
Identification of Joint Interventional Distributions
in Recursive Semi-Markovian Causal Models ∗

Ilya Shpitser, Judea Pearl
Cognitive Systems Laboratory

Department of Computer Science
University of California, Los Angeles

Los Angeles, CA. 90095
{ilyas, judea}@cs.ucla.edu

Abstract

This paper is concerned with estimating the effects of actions
from causal assumptions, represented concisely as a directed
graph, and statistical knowledge, given as a probability distri-
bution. We provide a necessary and sufficient graphical con-
dition for the cases when the causal effect of an arbitrary
set of variables on another arbitrary set can be determined
uniquely from the available information, as well as an al-
gorithm which computes the effect whenever this condition
holds. Furthermore, we use our results to prove completeness
of do-calculus [Pearl, 1995], and a version of an identification
algorithm in [Tian, 2002] for the same identification prob-
lem. Finally, we derive a complete characterization of semi-
Markovian models in which all causal effects are identifiable.

Introduction
This paper deals with computing effects of actions in do-
mains specified as causal diagrams, or graphs with di-
rected and bidirected edges. Vertices in such graphs corre-
spond to variables of interest, directed edges correspond to
potential direct causal relationships between variables, and
bidirected edges correspond to ’hidden common causes,’
or spurious dependencies between variables [Pearl, 1995],
[Pearl, 2000]. Aside from causal knowledge encoded by
these graphs, we also have statistical knowledge in the form
of a joint probability distribution over observable variables,
which we will denote by P .

An action on a variable set X in a causal domain consists
of forcing X to particular values x, regardless of the values
X would have taken prior to the intervention. This action,
denoted do(x) in [Pearl, 2000], changes the original joint
distribution P over observables into a new interventional
distribution denoted Px. The marginal distribution Px(Y)
of a variable set Y obtained from Px will be our notion of
effect of action do(x) on Y.

Our task is to characterize cases when Px(Y) can be de-
termined uniquely from P , or identified in a given graph
G. It is well known that in Markovian models, those causal
domains whose graphs do not contain bidirected edges, all

∗This work was supported in part by AFOSR grant #F49620-
01-1-0055, NSF grant #IIS-0535223, and MURI grant #N00014-
00-1-0617.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

effects are identifiable [Pearl, 2000]. If our model con-
tains ’hidden common causes,’ that is if the model is semi-
Markovian, the situation is less clear.

Consider the causal diagrams in Fig. 1 (a) and (b) which
might represent a situation in diagnostic medicine. For in-
stance, nodes W1, W2 are afflictions of a pregnant mother
and her unborn child, respectively. X is a toxin produced
in the mother’s body as a result of the illness, which could
be artificially lowered by a treatment. Y1, Y2 stand for the
survival of mother and child. Bidirected arcs represent con-
founding factors for this situation not explicitly named in
the model, but affecting the outcome. We are interested in
computing the effect of lowering X on Y1, Y2 without actu-
ally performing the potentially dangerous treatment. In our
framework this corresponds to computing Px(Y1, Y2) from
P (X, W1, W2, Y1, Y2). The subtlety of this problem can be
illustrated by noting that in Fig. 1 (a), the effect is identifi-
able, while in Fig. 1 (b), it is not.

Multiple sufficient conditions for identifiability in the
semi-Markovian case are known [Spirtes, Glymour, &
Scheines, 1993], [Pearl & Robins, 1995], [Pearl, 1995],
[Kuroki & Miyakawa, 1999]. A summary of these results
can be found in [Pearl, 2000]. Most work in this area has
generally taken advantage of the fact that certain properties
of the causal diagram reflect properties of P , and is phrased
in the language of graph theory. For example, the back-door
criterion [Pearl, 2000], states that if there exists a set Z of
non-descendants of X that ’blocks’ certain paths in the graph
from X to Y, then Px(Y) =

∑
z P (Y|z, x)P (z).

Results in [Pearl, 1995], [Halpern, 2000] take a differ-
ent approach, and provide sound rules which are used to
manipulate the expression corresponding to the effect alge-
braically. These rules are then applied until the resulting ex-
pression can be computed from P .

Though the axioms in [Halpern, 2000] were shown to be
complete, the practical applicability of the result to identi-
fiability is limited, since it does not provide a closed form
criterion for the cases when effects are not identifiable, nor
a closed form algorithm for expressing effects in terms of P
when they are identifiable. Instead, one must rely on find-
ing a good proof strategy and hope the effect expression is
reduced to something derivable from P .

Recently, a number of necessity results for identifiabil-
ity have been proven. One such result [Tian & Pearl, 2002]

1219

(a) (b)

W1
X

Y1

W2 Y2

W1
X

Y1

W2 Y2

Figure 1: (a) Graph G. (b) Graph G′.
W1, W2 - illnesses of pregnant mother and unborn child, X
- toxin-lowering treatment, Y1, Y2 - survival of the patients

states that Px is identifiable if and only if there is no path
consisting entirely of bidirected arcs from X to a child of
X . The authors have also been made aware of a paper cur-
rently in review [Huang & Valtorta, 2006] which shows a
modified version of an algorithm found in [Tian, 2002] is
complete for identifying Px(y), where X, Y are sets. One
of the contributions of this paper is a simpler proof of the
same result, using non-positive distributions. The results in
this paper were independently derived.

In this paper, we offer a complete solution to the prob-
lem of identifying Px(y) in semi-Markovian models. Using
a graphical structure called a hedge, we construct a sound
and complete algorithm for identifying Px(y) from P . The
algorithm returns either an expression derivable from P or
a hedge which witnesses the non-identifiability of the effect.
We also show that steps of our algorithm correspond to se-
quences of applications of rules of do-calculus [Pearl, 1995],
thus proving completeness of do-calculus for the same iden-
tification problem. Furthermore, we show a version of Tian’s
algorithm [Tian, 2002] is also complete and thus equivalent
to ours. Finally, we derive a complete characterization of
models in which all effects are identifiable.

Notation and Definitions
In this section we reproduce the technical definitions needed
for the rest of the paper, and introduce common non-
identifying graph structures. We will denote variables by
capital letters, and their values by small letters. Similarly,
sets of variables will be denoted by bold capital letters, and
sets of values by bold small letters. We will use some graph-
theoretic abbreviations: Pa(Y)G, An(Y)G, and De(Y)G

will denote the set of (observable) parents, ancestors, and
descendants of the node set Y in G, respectively. The low-
ercase versions of the above kinship sets will denote corre-
sponding sets of values. We will omit the graph subscript if
the graph in question is assumed or obvious. We will denote
the set {X ∈ G|De(X)G = ∅} as the root set of G. For
a given node Vi in a graph G and a topological ordering π

of nodes in G, we denote V
(i−1)
π to be the set of observable

nodes preceding Vi in π. A topological ordering π of G is a
total order where no node can be greater than its descendant
in G.

Having fixed our notation, we can proceed to formalize
the notions discussed in the previous section. A probabilis-
tic causal model is a tuple M = 〈U, V, F, P (U)〉, where V

is a set of observable variables, U is a set of unobservable
variables distributed according to P (U), and F is a set of
functions. Each variable V ∈ V has a corresponding func-
tion fV ∈ F that determines the value of V in terms of other
variables in V and U.

The induced graph G of a causal model M contains a
node for every element in V, a directed edge between nodes
X and Y if fY possibly uses the values of X directly to de-
termine the value of Y , and a bidirected edge between nodes
X and Y if fX and fY both possibly use the value of some
variable in U to determine their respective values. In this
paper we consider recursive causal models, those models
which induce acyclic graphs.

For the purposes of this paper, we assume all variable do-
mains are finite, and P (U) =

∏
i P (Ui). The distribution on

V induced by P (U) and F will be denoted P (V).
Sometimes it is assumed P (V) is a positive distribution.

In this paper we do not make this assumption. Thus, we must
make sure that for every distribution P (W|Z) that we con-
sider, P (Z) must be positive. This can be achieved by mak-
ing sure to sum over events with positive probability only.
Furthermore, for any action do(x) that we consider, it must
be the case that P (x|Pa(X)G \ X) > 0 otherwise the distri-
bution Px(V) is not well defined [Pearl, 2000].

In any causal model there is a relationship between its
induced graph G and P , where P (v1, ..., vn, u1, ..., uk) =∏

i P (vi|pa∗(Vi)G)
∏

j P (uj), and Pa∗(.)G also includes
unobservable parents [Pearl, 2000]. Whenever this relation-
ship holds, we say that G is an I-map (independence map)
of P . The I-map relationship allows us to link independence
properties of P to G by using the following well known no-
tion of path separation [Pearl, 1988].

Definition 1 (d-separation) A path p in G is said to be d-
separated by a set Z if and only if either

1 p contains a chain I → M → J or fork I ← M → J ,
such that M ∈ Z, or

2 p contains an inverted fork I → M ← J such that
De(M)G ∩ Z = ∅.

Two sets X, Y are said to be d-separated given Z in G if all
paths from X to Y in G are d-separated by Z. The following
well known theorem links d-separation of vertex sets in an
I-map G with the independence of corresponding variable
sets in P .

Theorem 1 If sets X and Y are d-separated by Z in G, then
X is independent of Y given Z in every P for which G is an I-
map. We will abbreviate this statement of d-separation, and
corresponding independence by (X ⊥⊥ Y|Z)G, following the
notation in [Dawid, 1979].

A path that is not d-separated is said to be d− connected.
A path starting from a node X with an arrow pointing to
X is called a back − door path from X . A path consisting
entirely of bidirected arcs is called a bidirected path.

In the framework of causal models, actions are mod-
ifications of functional relationships. Each action do(x)
on a causal model M produces a new model Mx =
〈U, V, Fx, P (U)〉, where Fx, is obtained by replacing fX ∈

1220

F for every X ∈ X with a new function that outputs a con-
stant value x given by do(x).

Since subscripts are used to denote submodels, we will
use numeric superscripts to enumerate models (e.g. M1).
For a model M i, we will often denote its associated prob-
ability distributions as P i rather than P .

We can now define formally the notion of identifiability
of interventions from observational distributions.

Definition 2 (Causal Effect Identifiability) The causal ef-
fect of an action do(x) on a set of variables Y such that
Y ∩ X = ∅ is said to be identifiable from P in G if Px(Y)
is (uniquely) computable from P (V) in any causal model
which induces G.

The following lemma establishes the conventional tech-
nique used to prove non-identifiability in a given G.

Lemma 1 Let X, Y be two sets of variables. Assume there
exist two causal models M1 and M2 with the same induced
graph G such that P 1(V) = P 2(V), P 1(x|Pa(X)G\X) > 0,
and P 1

x (Y) �= P 2
x (Y). Then Px(y) is not identifiable in G.

Proof: No function from P to Px(y) can exist by assumption,
let alone a computable function. �

The simplest example of a non-identifiable graph struc-
ture is the so called ’bow arc’ graph, see Fig. 2 (a). Although
it is well known that Px(Y) is not identifiable in this graph,
we give a simple proof here which will serve as a seed of a
similar proof for more general graph structures.

Theorem 2 Px(Y) is not identifiable in the bow arc graph.

Proof: We construct two causal models M1 and M2 such
that P 1(X, Y) = P 2(X, Y), and P 1

x (Y) �= P 2
x (Y). The two

models agree on the following: all 3 variables are boolean,
U is a fair coin, and fX(u) = u. Let ⊕ denote the exclu-
sive or (XOR) function. Then the value of Y is determined
by the function u ⊕ x in M1, while Y is set to 0 in M2.
Then P 1(Y = 0) = P 2(Y = 0) = 1, P 1(X = 0) =
P 2(X = 0) = 0.5. Therefore, P 1(X, Y) = P 2(X, Y),
while P 2

x (Y = 0) = 1 �= P 1
x (Y = 0) = 0.5.

Note that while P is non-positive, it is straightforward to
modify the proof for the positive case by letting fY functions
in both models return 1 half the time, and the values outlined
above half the time. �

A number of other specific graphs have been shown to
contain unidentifiable effects. For instance, in all graphs in
Fig. 2, taken from [Pearl, 2000], Px(Y) is not identifiable.

Throughout the paper, we will make use of the 3 rules of
do-calculus [Pearl, 1995].

• Rule 1: Px(y|z, w) = Px(y|w) if (Y ⊥⊥ Z|X, W)Gx

• Rule 2: Px,z(y|w) = Px(y|z, w) if (Y ⊥⊥ Z|X, W)Gx,z

• Rule 3: Px,z(y|w) = Px(y|w) if (Y ⊥⊥ Z|X, W)G
x,z(w)

where Z(W) = Z \ An(W)GX
.

These rules allow insertion and deletion of interventions
and observational evidence into and from distributions, us-
ing probabilistic independencies implied by the causal graph
due to Theorem 1. Here Gxz is taken to mean the graph ob-
tained from G by removing arrows pointing to X and arrows
leaving Z.

C-Trees and Direct Effects
Sets of nodes interconnected by bidirected paths turned out
to be an important notion for identifiability and have been
studied at length in [Tian, 2002] under the name of C-
components.

Definition 3 (C-component) Let G be a semi-Markovian
graph such that a subset of its bidirected arcs forms a span-
ning tree over all vertices in G. Then G is a C-component
(confounded component).

If G is not a C-component, it can be uniquely parti-
tioned into a set C(G) of subgraphs, each a maximal C-
component. An important result states that for any set C
which is a C-component, in a causal model M with graph G,
Pv\c(C) is identifiable [Tian, 2002]. The quantity Pv\c(C)
will also be denoted as Q[C]. For the purposes of this pa-
per, C-components are important because a distribution P
in a semi-Markovian graph G factorizes such that each
product term corresponds to a C-component. For instance,
the graphs shown in Fig. 2 (b) and (c), both have 2 C-
components: {X, Z} and {Y }. Thus, the corresponding dis-
tribution factorizes as P (x, z, y) = Q[{x, z}]Q[{y}] =
Py(x, z)Px,z(y). It is this factorization which will ulti-
mately allow us to decompose the identification problem
into smaller subproblems, and thus construct an identifica-
tion algorithm.

We now consider a special kind of C-component which
generalizes the unidentifiable bow arc graph from the previ-
ous section.

Definition 4 (C-tree) Let G be a semi-Markovian graph
such that G is a C-component, all observable nodes have at
most one child, and there is a node Y such that An(Y)G =
G. Then G is a Y -rooted C-tree (confounded tree).

The graphs in Fig. 2 (a) (d) (e) (f) and (h) are Y -rooted
C-trees.

There is a relationship between C-trees and interventional
distributions of the form Ppa(Y)(Y). Such distributions are
known as direct effects, and correspond to the influence
of a variable X on its child Y along some edge, where the
variables Pa(Y) \ {X} are fixed to some reference values.

Direct effects are of great importance in the legal domain,
where one is often concerned with whether a given party
was directly responsible for damages, as well as medicine,
where elucidating the direct effect of medication, or disease
on the human body in a given context is crucial. See [Pearl,
2000],[Pearl, 2001] for a more complete discussion of direct
effects. The absence of Y -rooted C-trees in G means the
direct effect on Y is identifiable.

Lemma 2 Let M be a causal model with graph G. Then
for any node Y , the direct effect Ppa(Y)(Y) is identifiable if
there is no subgraph of G which forms a Y -rooted C-tree.

Proof: From [Tian, 2002], we know that whenever there is
no subgraph G′ of G, such that all nodes in G′ are ancestors
of Y , and G′ is a C-component, Ppa(Y)(Y) is identifiable.
This entails the lemma. �

Theorem 2 suggests that C-trees are troublesome struc-
tures for the purposes of identification of direct effects. In

1221

(e)

Z
X

Y

Z1
Z2

X

Y

(g)(f)

Y

Z

X

Y

(h)

Z

W

X

X

Y

(a) (b)

X

Y

Z

X

Y

Z

(c) (d)

Y

Z
X

Figure 2: Graphs where Px(Y) is not identifiable.

fact, our investigation revealed that Y -rooted C-trees are
troublesome for any effect on Y , as the following theorem
shows.

Theorem 3 Let G be a Y -rooted C-tree. Then the effect of
any set of nodes X in G on Y is not identifiable if Y �∈ X.

Proof: We generalize the proof for the bow arc graph. We
construct two models with binary nodes. In the first model,
the value of all observable nodes is set to the bit parity (sum
modulo 2) of the parent values. In the second model, the
same is true for all nodes except Y , with the latter being set
to 0 explicitly. All U nodes in both models are fair coins.
Since G is a tree, and since every U ∈ U has exactly two
children in G, every U ∈ U has exactly two distinct down-
ward paths to Y in G. It’s then easy to establish that Y counts
the bit parity of every node in U twice in the first model. But
this implies P 1(Y = 1) = 0.

Because bidirected arcs form a spanning tree over observ-
able nodes in G, for any set of nodes X such that Y �∈ X,
there exists U ∈ U with one child in An(X)G and one child
in G\An(X)G. Thus P 1

x (Y = 1) > 0, but P 2
x (Y = 1) = 0.

It is straightforward to generalize this proof for the positive
P (V) in the same way as in Theorem 2. �

While this theorem closes the identification problem for
direct effects, the problem of identifying general effects on
a single variable Y is more subtle, as the following corollary
shows.

Corollary 1 Let G be a semi-Markovian graph, let X and Y
be disjoint sets of variables. If there exists W ∈ An(Y)Gx

such that there exists a W -rooted C-tree which contains any
variables in X, then Px(Y) is not identifiable.

Proof: Fix a W -rooted C-tree T , and a path p from W to Y ∈
Y, where W ∈ An(Y)Gx . Consider the graph p ∪ T . Note
that in this graph Px(Y) =

∑
w Px(w)P (Y |w). It is now

easy to construct P (Y |W) in such a way that the mapping
from Px(W) to Px(Y) is one to one, while making sure P is
positive. �

This corollary implies that the effect of do(x) on a given
singleton Y can be non-identifiable even if Y is nowhere
near a C-tree, as long as the effect of do(x) on a set of ances-
tors of Y is non-identifiable. Therefore identifying effects
on a single variable is not really any easier than the gen-
eral problem of identifying effects on multiple variables. We
consider this general problem in the next section.

Finally, we note that the last two results relied on exis-
tence of a C-tree without giving an explicit algorithm for
constructing one. In the remainder of the paper we will give
an algorithm which, among other things, will construct the
necessary C-tree, if it exists.

C-Forests, Hedges, and Non-Identifiability
The previous section established a powerful necessary con-
dition for the identification of effects on a single variable. It
is the natural next step to ask whether a similar condition ex-
ists for effects on multiple variables. We start by considering
a multi-root generalization of a C-tree.

Definition 5 (C-forest) Let G be a semi-Markovian graph,
where Y is the root set. Then G is a Y-rooted C-forest (con-
founded forest) if G is a C-component, and all observable
nodes have at most one child.

We will show that just as there is a close relationship be-
tween C-trees and direct effects, there is a close connection
between C-forests and general effects of the form Px(Y),
where X and Y are sets of variables. To explicate this con-
nection, we introduce a special structure formed by a pair of
C-forests that will feature prominently in the remainder of
the paper.

1222

Definition 6 (hedge) Let X, Y be disjoint sets of variables
in G. Let F, F ′ be R-rooted C-forests such that F ∩ X �= ∅,
F ′ ∩ X = ∅, F ′ ⊆ F , and R ⊂ An(Y)Gx . Then F and F ′

form a hedge for Px(y) in G.

The mental picture for a hedge is as follows. We start with
a C-forest F ′. Then, F ′ ’grows’ new branches, while retain-
ing the same root set, and becomes F . Finally, we ’trim the
hedge,’ by performing the action do(x) which has the effect
of removing some incoming arrows in F \ F ′, the ’newly
grown’ portion of the hedge. It’s easy to check that every
graph in Fig. 2 contains a pair of C-forests that form a hedge
for Px(Y).

The graph in Fig. 1 (a) does not contain C-forests forming
a hedge for Px(Y1, Y2), while the graph in Fig. 1 (b) does:
if e is the edge between W1 and X , then F = G \ {e}, and
F ′ = F \ {X}. Note that for the special case of C-trees,
F is the C-tree itself, and F ′ is the singleton root Y . This
last observation suggests the next result as a generalization
of Theorem 3.

Theorem 4 Assume there exist R-rooted C-forests F, F ′

that form a hedge for Px(y) in G. Then Px(y) is not iden-
tifiable in G.

Proof: We first show Px(r) is not identifiable in F . As be-
fore, we construct two models with binary nodes. In M1

every variable in F is equal to the bit parity of its parents.
In M2 the same is true, except all nodes in F ′ disregard the
parent values in F \ F ′. All U are fair coins in both models.

As was the case with C-trees, for any C-forest F , every
U ∈ U ∩ F has exactly two downward paths to R. It is now
easy to establish that in M1, R counts the bit parity of every
node in U1 twice, while in M2, R counts the bit parity of
every node in U2 ∩ F ′ twice. Thus, in both models with no
interventions, the bit parity of R is even.

Next, fix two distinct instantiations of U that differ by val-
ues of U∗. Consider the topmost node W ∈ F with an odd
number of parents in U∗ (which exists because bidirected
edges in F form a spanning tree). Then flipping the values
of U∗ once will flip the value W once. Thus the function
from U to V induced by a C-forest F in M1 and M2 is one
to one.

The above results, coupled with the fact that in a C-
forest, |U| + 1 = |V| implies that any assignment where∑

r (mod 2) = 0 is equally likely, and all other node
assignments are impossible in both F and F ′. Since the
two models agree on all functions and distributions in F \
F ′,

∑
f ′ P 1 =

∑
f ′ P 2. It follows that the observational

distributions are the same in both models. Furthermore,∑
r P 1(V) is a positive distribution, thus P 1(x|Pa(X)G \

X) > 0 for any x.
As before, we can find U ∈ U with one child in An(X)F ,

and one child in F \ An(X)F , which implies Px(1 =
∑

r
(mod 2)) > 0 in M1, but not M2. Since Px(r) is not iden-
tifiable in G, and R ⊂ An(Y)Gx , we can construct P (Y|R)
to be a one to one mapping between Px(r) and Px(y), as we
did in Corollary 1.

For instance, let Y′ be the minimal subset of Y such that
R ⊆ An(Y′)Gx . Then let all nodes in G′ = An(Y′)Gx \
An(R) be equal to the bit parity of the parents. Without loss

function ID(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram (an I-map of P).
OUTPUT: Expression for Px(y) in terms of P or FAIL(F,F’).

1 if x = ∅, return
∑

v\y P (v).

2 if V �= An(Y)G,
return ID(y, x ∩ An(Y)G, P (An(Y)), An(Y)G).

3 let W = (V \ X) \ An(Y)Gx .
if W �= ∅, return ID(y, x ∪ w, P, G).

4 if C(G \ X) = {S1, ..., Sk},
return

∑
v\(y∪x)

∏
i ID(si, v \ si, P, G).

if C(G \ X) = {S},

5 if C(G) = {G}, throw FAIL(G, S).

6 if S ∈ C(G), return
∑

s\y

∏
Vi∈S P (vi|v(i−1)

π).

7 if (∃S′)S ⊂ S′ ∈ C(G), return ID(y, x ∩ S′,∏
Vi∈S′ P (Vi|V (i−1)

π ∩ S′, v
(i−1)
π \ S′), S′).

Figure 3: A complete identification algorithm. FAIL prop-
agates through recursive calls like an exception, and re-
turns F, F ′ which form the hedge which witnesses non-
identifiability of Px(y). π is some topological ordering of
nodes in G.

of generality, assume every node in G′ has at most one child.
Then every R ∈ R has a unique downward path to Y′, which
means the bit parities of R and Y′ are the same. This implies
the result. �

Hedges generalize not only the C-tree condition, but also
the complete condition for identification of Px from P in
[Tian & Pearl, 2002] which states that if Y is a child of
X and there a bidirected path from X to Y then (and only
then) Px is not identifiable. Let G consist of X , Y and the
nodes W1, ..., Wk on the bidirected path from X to Y . It is
not difficult to check that G and G \ {X} form a hedge for
Px(Y, W1, ..., Wk).

Since hedges generalize two complete conditions for spe-
cial cases of the identification problem, it might be reason-
able to suppose that a complete characterization of identi-
fiability might involve hedges in some way. To prove this
supposition, we would need to construct an algorithm which
identifies any effect lacking a hedge. This algorithm is the
subject of the next section.

A Complete Identification Algorithm
Given the characterization of unidentifiable effects in the
previous section, we can attempt to solve the identification
problem in all other cases, and hope for completeness. To do
this we construct an algorithm that systematically takes ad-
vantage of the properties of C-components to decompose the
identification problem into smaller subproblems until either
the entire expression is identified, or we run into the prob-
lematic hedge structure. This algorithm, called ID, is shown
in Fig. 3.

Before showing the soundness and completeness proper-

1223

W1
X

Y1

(a) (b)

W1 Y1

Figure 4: Subgraphs of G used for identifying Px(y1, y2).

ties of ID, we give the following example of the operation
of the algorithm. Consider the graph G in Fig. 1 (a), where
we want to identify Px(y1, y2) from P (V).

We know that G = An({Y1, Y2})G, C(G \ {X}) =
{G \ {X}}, and W = {W1}. Thus, we invoke line
3 and attempt to identify Px,w(y1, y2). Now C(G \
{X, W}) = {{Y1}, {W2}, {Y2}}, so we invoke line
4. Thus the original problem reduces to identifying∑

w2
Px,w1,w2,y2(y1)Pw1,x,y1,y2(w2)Px,w1,w2,y1(y2).

Solving for the second expression, we trigger line 2, not-
ing that we can ignore nodes which are not ancestors of
W2. Thus, Pw1,x,y1,y2(w2) = P (w2). Similarly, we ig-
nore non-ancestors of Y2 in the third expression to obtain
Px,w1,w2,y1(y2) = Pw2(y2). We conclude at line 6, to ob-
tain Pw2(y2) = P (y2|w2).

Solving for the first expression, we first trigger line 2 also,
obtaining Px,w1,w2,y2(y1) = Px,w1(y1). The corresponding
G is shown in Fig. 4 (a). Next, we trigger line 7, reducing the
problem to computing Pw1(y1) from P (Y1|X, W1)P (W1).
The corresponding G is shown in Fig. 4 (b). Finally, we trig-
ger line 2, obtaining Pw1(y1) =

∑
w1

P (y1|x, w1)P (w1).
Putting everything together, we obtain: Px(y1, y2) =∑

w2
P (y2|w2)P (w2)

∑
w1

P (y1|x, w1)P (w1).
As we showed before, the very same effect Px(y1, y2) in

a very similar graph G′ shown in Fig. 1 (b) is not identifiable
due to the presence of C-forests forming a hedge.

We now prove that ID terminates and is sound.

Lemma 3 ID always terminates.

Proof: At any call on line 7, (∃X ∈ X)X �∈ S′, else the
failure condition on line 5 would have been triggered. Thus
any recursive call to ID reduces the size of either the set X
or the set V \ X. Since both of these sets are finite, and their
union forms V, ID must terminate. �

To show soundness, we need a number of utility lemmas
justifying various lines of the algorithm. Though some of
these results are already known, we will reprove them here
using do-calculus to entail the results in the next section.
When we refer to do-calculus we will just refer to rule num-
bers (e.g. ’by rule 2’). Throughout the proofs we will fix
some topological ordering π of observable nodes in G. First,
we must show that an effect of the form Px(y) decomposes
according to the set of C-components of the graph G \ X.

Lemma 4 Let M be a causal model with graph G. Let y, x
be value assignments. Let C(G \ X) = {S1, ..., Sk}. Then
Px(y) =

∑
v\(y∪x)

∏
i Pv\si

(si).

Proof: Assume X = ∅, and let Ai = An(Si)G \ Si. Then

∏

i

Pv\si
(si) =

∏

i

Pai(si) =
∏

i

∏

Vj∈Si

Pai(vj |v(j−1)
π \ ai)

=
∏

i

∏

Vj∈Si

P (vj |v(j−1)
π) =

∏

i

P (vi|v(i−1)
π) = P (v)

The first identity is by rule 3, the second is by chain rule
of probability. To prove the third identity, we consider two
cases. If A ∈ Ai \V

(j−1)
π , we can eliminate the intervention

on A from the expression Pai(vj |v(j−1)
π) by rule 3, since

(Vj ⊥⊥ A|V (j−1)
π)Gai

.

If A ∈ Ai ∩ V
(j−1)
π , consider any back-door path from

Ai to Vj . Any such path with a node not in V
(j−1)
π will be

d-separated because, due to recursiveness, it must contain a
blocked collider. Further, this path must contain bidirected
arcs only, since all nodes on this path are conditioned or
fixed. Because Ai ∩ Si = ∅, all such paths are d-separated.
The identity now follows from rule 2.

The last two identities are just grouping of terms, and ap-
plication of chain rule. The same factorization applies to the
submodel Mx which induces the graph G\X, which implies
the result. �

The next lemma shows that to identify the effect on Y, it
is sufficient to restrict our attention to the ancestor set of Y,
thereby ensuring the soundness of line 2.

Lemma 5 Let X′ = X∩An(Y)G. Then Px(y) obtained from
P in G is equal to P ′

x′(y) obtained from P ′ = P (An(Y)) in
An(Y)G.

Proof: Let W = V \ An(Y)G. Then the submodel Mw
induces the graph G \ W = An(Y)G, and its distribu-
tion is P ′ = Pw(An(Y)) = P (An(Y)) by rule 3. Now
Px(y) = Px′(y) = Px′,w(y) = P ′

x′(y) by rule 3. �

Next, we use do-calculus to show that introducing addi-
tional interventions in line 3 is sound as well.

Lemma 6 Let W = (V \ X) \ An(Y)Gx . Then Px(y) =
Px,w(y), where w are arbitrary values of W.

Proof: Note that by assumption, Y ⊥⊥ W|X in Gx,w. The
conclusion follows by rule 3. �

Next, we must ensure the validity of the positive base case
on line 6.

Lemma 7 When the conditions of line 6 are satisfied,
Px(y) =

∑
s\y

∏
Vi∈S P (vi|v(i−1)

π).

Proof: If line 6 preconditions are met, then G local to that
recursive call is partitioned into S and X, and there are no
bidirected arcs from X to S. The conclusion now follows
from the proof of Lemma 4. �

Finally, we show the soundness of the last recursive call.

Lemma 8 Whenever the conditions of the last recursive call
of ID are satisfied, Px obtained from P in the graph G is
equal to P ′

x∩S′ obtained from P ′ =
∏

Vi∈S′ P (Vi|V (i−1)
π ∩

S′, v
(i−1)
π \ S′) in the graph S′.

Proof: It is easy to see that when the last recursive call exe-
cutes, X and S partition G, and X ⊂ An(S)G. This implies
that the submodel Mx\S′ induces the graph G\(X\S′) = S′.
The distribution Px\S′ of Mx\S′ is equal to P ′ by the proof
of Lemma 4. It now follows that Px = Px∩S′,x\S′ = P ′

x∩S′ .
�

We can now show the soundness of ID.

1224

Theorem 5 (soundness) Whenever ID returns an expres-
sion for Px(y), it is correct.

Proof: If x = ∅, the desired effect can be obtained from
P by marginalization, thus this base case is clearly correct.
The soundness of all other lines except the failing line 5 has
already been established. �

Finally, we can characterize the relationship between
hedges and the inability of ID to identify an effect.

Theorem 6 Assume ID fails to identify Px(y) (executes line
5). Then there exist X′ ⊆ X, Y′ ⊆ Y such that the graph pair
G, S returned by the fail condition of ID contain as edge
subgraphs C-forests F, F ′ that form a hedge for Px′(y′).

Proof: Consider line 5, and G and y local to that recur-
sive call. Let R be the root set of G. Since G is a single
C-component, it is possible to remove a set of directed ar-
rows from G while preserving the root set R such that the
resulting graph F is an R-rooted C-forest.

Moreover, since F ′ = F ∩S is closed under descendants,
and since only single directed arrows were removed from S
to obtain F ′, F ′ is also a C-forest. F ′∩X = ∅, and F ∩X �=
∅ by construction. R ⊆ An(Y)Gx by lines 2 and 3 of the
algorithm. It’s also clear that y, x local to the recursive call
in question are subsets of the original input. �

Corollary 2 (completeness) ID is complete.

Proof: By the previous theorem, if ID fails, then Px′(y′) is
not identifiable in a subgraph H = An(Y)G∩De(F)G of G.
Moreover, X ∩H = X′, by construction of H . As such, it is
easy to extend the counterexamples in Theorem 6 with vari-
ables independent of H , with the resulting models inducing
G, and witnessing the unidentifiability of Px(y). �

The following is now immediate.

Corollary 3 (hedge criterion) Px(y) is identifiable from P
in G if and only if there does not exist a hedge for Px′(y′) in
G, for any X′ ⊆ X and Y′ ⊆ Y.

So far we have not only established completeness, but also
fully characterized graphically all situations where distribu-
tions of the form Px(y) are identifiable. We can use these re-
sults to derive a characterization of identifiable models, that
is, causal models where all effects are identifiable.

Corollary 4 (model identification) Let G be a semi-
Markovian causal diagram. Then all causal effects are iden-
tifiable in G if and only if G does not contain a node X
connected to its child Y by a bidirected path.

Proof: If F, F ′ are C-forests which form a hedge for some
effect, there must be a variable X ∈ F , which is an ances-
tor of another variable Y ∈ F . Thus, if no X exists with a
child Y in the same C-component, then no hedge can exist in
G, and ID never reaches the fail condition. Thus all effects
are identifiable. Otherwise, Px is not identifiable by [Tian &
Pearl, 2002]. �

The complete algorithm presented in this section can be
viewed as a marriage of graphical and algebraic approaches
to identifiability. ID manipulates the first three arguments al-
gebraically, in a manner similar to do-calculus – not a coin-
cidental similarity as the following section will show. At the

function c-identify(C, T, Q[T])
INPUT: C ⊆ T , both are C-components, Q[T] a probability
distribution
OUTPUT: Expression for Q[C] in terms of Q[T] or FAIL

Let A = An(C)T .

1 If A = C, return
∑

T\C P

2 If A = T , return FAIL

3 If C ⊂ A ⊂ T , there exists a C-component T ′ such that
C ⊂ T ′ ⊂ A.
return c-identify(C, T ′, Q[T ′])
(Q[T ′] is known to be computable from

∑
T\A Q[T])

function identify(y, x, P, G)
INPUT: x,y value assignments, P a probability distribution,
G a causal diagram.
OUTPUT: Expression for Px(y) in terms of P or FAIL.

1 Let D = An(Y)Gx .

2 Assume C(D) = {D1, ..., Dk}, C(G) = {C1, ..., Cm}.

3 return
∑

D\S

∏
i c-identify(Di, CDi , Q[CDi]),

where (∀i)Di ⊆ CDi

Figure 5: An identification algorithm modified from [Tian,
2002]

same time, if we ignore the third argument, ID can be viewed
as a purely graphical algorithm which, given an effect sus-
pected of being non-identifiable, constructs the problematic
hedge structure witnessing this property.

Connections to Existing Identification
Algorithms

In the previous section we established that ID is a sound and
complete algorithm for all effects of the form Px(y). It is
natural to ask whether this result can be used to show com-
pleteness of earlier algorithms conjectured to be complete.

First we consider do-calculus, which can be viewed as
a declarative identification algorithm, with its completeness
remaining an open question. We show that the steps of the al-
gorithm ID correspond to sequences of standard probabilis-
tic manipulations, and applications of rules of do-calculus,
which entails completeness of do-calculus for identifying
unconditional effects.

Theorem 7 The rules of do-calculus, together with stan-
dard probability manipulations are complete for determin-
ing identifiability of all effects of the form Px(y).

Proof: We must show that all operations corresponding to
lines of ID correspond to sequences of standard probability
manipulations and applications of the rules of do-calculus.
These manipulations are done either on the effect expres-
sion Px(y), or the observational distribution P , until the al-
gorithm either fails, or the two expressions ’meet’ by pro-
ducing a single chain of manipulations.

1225

Line 1 is just standard probability operations. Line 5 is
a fail condition. The proof that lines 2, 3, 4, 6, and 7 cor-
respond to sequences of do-calculus manipulations follows
from Lemmas 5, 6, 4, 7, and 8 respectively. �

Next, we consider a version of an identification algorithm
due to Tian, shown in Fig. 5. The soundness of this algo-
rithm has already been addressed elsewhere, so we turn to
the matter of completeness.

Theorem 8 Assume identify fails to identify Px(y). Then
there exist C-forests F, F ′ forming a hedge for Px′(y′),
where X′ ⊆ X, Y′ ⊆ Y.

Proof: Assume c-identify fails. Consider C-components
C, T local to the failed recursive call. Let R be the root set
of C. Because T = An(C)T , R is also a root set of T . As
in the proof of Theorem 6, we can remove a set of directed
arrows from C and T while preserving R as the root set such
that the resulting edge subgraphs are C-forests. By line 1 of
identify, C, T ⊆ An(Y)Gx .

Finally, because c-identify will always succeed if Di =
CDi , it must be the case that Di ⊂ CDi . But this implies
X ∩ C = ∅, X ∩ T �= ∅. Thus, edge subgraphs of C, and
T are C-forests forming a hedge for Px′(y′), where X′ ⊆ X,
Y′ ⊆ Y. �

Corollary 5 identify is complete.

Proof: This is implied by Theorem 8, and Corollary 3. �

Acknowledgments
We would like to thank Gunez Ercal, Manabu Kuroki, and
Jin Tian for helpful discussions on earlier versions of this pa-
per. We also thank anonymous reviewers whose comments
helped improve this paper.

Conclusions
We have provided a complete characterization of cases when
joint interventional distributions are identifiable in semi-
Markovian models. Using a graphical structure called the
hedge, we were able to construct a sound and complete algo-
rithm for this identification problem, prove completeness of
two existing algorithms, and derive a complete description
of semi-Markovian models in which all effects are identifi-
able.

The natural open question stemming from this work is
whether the algorithm presented can lead to the identifica-
tion of conditional interventional distributions of the
form Px(y|z). Another remaining question is whether the re-
sults in this paper could prove helpful for identifying general
counterfactual expressions such as those invoked in natural
direct and indirect effects [Pearl, 2001], and path-specific
effects [Avin, Shpitser, & Pearl, 2005].

References
[1] Avin, C.; Shpitser, I.; and Pearl, J. 2005. Identifiability of path-

specific effects. In International Joint Conference on Artificial
Intelligence, volume 19, 357–363.

[2] Dawid, A. P. 1979. Conditional independence in statistical
theory. Journal of the Royal Statistical Society 41:1–31.

[3] Halpern, J. 2000. Axiomatizing causal reasoning. Journal of
A.I. Research 317–337.

[4] Huang, Y., and Valtorta, M. 2006. On the completeness of
an identifiability algorithm for semi-markovian models. Tech-
nical Report TR-2006-01, Computer Science and Engineering
Department, University of South Carolina.

[5] Kuroki, M., and Miyakawa, M. 1999. Identifiability criteria for
causal effects of joint interventions. Journal of Japan Statistical
Society 29:105–117.

[6] Pearl, J., and Robins, J. M. 1995. Probabilistic evaluation of
sequential plans from causal models with hidden variables. In
Uncertainty in Artificial Intelligence, volume 11, 444–453.

[7] Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems.
Morgan and Kaufmann, San Mateo.

[8] Pearl, J. 1995. Causal diagrams for empirical research.
Biometrika 82(4):669–709.

[9] Pearl, J. 2000. Causality: Models, Reasoning, and Inference.
Cambridge University Press.

[10] Pearl, J. 2001. Direct and indirect effects. In Proceedings of
UAI-01, 411–420.

[11] Spirtes, P.; Glymour, C.; and Scheines, R. 1993. Causation,
Prediction, and Search. Springer Verlag, New York.

[12] Tian, J., and Pearl, J. 2002. A general identification condi-
tion for causal effects. In Eighteenth National Conference on
Artificial Intelligence, 567–573.

[13] Tian, J. 2002. Studies in Causal Reasoning and Learning.
Ph.D. Dissertation, Department of Computer Science, Univer-
sity of California, Los Angeles.

1226

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 2
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
 /Arial
 /ArialBlack
 /ArialBold
 /ArialBoldItalic
 /ArialItalic
 /ArialMTBlack
 /ArialMTCondensedLight
 /ArialNarrow
 /ArialNarrowBold
 /ArialNarrowBoldItalic
 /ArialNarrowItalic
 /ArialRoundedMTBold
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY7
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMDUNH10
 /CMEX10
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB7
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /Courier-Oblique
 /CourierNew
 /CourierNewBold
 /CourierNewBoldItalic
 /CourierNewItalic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EUEX10
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /Euclid-Italic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Narrow
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HelveticaNeue-Black
 /HelveticaNeue-BlackItalic
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Heavy
 /HelveticaNeue-HeavyItalic
 /HelveticaNeue-Italic
 /HelveticaNeue-Light
 /HelveticaNeue-LightItalic
 /HelveticaNeue-Medium
 /HelveticaNeue-MediumItalic
 /HelveticaNeue-Roman
 /HelveticaNeue-Thin
 /HelveticaNeue-ThinItalic
 /HelveticaNeue-UltraLight
 /HelveticaNeue-UltraLightItal
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOSL10
 /MSAM10
 /MSAM5
 /MSAM7
 /MSBM10
 /MSBM5
 /MSBM7
 /MT-Extra
 /MTEX
 /MTSY
 /MathematicalPi-Five
 /MathematicalPi-Four
 /MathematicalPi-One
 /MathematicalPi-Six
 /MathematicalPi-Three
 /MathematicalPi-Two
 /NimbusMonAntL-Regu
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomD-Bold
 /NimbusRomD-BoldItal
 /NimbusRomD-ExtrBold
 /NimbusRomD-ExtrBoldItal
 /NimbusRomD-Regu
 /NimbusRomD-ReguItal
 /NimbusRomModComD
 /NimbusRomNo2T-Regu
 /NimbusRomNo9DCD-Regu
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusRomNo9SCT-Regu
 /NimbusRomNo9T-Bold
 /NimbusRomNo9T-BoldCond
 /NimbusRomNo9T-BoldItal
 /NimbusRomNo9T-ExtrBold
 /NimbusRomNo9T-Medi
 /NimbusRomNo9T-MediItal
 /NimbusRomNo9T-Regu
 /NimbusRomNo9T-ReguCond
 /NimbusRomNo9T-ReguCondItal
 /NimbusRomNo9T-ReguItal
 /NimbusRomanD-BoldItalicOu1
 /NimbusRomanD-BoldOu1
 /NimbusRomanD-ExtraBoldItalicOu1
 /NimbusRomanD-ExtraBoldOu1
 /NimbusRomanD-RegularItalicOu1
 /NimbusRomanD-RegularOu1
 /RMTMI
 /Symbol
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /Times-Roman
 /TimesNewRoman
 /TimesNewRomanBold
 /TimesNewRomanBoldItalic
 /TimesNewRomanItalic
 /TimesNewRomanMTExtraBold
 /Universal-GreekwithMathPi
 /Universal-NewswithCommPi
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfDingbats
]
 /NeverEmbed [true
 /Geneva
 /HelveticaLTMM
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

