
Overconfidence or Paranoia?
Search in Imperfect-Information Games

Austin Parker, Dana Nau, VS Subrahmanian
Department of Computer Science, University of Maryland

College Park, MD 20742, USA
{austinjp,nau,vs}@cs.umd.edu

Abstract

We derive a recursive formula for expected utility values
in imperfect- information game trees, and an imperfect-
information game tree search algorithm based on it. The for-
mula and algorithm are general enough to incorporate a wide
variety of opponent models. We analyze two opponent mod-
els. The “paranoid” model is an information-set analog of the
minimax rule used in perfect-information games. The “over-
confident” model assumes the opponent moves randomly.
Our experimental tests in the game of kriegspiel chess (an
imperfect-information variant of chess) produced surpris-
ing results: (1) against each other, and against one of the
kriegspiel algorithms presented at IJCAI-05, the overconfi-
dent model usually outperformed the paranoid model; (2) the
performance of both models depended greatly on how well
the model corresponded to the opponent’s behavior. These re-
sults suggest that the usual assumption of perfect-information
game tree search—that the opponent will choose the best pos-
sible move—isn’t as useful in imperfect-information games.

Introduction
Only the paranoid survive. –Andrew Grove, Intel CEO.
Play with supreme confidence, or else you’ll lose. –Joe
Paterno, college football coach.

Imperfect-information games are characterized by one’s
lack of information about the current state of the world.
To play such games, one must make assumptions about the
world. When it is not possible to make “optimal” assump-
tions, one has a choice: to err on the side of paranoia or to
err on the side of overconfidence.

In this paper we develop a game-theoretically sound al-
gorithm for playing partial-information games. We call
the algorithm information-set search. It is, of course, in-
tractable for any game of interest as the decision problem in
an imperfect-information game is complete in double expo-
nential time (Reif 1984). Thus, we also present two sets of
simplifying assumptions which bring our algorithm down to
the realm of the tractable. One set of assumptions is over-
confident: it arbitrarily assumes the opponent to make ran-
dom moves. The other set of assumptions is paranoid, as-
suming an opponent who will always make the best possible
move.

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

We implemented our algorithms and played them against
each other in the game of kriegspiel, a imperfect-information
version of chess that has recently garnered some research in-
terest (Parker, Nau, & Subrahmanian 2005; Russell & Wolfe
2005; Ciancarini, DallaLibera, & Maran 1997; Sakuta &
Iida 2000). We also played them against HS, the best of
the kriegspiel algorithms in (Parker, Nau, & Subrahmanian
2005). We observed the following behavior:

• In general, information-set search outperformed HS. This
suggests that information-set search may be a better way
to search imperfect-information game trees than HS’s ap-
proach (i.e., pretending that the imperfect-information
game is a set of perfect-information games).

• On one hand, the performance of our two opponent mod-
els depended on how well they corresponded to the oppo-
nent’s behavior. But on the other hand, the overconfident
model usually outperformed the paranoid model. This
suggests that the usual assumption that the opponent will
choose the best possible move isn’t as useful in imperfect-
information games as in perfect-information games.

Notation
Let G be a finite two player turn-taking zero-sum imperfect-
information game, whose starting state is s0, and let the
players be a1 and a2. The following definitions are based
on (Osborne & Rubinstein 1994).

At each state s, let a(s) be the player to move at s,
M(s) be the set of available moves, and m(s) be the state
produced by making move m in state s.1 a(s) = ∅ if
the game is over in s. A history is a sequence of moves
h = 〈m1,m2, . . . ,mj〉. We let H be the set of all possible
histories for G.

For each player ai, let Ii be a partitioning of H such that
for every Ii ∈ Ii and every pair of histories h, h′ ∈ Ii, if s
and s′ are the states produced by h and h′ then either a(s) =
a(s′) = ai and M(s) = M(s′) or a(s) = a(s′) �= ai. In
other words, all histories in Ii in which it is ai’s turn lead
to states that have the same set of available moves. Figure 1

1To model nondeterministic initial states and/or nondeterminis-
tic outcomes of moves, we can introduce an additional player a0

who makes a nondeterministic move at the start of the game and/or
after each of the other players’ moves. To avoid affecting the other
players’ payoffs, a0’s payoff in terminal states is always 0.

1045

Figure 1: An information-set tree. Each dot represents a his-
tory, and each dotted line represents a move. Each box rep-
resents an information set, and the solid lines connect each
information set with its children.

illustrates the correspondence between information sets and
histories. Ii is called an information set because it is an
abstract model of the information available to a player as
a result of some observation.

In a perfect-information game, a player ai’s strategy is
conventionally defined to be a function φi(m|s) that returns
the probability p that ai will make move m in state s.2 If ai

uses a deterministic strategy then p will always be 0 or 1; if
ai uses a mixed strategy then p will be in the interval [0, 1].
For imperfect-information games, where ai will not always
know the exact state he/she is in, an information set I is used
instead of the state s; hence φi(m|I) is the probability that
ai will make move m in the information set I . We say M(I)
to refer to the moves available in information set I .

If h = 〈m1,m2, . . . ,mn〉 is a history, then its probability
P (h) can be calculated from the players’ strategies. For ex-
ample, in a two-player game, if a1 has the first move and the
players move in strict alternation, then

P (h) = φ1(m1|h0)φ2(m2|h1) . . . φi(mj |hj−1),

where h0 = 〈〉, h1 = 〈m1〉, and so forth. Furthermore, the
probability of a history given an information set I is

P (h|I) = P (h)/
∑

h′∈I P (h′).

Determining Expected Utility
We now consider a two-player game from the point of view
of one of the players. Without loss of generality, we will
call this player a1 and the other player a2. All information
sets referred to will be from I1. Suppose a1 knows that a2’s
strategy is φ2, and wants to make a move that has the highest
expected utility. We now discuss what this is and how to
calculate it. There are three cases:

Case 1: every history h ∈ I is terminal, i.e., h’s last state s
is an endpoint for the game. Then h’s utility value U(h) is
the payoff a1 gets in s. Hence, the expected utility EU(I) is
the expected value of the utilities of the histories in I:

EU(I) =
∑

h∈I P (h|I)U(h)

Case 2: every history h ∈ I ends at a state where it is a2’s
move. Let C(I) be the set of all children of I , i.e., all infor-
mation sets that could result from a2’s move. In particular,

2Strictly speaking, φi is a partial function, because φi(m|s) is
undefined when it isn’t ai’s turn in state s.

I ′ ∈ C(I) if there is an history h = 〈m1, . . . ,mj〉 ∈ I
and a move m s.t. I ′ contains the history h′ = h • m =
〈m1, . . . ,mj ,m〉, where • denotes concatenation. For ev-
ery I ′ ∈ C(I), the probability of I ′ occurring given h is:

P (I ′|h) =
∑

{φ2(m|h) | h • m ∈ I ′}.

It follows that

EU(I) =
∑

h∈I

P (h|I)
∑

I′∈C(I)

P (I ′|h)EU(I ′).

In words, this is the sum, for all histories h in I , of the prob-
ability that h is the current history times the expected utility
if h is the current history.

Case 3: Every history h ∈ I ends at a state where it is a1’s
move. For every child I ′ and every move m that is possible
in I , the probability that m will lead to I ′ is

P (I ′|I, m) =
∑

h∈I,h•m∈I′ P (h|I).

Thus, the expected utility of I is

EU(I) = maxm∈M(I)

(∑
I′∈C(I) P (I ′|I,m)EU(I ′)

)
.

From the definition of an information set, if one of the
histories in I leads to a state where it is a1’s (or a2’s) move,
then the same is true for every history in I . Thus there are
no states where both a1 and a2 can move simultaneously and
the above three cases exhaust all of the possibilities.

Therefore, if I is any information set for a1, then

EU(I) =

∑

h∈I

P (h|I)U(h), if I is terminal,

∑

h∈I

P (h|I)
∑

I′∈C(I)

P (I ′|h)EU(I ′),

if it’s a2’s move,

max
m

∑

I′∈C(I)

P (I ′|I,m)EU(I ′)

 ,

if it’s a1’s move.

(1)

Limited-Depth Recursion

For a finite game, the recursive computation in Eq. 1 will
eventually terminate. But for most nontrivial games, the
computation will be intractable. For example, in a 50-move
game with two possible child information sets for every non-
terminal information set, the computation will take 250 re-
cursive calls.

In perfect-information games, it is common to approxi-
mate the utility value of a state by searching to some limited
depth d, applying a static evaluation function to the nodes at
that depth, and pretending that the evaluation function val-
ues are the utility values of those nodes. We can approximate
Equation 1 in a similar manner:

1046

EUd(I) =

E(I), if d = 0,
∑

h∈I

P (h|I)U(h), if I is terminal,

∑

h∈I

P (h|I)
∑

I′∈C(I)

P (I ′|h)EUd−1(I ′),

if it’s a2’s move,

max
m

∑

I′∈C(I)

P (I ′|I,m)EUd−1(I ′)

 ,

if it’s a1’s move.

(2)

where E(I) is a heuristic function that returns an approxi-
mation of EU(I).

Overconfidence and Paranoia
Equations 1 and 2 assume that a1 knows a2’s strategy φ2,
an assumption that is quite unrealistic in practice. A more
realistic assumption is that a1 has a model of the oppo-
nent that provides an approximation of φ2. For example,
in perfect-information games, the well-known minimax for-
mula corresponds to an opponent model in which the oppo-
nent always chooses the move whose utility value is low-
est. We now consider two opponent models for imperfect-
information games.

The first model assumes that a2 will choose moves uni-
formly at random from the moves available. This cor-
responds to using Equations 1 and 2 with φ2(m|I) =
1/|M(I)| for every m ∈ M(I). We call this model the over-
confident model, because an intelligent opponent is unlikely
to play so badly.

The second model requires some modifications to Equa-
tions 1 and 2. It assumes that a2 will always make a move
which causes the next information set to be the information
set I ′ ∈ C(I) of minimum expected utility. This model,
which we call paranoid, creates this minimax-like formula:

Paranoid Utility of I = PUd(I) =

E(I), if d = 0,

min
h∈I

(U(h)) , if I is terminal,

min
I′∈C(I)

PUd−1(I ′), if it’s a2’s move,

max
m

(
min

I′∈C(I)
PUd−1(I ′)

)
, if it’s a1’s move.

(3)

Discussion
The question arises as to which is better: overconfident or
paranoid play. The success of minimax in perfect informa-
tion games might suggest that paranoid play would be the
likely winner. Further analysis, however, muddies the issue.

The first important observation to be made is that in im-
perfect information games, we no longer have complete
knowledge of where we are in the game tree. The infor-
mation set tells us the many places where we may be in the

game tree. Since each history has a unique information set
per player, for every information set, we must make the same
move for every history in the information set.

Paranoid play assumes that a2 will make and have always
made the worst move possible for a1, given a1’s information
set. This means that for any given information set, the para-
noid player will find the history in the information set which
is least advantageous to itself and make moves as though
that were the game’s actual history even when the game’s
actual history is any other member of the information set.
There is a certain intuitively appealing protectionism occur-
ring here: an opponent that happens to have made the perfect
moves cannot trap the paranoid player. However, it really is
not clear exactly how well a paranoid player will do in an
imperfect information game, for the following reasons:

• There is no reason to necessarily believe that the oppo-
nent has made those “perfect” moves. The opponent has
different information sets than the paranoid player, which
may not give the opponent enough information to make
the perfect moves paranoid play expects.

• The paranoid player is losing a lot of potentially winable
games against a non-perfect player. The information set
could contain thousands of histories in which a particular
move is a win; if that move is a loss on just one history,
and there is another move which admits no losses, then
the first move will not be chosen.

• It is not clear that the opponent the paranoid player as-
sumes is even possible. The opponent must behave
the same for every board in the opponent’s information
set. However, the paranoid player assumes the opponent
guesses the best move for the actual current history even
if the best move is different for several of the histories in
the opponent’s information set, and even if this move isn’t
even possible given the true history of the game.

We should also note the relationship paranoid play has
to the “imperfection” of the information in the game. A
game with large amounts of information and small informa-
tion sets should see better play from a paranoid player than a
game with the opposite properties. The reason for this is that
as we get more information about the actual game state, the
more we can be confident that the move the paranoid player
designates as “worst” for itself is the worst move the oppo-
nent could make in the actual game. The extreme of this is
a perfect information game, where paranoid play has proven
quite effective instantiated as minimax search. But without
some experimentation, it is not clear to what extent smaller
amounts of information degrade paranoid play.

Overconfident play, on the other hand, assumes that a2

will, with equal probability, make all available moves re-
gardless of what the available information tells a2 about
each move’s expected utility. The effect this has on game
play depends on the extent to which a2’s moves diverge from
random play. Unfortunately for overconfidence, many in-
teresting imperfect information games implicitly encourage
non-random play. In these games the overconfident player is
not adequately considering the risks of its moves. The over-
confident player will many times not protect itself from a
potential loss under the theory that the opponent is unlikely

1047

to make that particular move. These sorts of mistakes are
the results of the overconfident assumptions, giving reason-
able imperfect information game play an advantage against
overconfidence.

But, we need also consider the amount of information
in the imperfect information game. In particular, consider
a situation where a1, playing overconfidently, assumes the
opponent is equally likely to make each of the ten moves
available in a1’s current information set. Suppose that each
move is clearly the best move for a reasonable opponent in
exactly one tenth of the available histories. If the histories
are equally likely, then, despite the fact that the opponent
is playing a deterministic strategy, random play is a good
opponent model given the information set. This sort of situ-
ation, where the model of random play is reasonable despite
it being not at all related to the opponent’s actual mixed strat-
egy, is more likely to occur in games where there is less in-
formation. The larger the information set, the more likely it
is that every move has enough histories to make that move as
likely to occur as any other. Games which allow their play-
ers little information are therefore possibly giving a slight
advantage to overconfidence.

Two things come from the above discussion: paranoid
play should do better in games with “large” amounts of in-
formation, and overconfident play might do better in games
with “small” amounts of information. But will overconfi-
dent play do better than paranoid play? Suppose we choose
a game with small amounts of information and play a para-
noid player against an overconfident player: what should the
outcome be? Overconfident play has the advantage of prob-
ably not diverging as drastically from the theoretically cor-
rect expected utility of a move, while paranoid play has the
advantage of actually detecting and avoiding bad situations
– situations to which the overconfident player will not give
adequate weight.

Overall, it is not at all clear from our analysis how well a
paranoid player and an overconfident player will do relative
to each other in a real imperfect-information game. Instead,
experimentation is needed.

Kriegspiel: Our Testbed
For our experimental tests, we use the game of kriegspiel,
an imperfect-information version of chess in which the play-
ers are unable to see where their opponent’s pieces are. We
choose kriegspiel because (i) it is clearly a game where each
player has only a small amount of information about the cur-
rent state, and (ii) due to its relationship to chess, it is com-
plicated enough strategically to allow for all sorts of subtle
and interesting play.

The specific ruleset we use for kriegspiel comes from
(Russell & Wolfe 2005; Parker, Nau, & Subrahmanian
2005). Game play works as follows: a player makes a move,
and is then told by a referee what observations the move
caused. Observations represent events in the game: for in-
stance, a piece capture elicits a “take” observation. Then
the player waits for the opponent to move, after which the
player is told by the referee the observations the opponent’s
move caused. Observations should, for the purposes of this

paper, be thought of as defining the set of possible informa-
tion sets. Any and all valid histories which have the same
observations at each move and all the same moves for one
of the players are in the same information set.

Illegal moves are specially handled in kriegspiel. For ex-
ample, if I have a pawn at e4, I may try to make the diagonal
pawn move e4-d5. This move is legal only if it results in a
capture. If no capture occurs, the move is illegal and has no
effect on the actual board. The referee will tell me that the
move is illegal, which will allow me to update my informa-
tion set by removing all histories in which e4-d5would not
have given an “illegal” observation. I will not lose my turn
for attempting this move: instead, I may try another move.
Consequently, I may sometimes want to try moves that are
likely to be illegal, in order to gather information that will
help me to make other, better moves.

Implementation
Statistical Sampling
Information sets are quite large in kriegspiel, sometimes ex-
ceeding 1013 (Parker, Nau, & Subrahmanian 2005). We
therefore must do something to have even a hope of making
information-set search practical. To reduce the game tree’s
complexity, we approximate it by considering only a ran-
domly chosen subset of the histories available in each infor-
mation set. For example, suppose it is our turn, and we have
an information set of size 105. We cannot hope to examine
each history in the information set in 30 seconds. We can,
however, choose some of the histories at random and do the
expected utility calculations on that set of histories. To im-
plement this, we use a technique similar to incrementaliza-
tion from (Russell & Wolfe 2005). This allows us to sample
one history at a time from the information set, folding its
expected values into the tree. In this way our algorithm is
able to sample as many histories from the information set as
it can in the available time. Notice that there is a correlation
between the search depth and the sample size: increasing
the search depth increases the time it takes to examine one
history exponentially, causing the number of histories that
an algorithm can sample to be inversely proportional to an
exponential of the search depth.

Statistical sampling in the kriegspiel implementation is
our algorithms’ only source of nondeterminism.

Heuristic Evaluation Functions
We developed a simple evaluation function called KS for the
leaf nodes of an information-set tree. KS was designed for
conservative kriegspiel play (our limited experience leads
us to believe that conservative play is generally better in
kriegspiel). The base board evaluation is the board’s ma-
terial value, with kriegspiel piece values (bishops, for in-
stance, are worth more than knights in kriegspiel). It values
protected pieces, pawn advances, and threatened opponent
pieces and it punishes mildly for checking one’s opponent
without causing checkmate (the best way to lose a piece in
kriegspiel is to check the opponent with it). We do not claim
this to be an ideal evaluation function, and consider the de-
velopment of a really good evaluation function to be outside

1048

Time / Move 30 sec. 90 sec.
Player Depth w � EU w � EU

Overconfident
Play

1 48 1 47 47 1 46
2 50 1 49 55 2 53
3 32 5 27 43 6 37

Paranoid
Play

1 5 2 3 4 4 0
2 29 3 26 31 1 30
3 22 4 18 27 4 23

Figure 2: Percentage of wins (w), losses (�), and expected
utility (EU) for overconfident and paranoid play vs random
play. The 95% confidence interval is at most ±4.

the scope of this work.

Experiments
We implemented our kriegspiel playing algorithms in C++.
In our experiments we tested the overconfident player and
the paranoid player versus each other, and also versus two
other players: (1) a player called rand that chooses its move
from the available moves uniformly at random, and (2) an
implementation of the HS algorithm described in (Parker,
Nau, & Subrahmanian 2005).

We tested the play of both the paranoid and overconfident
players at search depths of one, two, and three (the deep-
est our implementation could search in a reasonable amount
of time and memory). We played games out to 160 ply. If
the game reached 160 plys or if 50 plys occurred without a
irreversible move (a pawn advance or a take), then we ter-
minated the game and considered it a draw. We stopped at
160 ply because in trial runs, most games which ended in a
checkmate ended before ply 160.

In order to see how the algorithms’ performance would
change if they could take larger samples of the histories in
their information sets, we ran two sets of experiments: in our
“short run” experiments we gave each algorithm 30 seconds
per move, and in our “long run” experiments, we gave each
algorithm 90 seconds per move. In either run an algorithm
was given an extra two seconds after making an illegal move.

We ran these experiments on a cluster of machines, each
capable of at least 500,000 KFlops according to Linpack
benchmarks. The runs consisted of 500 games, giving each
player 250 tries as both white and black. We report percent-
age wins, percentage losses and the algorithm’s expected
utility. We calculate the expected utility as wins minus
losses divided by games played, multiplied by 100%.

As a benchmark, when rand plays itself, white and black
each win about 6% of games played.

Results
The experimental results showed overconfident play doing
better than paranoid play in most cases.

In Figure 2, depth-one search against rand does not do
better when it is given more time per move. We attribute
this to the fact that the statistical significance of a sample
increases inversely proportionally to the square root of the
sample’s size. The 30 second depth-one search already has
a statistically significant sample with 1683 boards (figure 4).

Time / Move 30 sec. 90 sec.
Player Depth w � EU w � EU
Over- 1 19 5 14 26 2 24

confident 2 16 7 8 18 5 12
Play 3 10 18 -8 13 14 -1

Paranoid
Play

1 2 7 -5 1 6 -4
2 5 5 0 7 4 3
3 4 14 -10 5 13 -9

Figure 3: Percentage of wins (w), losses (�), and expected
utility (EU) for overconfident and paranoid play versus HS.
The 95% confidence interval is at most ±4.

Depth 1 2 3
30 sec. per move 1683 321 67
90 sec. per move 3145 662 190

Figure 4: Average sample size per move by depth for over-
confident play versus random play. Values for like-depth
paranoid play are similar.

Overconfident Play
% w � w � w �

vs Depth 1 2 3

Paranoid
Play

1 8 1 15 2 12 2
2 22 4 19 5 16 17
3 24 4 31 4 16 14

Figure 5: Win / loss percentages for paranoid play vs over-
confident play. Moves were made in 30 seconds. All values
are reported from overconfident play’s perspective. The 95%
confidence interval is at most ±4.

For overconfident searches to depths two and three, how-
ever, quality of play against rand increased as time per
move increased (see Figure 2). We think this to be a re-
sult of the sample size’s increasing and causing the results
to more likely be statistically significant.

It may then seem counterintuitive that paranoid play’s
overall performance does not increase either against rand
nor against HS (Figures 2 and 3) as the time per move and
number of samples increases. But paranoid play is not aver-
aging the values of the samples it takes, and instead is trying
to find the worst one. Paranoid play is able to find a suffi-
ciently terrible history in the information set in 30 seconds,
and does not need the extra time to find a worse one.

Figure 3 shows depth one overconfident play to do the
best against HS. We attribute this to the fact that overcon-
fident play’s opponent model does a poor job of modeling
HS’s play. The deeper the search depth, the more the over-
confident backup rule is applied, and the worse the results.

The fact that Figure 3 does not show paranoid play doing
well against HS is evidence that in kriegspiel it is not always
a good idea to assume the worst. Figure 5, which shows
the results of head-to-head play between the overconfident
and paranoid players, corroborates this. Of course, this data
could mean that neither HS nor overconfident play are very
good kriegspiel players and are unable to make the excep-
tionally good moves paranoid play expects – but that would

1049

mean that paranoid play is losing to bad kriegspiel play.
The fact that Figure 5 shows depth two overconfident

search doing best against paranoid play is possible evidence
of one of two things. Either depth three search does not
sample enough boards to play effectively or the overconfi-
dent opponent model is not reasonable at guessing the moves
make by paranoid play.

Related Work
There has been relatively limited work on the game of
kriegspiel, with most of it targeting the endgame. Of that
work, the most directly related is (Russell & Wolfe 2005),
where a special case of information-set search, based on
the concept of an AND-OR search is developed to han-
dle the kriegspiel endgame positions with small information
sets. The only work we know of that handles unrestricted
kriegspiel game play through the entire game is (Parker,
Nau, & Subrahmanian 2005). That paper develops a way of
directly harnessing the large body of work done on standard
chess to create a kriegspiel playing program. Other work
on kriegspiel includes an algorithm from (Ciancarini, Dal-
laLibera, & Maran 1997) for solving endgames using meta-
positions as a state representation technique. Also, (Sakuta
& Iida 2000) have implemented an endgame search strategy
for an imperfect-information game similar to kriegspiel.

There is a larger body of work on imperfect-information
card games such as bridge and poker. For example, (Billings
et al. 2003) uses linear programming and abstraction tech-
niques to create a successful poker-playing program. A tech-
nique from (Davidson 2002) called miximax uses similar
probabilistically weighted averaging in the game of poker.
(Frank & Basin 1998) is an analysis of bridge play using as-
sumptions similar to our paranoid model. It shows specific
cases in bridge and abstract imperfect-information games
where such assumptions go wrong.

Conclusion
We have derived a general recursive formula for game-tree
search in imperfect-information games, based on informa-
tion sets. We have described two different backup rules for
use in the formula: an “overconfident” one that backs up
the values as if the opponent were making moves at random,
and a “paranoid” opponent model that is an information-set
analog of the well-known minimax backup rule.

The results of our experimental tests in the game of
kriegspiel suggest the following:

• Even without spending much time optimizing the code
for the overconfident model and the paranoid model,
they both usually outperformed HS. Thus, information-
set search might be better for imperfect-information
games than HS’s approach of pretending the imperfect-
information game is a set of perfect-information games.

• In most cases, the overconfident model usually outper-
formed the paranoid model. This suggests that the usual
assumption of perfect- information game tree search—
that the opponent will choose the best possible move—
isn’t as useful in imperfect-information games as in
perfect-information games.

• A player’s performance depends on how well his/her op-
ponent model models the opponent’s behavior. Against
the random player, the overconfident model did much bet-
ter than the paranoid model. Against HS, the overconfi-
dent model did not do a lot better than the paranoid model,
and the overconfident model’s performance degraded as
the search depth increased.

• In general, increasing the search depth did not improve
an algorithm’s performance nearly as much as it does in
perfect-information games. In fact, in several cases it
made the performance worse rather than better. There are
two reasons for this. First, if a backup rule doesn’t corre-
spond to the opponent’s likely behavior, then applying it
more times should not necessarily help. Second, increas-
ing the search depth without increasing the available time
for the search forces the algorithm to use a smaller sta-
tistical sample of boards. If the statistical sample is too
small, the search will not produce accurate results.

Acknowledgments. This work was supported by ARO
grant DAAD190310202, ARL grants DAAD190320026
and DAAL0197K0135, ARL CTAs on Telecommunica-
tions and Advanced Decision Architectures, NSF grants
IIS0329851, 0205489, IIS0412812, UC Berkeley subcon-
tract SA451832441 of DARPA’s REAL program, and ISLE
subcontract 0508268818 of DARPA’s Transfer Learning
program. The opinions expressed in this paper are authors’
and not necessarily opinions of the funders.

References
Billings, D.; Burch, N.; Davidson, A.; Holte, R.; Schaeffer,
J.; Schauenberg, T.; and Szafron, D. 2003. Approximating
game-theoretic optimal strategies for full-scale poker. In
IJCAI, 661–668.
Ciancarini, P.; DallaLibera, F.; and Maran, F. 1997. De-
cision Making under Uncertainty: A Rational Approach to
Kriegspiel. In van den Herik, J., and Uiterwijk, J., eds.,
Advances in Computer Chess 8, 277–298.
Davidson, A. 2002. Opponent modeling in poker: Learn-
ing and acting in a hostile environment. Master’s thesis,
University of Alberta.
Frank, I., and Basin, D. A. 1998. Search in games with
incomplete information: A case study using bridge card
play. Artificial Intelligence 100(1-2):87–123.
Osborne, M. J., and Rubinstein, A. 1994. A Course In
Game Theory. The MIT Press.
Parker, A.; Nau, D.; and Subrahmanian, V. 2005. Game-
tree search with combinatorially large belief states. In IJ-
CAI, 254–259.
Reif, J. 1984. The complexity of two-player games of
incomplete information. Journal of Computer and Systems
Sciences 29:274–301.
Russell, S., and Wolfe, J. 2005. Efficient belief-state and-or
search, with application to kriegspiel. In IJCAI, 278–285.
Sakuta, M., and Iida, H. 2000. Solving kriegspiel-like
problems: Exploiting a transposition table. ICCA Journal
23(4):218–229.

1050

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

