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Abstract

An emerging empirical methodology bridges the gap between
game theory and simulation for practical strategic reasoning.

Game-Theoretic Analysis

Game-theoretic analysis typically takes at its starting point,
most naturally, a description of its subject—the game, a for-
mal model of a multiagent interaction. The recent surge in
interest among AI researchers in game theory has led to nu-
merous advances in game modeling (Gal & Pfeffer 2004;
Kearns, Littman, & Singh 2001; Koller & Milch 2003;
Leyton-Brown & Tennenholtz 2003) and solution tech-
niques (Gilpin & Sandholm 2006; Porter, Nudelman, &
Shoham 2004), substantially expanding the class of games
amenable to computational analysis. Nevertheless, a great
many games of interest lie well beyond the boundary of
tractable modeling and reasoning. Complexity may be man-
ifest in the number of agents or the size of their strategy sets
(policy spaces), or the degree of incomplete and imperfect
information. The issue here is not merely computational
complexity of the analysis task (e.g., finding equilibrium),
but actually the apparent impracticality of producing an ex-
plicit game model amenable to automated reasoning.

For example, consider the Trading Agent Competition
Supply Chain Management (TAC/SCM) game (Eriksson,
Finne, & Janson 2006). This is a well-defined six-player
symmetric game of imperfect information, with interaction
rules and exogenous stochastic processes described in a brief
specification document. There is nothing particularly un-
usual about this game, nevertheless it presents a difficult
challenge for game-theoretic analysis. The policy spaces
and payoff functions are clearly induced by the specified
rules, but the description is quite indirect. Even given com-
plete policies for all six agents, there is no apparent means
to derive the expected payoffs, short of sampling from the
stochastic environment using an available game simulator.
In this case, each sample point takes an hour to compute.
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Empirical Games
The approach we have been pursuing in my research group
for the past few years1 is to take the game simulator as the
fundamental input, and perform strategic reasoning through
interleaved simulation and game-theoretic analysis. The ba-
sic object of analysis is an empirical game, a description
of the interaction scenario where payoff information comes
in the form of data from observations or simulations. Con-
structing and reasoning about such games presents many in-
teresting subproblems, which can be addressed by existing
as well as new methods from simulation, statistics, search,
and of course, standard game-theoretic analysis.

I find it useful to decompose empirical game-theoretic
analysis into three basic steps. Many of the research con-
tributions in this area manifest as techniques applicable to
one of these subproblems, or results from approaches taken
to them in a given domain.

Parametrize Strategy Space
Often the complexity of a game resides in vast policy spaces
available to agents. Large spaces can arise, for example,
from continuous or multi-dimensional action sets, as well as
from imperfect information (when actions are conditioned
on observation histories). It is often useful in such cases to
approximate the game by restricting the strategy space, and
structuring the space to admit a sensible search procedure.
Results from analysis of restricted subgames often provide
insight into the original game. Arguably, all applications of
game theory in the social sciences employ stylized abstrac-
tions, which are manually designed restricted versions of ac-
tual games. From our perspective the interesting question is
how to automate the abstraction process starting from a rich
but intractable game specification.

One generic approach to generating candidate strategies
is to start from some baseline or skeletal structure, and sys-
tematically introduce parametric variations. Some examples
of natural baselines include:

1. Truthful revelation. For example, in an auction game, the
baseline would be to bid one’s true value. In the first-
1Similar or identical techniques have also been employed by

other researchers, especially those working experimentally with
multiagent systems. Our main claim is in systematizing the
methodology, in explicit game-theoretic terms.
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price sealed-bid auction, this strategy guarantees zero sur-
plus (!), but it turns out that the one-dimensional family of
strategies defined by shading one’s bid by a multiplicative
factor includes excellent strategies, including the unique
symmetric equilibrium (Reeves 2005).

2. Myopic best response. For example, in simultaneous auc-
tions (SAAs), a natural starting point is straightforward
bidding (Milgrom 2000), where the agent bids as though
the current prices are final. We have explored an extensive
family of bidding strategies for SAAs starting from this
baseline, ultimately producing what we consider the lead-
ing contender in this domain (Osepayshvili et al. 2005).

3. Game tree search. The starting point for most programs
designed to play complete-information turn-taking zero-
sum games is minimax search. In a recent study of
a 4-player chess game (Kiekintveld, Wellman, & Singh
2006), we defined the strategy space as a set of paramet-
ric variations on the basic game search architecture (e.g.,
control knobs for search depth and evaluation function
weights).

Estimate Empirical Game
To illustrate some concepts associated with empirical games,
we employ an example from a recent analysis of agents from
the 2005 TAC/SCM tournament (Wellman et al. 2006). Fig-
ure 1 displays the empirical game, estimated from a sample
of over 2000 game instances played with various combina-
tions of six agent strategies. We describe the interpretation
of this diagram in the course of explaining the game estima-
tion and analysis.

Direct Estimation The most straightforward approach to
estimate an empirical game from data is to treat the observa-
tions as direct evidence for the payoffs of the strategy pro-
files played. Toward this end we can bring to bear all the
tools of Monte Carlo analysis, and related statistical tech-
niques. We have found especially useful the method of con-
trol variates (L’Ecuyer 1994) for reducing variance based on
adjusting for observable factors with known effects on pay-
offs. In the case of TAC/SCM, the most important factor is
customer demand, which can significantly influence profits
regardless of agent strategy. Applying control variates, we
derive a measure of demand-adjusted profit, which we then
employ as a proxy for payoffs in the empirical game estima-
tion (Wellman et al. 2005a).

Each node in the graph of Figure 1 represents a pro-
file of agent strategies. TAC/SCM is a 6-player symmetric
game, and so with six possible strategies there are a total of(
11
5

)
= 462 distinct strategy profiles to consider. We can re-

duce the game to a smaller version by requiring multiples of
players to play the same strategy. Specifically, by restricting
attention to cases where strategies are assigned to pairs of
agents, we get an effective 3-player game, which we denote
SCM↓3. This game is combinatorially smaller, comprising
only

(
8
3

)
= 56 profiles over the same 6-strategy set. The

payoff to a strategy in an SCM↓3 profile is defined as the
average payoff to the two agents playing this strategy in the
original 6-player game.

In several contexts, we have found experimentally and
theoretically that this form of hierarchical game reduction
produces results approximating well the original unreduced
game, with great computational savings (Reeves 2005; Well-
man et al. 2005b). Although we have not validated this
specifically in TAC/SCM, intuitively we would expect that
payoffs vary smoothly with the number of other agents play-
ing a given strategy.

Our 2110 sample game instances (each requiring seven
processor-hours to generate, not counting setup time and
overhead due to failures) are distributed roughly evenly over
the 56 SCM ↓3 profiles. In general, one may wish to de-
ploy samples in a much more actively targeted manner. In
other studies, we allocate samples with a view toward con-
firming or refuting candidate equilibria. The idea is to focus
on promising profiles, and their neighbors in profile space—
profiles that differ in the strategy choice of one agent. Walsh
et al. (2003) have proposed information-theoretic criteria
for selecting profiles to sample, and other approaches from
Monte Carlo analysis and active learning should be applica-
ble as well.

One special issue for empirical games is the need to han-
dle partial coverage of observation data. Although in our
illustrative example we have payoff estimates for all possi-
ble profiles, in many cases this will not be possible. We have
found it useful in such cases to classify a profile s into one
of four disjoint categories:

1. If the profile s has not been empirically evaluated (i.e.,
sampled), then we say it is unevaluated.

2. Otherwise, and for some neighbor t of s, the estimated
payoff for the deviating agent is greater in t than s. In this
case, we say s is refuted.

3. Otherwise, and some neighbor t of s is unevaluated. In
this case, we say s is a candidate.

4. Otherwise, in which case we say s is confirmed.

In the empirical game of Figure 1, all profiles are evalu-
ated. There is an arrow from each profile to its best devia-
tion, which we define as the neighbor offering the greatest
(positive) gain to the agent switching strategies to reach it.
Deviations that are statistically significant are indicated by
solid arrows. Since all nodes have outgoing arrows, we find
that every profile is refuted in this empirical game, and there-
fore there are no pure Nash equilibria.

Regression An alternative approach to game estimation
attempts to generalize the data across profiles, including
those that are unevaluated in the sense of our classification
above. The idea is to apply machine learning (regression)
techniques to fit a payoff function over the entire profile
space given the available data (Vorobeychik, Wellman, &
Singh 2005). This approach offers the potential for reason-
ing over very large, even infinite, profile spaces.

Analyze Empirical Game
Analyzing an empirical game is much like analyzing any
other; standard methods apply. Given the inherent uncer-
tainty in reasoning about empirical games, it may be espe-
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Figure 1: Deviation analysis of pure profiles of SCM↓3.

cially appropriate to consider approximate equilibrium con-
cepts, or more generally to reason about degrees of game-
theoretic stability rather than categorical classes. Let ε(s)
denote the maximum gain to deviating from s, over all
agents and evaluated neighbors of s. If all neighbors are
evaluated, then profile s is an ε(s)-Nash equilibrium, and
for the special case ε(s) = 0 it is a (confirmed) Nash equi-
librium. If some neighbors are unevaluated, then ε(s) repre-
sents a lower bound on the ε rendering s an ε-Nash equilib-
rium.

The profiles in Figure 1 are arranged according to this ε
measure. Profiles in the inner ellipse have ε ≤ 0.6M (“M”
represents a million dollars), with succeeding outer rings
corresponding to increasing levels of this measure as indi-
cated. With this interpretation, we can draw several conclu-
sions by direct inspection of the diagram.

• Although no pure profiles are equilibria, some are much
more stable than others.

• Each of four most stable profiles (and 11 out of the top 13)
involve at least one agent playing the Mertacor strategy.

• Profiles where all agents play the same strategy (except
PhantAgent) are among the least stable.

• Of the 35 profiles without Mertacor, 30 of them have
a best deviation where some strategy changes to Merta-
cor. Of the 21 profiles with Mertacor, the best deviation
changes from Mertacor in only three.

Of course, more specific analysis (e.g., deriving mixed-
strategy equilibria) requires evaluation of the more precise
payoff estimates.

Given finite data, it is also important to apply sensitiv-
ity analysis to the estimated game (Reeves 2005), or em-
ploy statistical bounds in reasoning about its implications
(Vorobeychik, Kiekintveld, & Wellman 2006). The ε mea-
sure is useful for both purposes; we can derive distributions
over ε(s) for each s, or provide confidence intervals with re-
spect to ε(s). These measures can also provide guidance in
sampling strategy, for example we might focus on refuting
profiles with low ε(s). Finally, we have also employed the ε
concept in evaluating techniques for payoff function regres-
sion (Vorobeychik, Wellman, & Singh 2005).

Applications
We have applied this methodology to a variety of games,
especially market-based scenarios. In several cases we have
been able to support conclusions about strategic issues in
these games not accessible through standard analytic means.

• Verification that aggressive early procurement was a sta-
ble (but very destructive) behavior in the original (2003)
TAC/SCM game (Arunachalam & Sadeh 2005), and that
the preemptive policy of Deep Maize was an effective
remedy (Wellman et al. 2005a).

• Identifying and validating a new strategy for dealing with
the exposure problem in SAAs (Osepayshvili et al. 2005).

• Systematically evaluating strategies for the TAC travel
game, leading to a choice that proved highly effective in
TAC-05 (Wellman et al. 2005c).

Although much further work is required to develop the
empirical game-theoretic approach into a precise, rigorous
and fully automated methodology, the early results seem
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quite encouraging. Further innovations in technique and ex-
perience in application promise to widen the scope of prac-
tical game-theoretic reasoning.
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