
the body and head of rules are simple chain graphs, for infer-
ence complexity reasons. Restricted expressivity is an im-
portant concept in Description Logics (Baader et al. 2003),
from which we borrow several ideas and nomenclature.

Concept graph representations are induced via state of
the art machine learning based resources that a part-of-
speech tagger (Even-Zohar & Roth 2001), a syntactic
parser (Collins 1999), a semantic parser (Punyakanok et
al. 2004; Punyakanok, Roth, & Yih 2005), a named en-
tity recognizer 3, and a name coreference system (Li, Morie,
& Roth 2004) with the additional tokenizer and lemmatizer

3Named entity recognizer from Cognitive Computation Group,
http://l2r.cs.uiuc.edu/∼cogcomp

derived from WordNet (Fellbaum 1998). Rewrite rules were
filtered from a large collection of paraphrase rules developed
in (Lin & Pantel 2001) and compiled into our language; a
number of non-lexical rewrite rules were generated man-
ually. Currently, our knowledge base consists of approxi-
mately 300 inference rules.

The most significant aspect of our knowledge representa-
tion is its hierarchy. It is defined over a set of typed ele-
ments that are partitioned into several classes in a way that
captures levels of abstraction and is used by the inference al-
gorithm to exploit these inherent properties of the language.
The hierarchical representation provides flexibility – rewrite
rules can depend on a level higher than the lexical one, as
in: [W/PHTYPE=NP] of [Z/PHTYPE=NP] → Z’s W. Most im-
portantly, it provides a way to abstract over variability in
natural language by supporting inference at a higher than
word level, and thus also supports the inference process in
recovering from inaccuracies in lower level representations.
Consider, for example, the following pair of sentences, in
which processing at the semantic parse level exhibits identi-
cal structure, despite significant lexical level differences.

S: “[The bombers]/A0 managed [to enter [the embassy build-
ing]/A1]/A1.”4

T: “[The terrorists]/A0 entered [the edifice]/A1.”
On the other hand, had the phrase failed to enter been used

instead of managed to enter , a NEG attribute associated with
the main verb would prevent this inference. Note that failure
of the semantic parser to identify the semantic arguments A0
and A1 will not result in a complete failure of the inference,
as described in the next section: it will result in a lower score
at this level that the optimization process can compensate for
(in the case that lower level inference occurs).

Inference Model and Algorithm
In this section we focus on how the extended subsumption
process exploits the hierarchical knowledge representation
and how we model inference as optimization.

Modeling Hierarchy & Unification Functions
An exact subsumption approach that requires the represen-
tation of T be entirely embedded in the representation of S′

i
is unrealistic. Natural languages allow words to be replaced
by synonyms, modifier phrases to be dropped, etc., without
affecting meaning.

We define below our notion of extended subsumption,
computed given two representations, which is designed to
exploit the hierarchical representation and capture multiple
levels of abstractions and granularity of properties repre-
sented at the sentence, phrase, and word-level.

Nodes in a concept graph are grouped into different hier-
archical sets denoted by H = {H0, . . . , Hj} where a lower
value of j indicates higher hierarchical level (more impor-
tant nodes). This hierarchical representation is derived from
the underlying concept graph and plays an important role in
the definitions below.

4The verbs “manage” and “enter” share the semantic argument
“[the bombers]/A0”.
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We say that S′
i entails T if T can be unified into S′

i. The
significance of definitions below is that we define unification
so that it takes into account both the hierarchical representa-
tion and multiple abstractions.

Let V (T ), E(T ), V (S′
i), and E(S′

i) be the sets of nodes
and edges in T and S′

i, respectively. Given a hierarchical set
H , a unification is a 1-to-1 mapping U = (UV , UE) where
UV : V (T ) 	→ V (S′

i), and UE : E(T ) 	→ E(S′
i) satisfying:

1.∀(x, y) ∈ U : x and y are in the same hierarchical level.

2.∀(e, f) ∈ UE : their sinks and sources must be unified
accordingly. That is, for n1, n2, m1, and m2 which are the
sinks and the sources of e and f respectively, (n1,m1) ∈
UV and (n2,m2) ∈ UV .

Let U(T, S′
i) denote the space of all unifications from T

to S′
i. In our inference, we assume the existence of a unifi-

cation function G that determines the cost of unifying pairs
of nodes or edges. G may depend on language and domain
knowledge, e.g. synonyms, name matching, and semantic
relations. When two nodes or edges cannot be unified, G
returns infinity. This leads to the definition of unifiability.

Definition 2 Given a hierarchical set H , a unification func-
tion G, and two concept graphs S′

i and T , we say that T is
unifiable to S′

i if there exists a unification U from T to S′
i

such that the cost of unification defined by

D(T, S′
i) = min

U∈U(T,S′
i
)

∑

Hj

∑

(x,y)∈U|x,y∈Hj

λjG(x, y)

is finite, where λj are some constants s.t. the cost of unifying
nodes at higher levels dominates those of the lower levels.

Because top levels of the hierarchy dominate lower ones,
nodes in both graphs are checked for subsumption in a top
down manner. The levels and corresponding processes are:

Hierarchy set H0 corresponds to sentence-level
nodes, represented by the verbs in the text. The inherent set
of attributes is {PHTYPE, PREDICATE VALUE, LEMMA}. In
order to capture the argument structure at sentence-level,
each verb in S′

i and T has a set of edge attributes {ARGi,
PHTYPEi}, where ARGi and PHTYPEi are the semantic
role label and phrase type of each argument i of the verb
considered (Kingsbury, Palmer, & Marcus 2002).

For each verb in S′
i and T , check if they have the same

attribute set and argument structure at two abstraction levels:

1) The semantic role level (SRL attributes). eg: ARG0 verb
ARG1 : [Contractors]/ARG0 build [houses]/ARG1 for $100,000.

2) The syntactic parse level (parse tree labels). Some argu-
ments of the verb might not be captured by the semantic role
labeler (SRL); we check their match at the syntactic parse
level. eg: NP verb NP PP : [Contractors]/NP build [houses]/NP

[for $100,000]/ PP.
At this level, if all nodes are matched (modulo functional

subsumption), the cost is 0, otherwise it is infinity.

Hierarchy set H1 corresponds to phrase-level nodes
and represents the semantic and syntactic arguments of the
H0 nodes (verbs). If the phase-level nodes are recursive
structures, all their constituent phrases are H1 nodes. For

example, a complex noun phrase consists of various base-
NPs. Base-NPs have edges to the words they contain.

The inference procedure recursively matches the corre-
sponding H1 nodes in T and S′

i until it finds a pair whose
constituents do not match. In this situation, a Phrase-level
Subsumption algorithm is applied. The algorithm is based
on subsumption rules that are applied in a strict order (as a
decision list) and each rule is assigned a confidence factor.

The algorithm makes sure two H1 nodes have the same
PHTYPE, but allows other attributes such as NETYPE to be
optional. Each unmatched attribute results in a uniform cost.

Hierarchy set H2 corresponds to word-level nodes.
The attributes used here are: {WORD, LEMMA, POS}. Un-
matched attributes result in a uniform cost.

Figure 1 exemplifies the matching order between S′
i and

T based on constraints imposed by the hierarchy.

Inference as Optimization

We solve the subsumption problem by formulating an equiv-
alent Integer Linear Programming (ILP) problem5. An ILP
problem involves a set of integer variables {vi} and a set of
linear equality or inequality constraints among them. Each
variable vi is associated with a cost ci, and the problem is
to find an assignment to the variables that satisfies the con-
straints and minimizes

∑
i civi.

To prove S � T , we first start with the graph S (the initial
graph). Then we extend S by adding the right hand sides of
applicable rules. This is repeated up to a fixed number of
rounds and results in an expanded graph S′

d. The formula-
tion allows us to solve for the optimal unification from T to
S′

d that minimizes the overall cost.
To formulate the problem this way, we need a set of vari-

ables that can represent different unifications from T to S′
d,

and constraints to ensure the validity of the solution (ie, that
the unification does not violate any nonnegotiable property).
We explain this below. For readability, we sometimes ex-
press constraints in a logic form that can be easily trans-
formed to linear constraints.

Representing Unification We introduce Boolean vari-
ables u(n,m) for each pair of nodes n ∈ V (T ) and m ∈
V (S′

d) in the same hierarchical level, and u(e, f) for each
pair of edges e ∈ E(T ) and f ∈ E(S′

d) in the same level.
To ensure that the assignment to the matching variables

represents a valid unification from T and S′
d, we need

two types of constraints. First, we ensure the unification
preserves the node and edge structure. For each pair of
edges e ∈ E(T ) and f ∈ E(S′

d), let ni, nj , mk, and
ml be the sources and the sinks of e and f respectively.
Then u(e, f) ⇒ u(ni, mk)

∧
u(nj , ml). Finally, to en-

sure that the unification is a 1-to-1 mapping from T to
S′

d, ∀ni ∈ V (T )
∑

mj∈S′
d

u(ni, mj) = 1, and ∀mj ∈
V (S′

d)
∑

ni∈T
u(ni, mj) ≤ 1.

5Despite the fact that this optimization problem is NP
hard, commercial packages have very good performance on
sparse problems such as Xpress-MP by Dash Optimization,
http://www.dashoptimization.com .
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Finding A Minimal Cost Solution We seek the uni-
fication with a minimum (and, of course, finite) cost:∑

Hj

∑
u(x,y)|x,y∈Hj

λjG(x, y)u(x, y), where λj is the con-
stant and G the cost of unification as we explained in the
previous sections. The minimal subgraph S′

i of S′
d that T is

unified to is also the minimal representation of S that incurs
minimal unification cost.

Previous Work
Knowledge representation and reasoning techniques have
been studied in NLP for a long time (Schubert 1986;
Moore 1986; Hobbs et al. 1988). Most approaches relied on
mapping to First Order Logic representations with a general
prover and without using acquired rich knowledge sources.

Significant development in NLP, specifically the ability to
acquire knowledge and induce some level of abstract repre-
sentation could, in principle, support more sophisticated and
robust approaches. Nevertheless, most modern approaches
developed so far are based on shallow representations of
the text that capture lexico-syntactic relations based on de-
pendency structures and are mostly built from grammatical
functions in an extension to keyword-base matching (Durme
et al. 2003). Some systems make use of some semantic in-
formation, such as WordNet lexical chains (Moldovan et al.
2003), to slightly enrich the representation. Other have tried
to learn various logic representations (Thompson, Mooney,
& Tang 1997). However, none of these approaches makes
global use of a large number of resources as we do, or at-
tempts to develop a flexible, hierarchical representation and
an inference algorithm for it, as we present here.

Experimental Evaluation
We tested our approach on the PASCAL challenge data set 6.
As the system was designed to test for semantic entailment,
the PASCAL data set is ideally suited, being composed of
276 source - target sentence pairs, with a truth value indi-
cating whether the source logically entails the target. The
set is split into various tasks: CD (Comparable Documents),
IE (Information Extraction), IR (Information Retrieval), MT
(Machine Translation), PP (Prepositional Paraphrases), QA
(Question Answering), and RC (Reading Comprehension).
The average sentence size varies from 11 (IR task) to 25 (MT
task) words. Table 1 shows the system’s performance.

As a baseline we use a lexical-level matching based on
bag-of-words representation with lemmatization and nor-
malization (LLM), which is a non-trivial baseline used in
many information retrieval tasks.

Overall Task [%]
[%] CD IE IR MT PP QA RC

System 65.9 74.0 50.0 62.0 87.5 63.8 84.0 52.9

LLM 54.7 64.0 50.0 50.0 75.0 55.2 50.0 52.9

Table 1: System’s performance obtained for each experi-
ment on the Pascal corpora and its subtasks.

6http://www.pascal-network.org/Challenges/RTE/

Our system does particularly well (84.00% and 87.5%)
on the QA and MT subtasks with a good corpus coverage of
about 30%, reducing overall error by 68% compared to the
LLM system. On average, our system offers a significant
improvement over LLM, reducing overall error by over 20%
across all categories. It took about 50 minutes to run the
system on the corpus considered.

The following examples show some of the strengths and
weaknesses of the system at different levels of the repre-
sentation. They are intended to highlight the subsumption
process at different levels of our hierarchical representation
and not intended to represent the most complex sentences
the system can handle.

Example 1

S1: “The bombers had not managed to enter the building.”

T1: “The bombers entered the building.”
Our system identifies two verb frames in S:

S1-A: “[The bombers]/A0 [not]/AM NEG manage [to enter the
building]/A1”

S1-B: “[The bombers]/A0 [not]/AM NEG enter [the building]/A1”
and one verb frame for T:

T1-A: “[The bombers]/A0 enter [the building]/A1.”
The subsumption algorithm attempts to match T1-A’s

“enter” with both S1-A’s “manage” and S1-B’s “enter”:
there is no match between T1-A’s “enter” and S1-A’s “man-
age”; the match between T1-A’s “enter” and S1-B’s “enter”
fails because the system has identified a negation attached
to the verb “enter” in S1-B, and finds none attached to its
counterpart in T1-A. Thus the system correctly determines
that S does not entail T at the verb level.

The following example highlights the importance of
Functional Subsumption.

Example 2

S2: “The Spanish leader razed Tenochtitlan in 1521 and con-
structed a Spanish city on its ruins.”

T2: “The Spanish leader destroyed Tenochtitlan and built a Span-
ish city in its place.”

Our system identifies two verb frames in both S and T:

S2-A: “[The Spanish leader]/A0 raze [Tenochtitlan]/A1”

S2-B: “[The Spanish leader]/A0 construct [a Spanish city]/A1 [on
its ruins]/AM LOC”

T2-A: “[The Spanish leader]/A0 destroy [Tenochtitlan]/A1”

T2-B: “[The Spanish leader]/A0 build [a Spanish city]/A1 [in its
place]/AM LOC”

In this case, the lemmas of the key verbs in S and T
will not match without a successful Functional Subsump-
tion call. Since WordNet contains synonymy relations for
“destroy” and “raze”, and “build” and “construct”, the func-
tional subsumption call determines that the verbs match.
Consequently, the subsumption algorithm determines that,
at the verb level, S entails T.

Example 3

S3: “A car bomb that exploded outside a U.S. military base near
Beiji killed 11 Iraqi citizens.”

AAAI-05 / 1048



T3: “A car bomb exploded outside a U.S. base in the northern town
of Beiji killing 11 civilians.”

The verb frames found by our system are:

S3-A: “[A car bomb]/A1 explode [outside a U.S. military base near
Beiji]/AM LOC”

S3-B: “[A car bomb]/A0 kill [11 Iraqi citizens]/A1”

T3-A: “[A car bomb]/A1 explode [near Beiji]/AM LOC”

T3-B: “[A car bomb]/A1 kill [11 civilians]/A1”
Our system uses WordNet to relate “civilians” to “citi-

zens”, allowing the corresponding A1 phrases to match; all
other argument phrases in T in this case are simple sub-
strings of their counterparts in S, and so the system correctly
determines entailment of T by S.

Presently, our phrase-level matching algorithm does not
give special weight to numbers; this can result in false posi-
tives in cases like the following:

Example 4

S4: “Jennifer Hawkins is the 21-year-old beauty queen from Aus-
tralia.”

T4: “Jennifer Hawkins is Australia’s 20-year-old beauty queen.”

S4-A: “[Jennifer Hawkins]/A1 is [the 21-year-old beauty queen
from Australia]/A2”

T4-A: “[Jennifer Hawkins]/A1 is [Australia’s 20-year-old beauty
queen]/A2”

Our system matches almost all the key words in T4-A’s
A2 with those in S4-A’s A2; as numbers do not yet carry
more weight than other word elements, our system allows
subsumption, resulting in a false positive.

Conclusions and Future Work
This paper presents a principled, integrated approach to se-
mantic entailment. We developed an expressive knowledge
representation that provides a hierarchical encoding of struc-
tural, relational and semantic properties of the text and pop-
ulated it using a variety of machine learning based tools. An
inferential mechanism over a knowledge representation that
supports both abstractions and several levels of representa-
tions allows us to begin to address important issues in ab-
stracting over the variability in natural language. Our pre-
liminary evaluation is very encouraging, yet leaves a lot to
hope for. Improving our resources and developing ways to
augment the KB are some of the important steps we need to
take. Beyond that, we intend to tune the inference algorithm
by incorporating a better mechanism for choosing the appro-
priate level at which to require subsumption. Given the fact
that we optimize a linear function, it is straight forward to
learn the cost function. Moreover, this can be done in such
a way that the decision list structure is maintained.
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