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Introduction
To operate successfully in a competitive trading environ-
ment such as the Trading Agent Competition for Supply
Chain Management (Collins et al. 2004) (TAC SCM), an
agent has to allocate resources and set prices in a way that
maximizes its expected profit. This requires the ability to
detect changing market conditions and act accordingly.

In TAC SCM six agents buy parts, assemble personal
computers, and sell them in daily auctions to customers.
Sales decisions in our agent, MinneTAC, are driven by
three different models: an automated characterization and
prediction of market conditions, which we call economic
regimes (Ketter 2005), a linear program that optimizes daily
sales quotas, and a model of order acceptance probability.
While economic regime models are commonly used at the
macro economic level (Osborn & Sensier 2002), such pre-
dictions are rarely done for a micro economic environment.

We focus on the sales decisions the agent has to make,
where predicting prices and customer demand play an es-
sential role. The strategies we present have been inspired,
among others, by the work of Kephart et al. (Kephart, Han-
son, & Greenwald 2000).

MinneTAC makes sales decisions in two steps. The first
step is a strategic decision, where resources are allocated
over a planning horizon in a way that maximizes expected
profit over the horizon. The second step is a tactical deci-
sion, which determines the offer prices that are expected to
sell the quantities determined by the strategic decision, given
the current demand and the pricing model.

Strategic Sales Decision
The strategic decision sets daily sales quotas by solving a
linear program that maximizes total profit, computed as ex-
pected sales price minus cost basis, over the selected hori-
zon and over the set of product types the agent can produce,
subject to constraints on inventory and production capacity.
This strategy sets relatively large quotas for the current day
if prices are predicted to fall, and small quotas if prices are
predicted to rise. Successful use of this approach therefore
requires good prediction of price trends, which we describe
next.
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Regime Identification and Prediction
Off-line Regime Characterization. We characterize mar-
ket regimes by analyzing off-line data from previous games.
The agent then uses these results along with real-time ob-
servable information to identify regimes during the game,
forecast regime transitions, and adapt its procurement, pro-
duction, and pricing strategies accordingly. For our experi-
ments, we used training data from a set of 24 games played
during the semi-finals and finals of TAC SCM 2005.

Agents can build and sell many different types of comput-
ers. Each computer type has a nominal price, which is the
sum of the nominal cost of the parts needed to build it. We
normalize the prices across the different computer types. We
call np the normalized price.

We define regimes with a Gaussian mixture model
(GMM). We use a GMM with fixed means, µi, and fixed
variances, σi, since we want the same set of Gaussians to
work for all games. We use the Expectation-Maximization
(EM) Algorithm to demarginalize the GMM and deter-
mine the prior probability, P (ci), of the Gaussian compo-
nents. The density of the normalized price can be written
as p(np) =

∑N
i=1 p(np|ci)P (ci), where p(np|ci) is the i-

th Gaussian from the GMM. For our experiments we chose
N = 16, because we found experimentally that this works
well for price trend predictions.

Using Bayes’ rule we determine the posterior probability
P (c|np). We then define the N-dimensional vector

~η(np) = [P (c1|np), P (c2|np), . . . , P (cN |np)]

whose components are the posterior probabilities from the
GMM, and for each normalized price npj we compute
~η(npj) which is ~η evaluated at the npj price. We cluster
these collections of vectors using the k-means algorithm.
The center of each cluster is a probability vector that cor-
responds to regime r = Rk for k = 1, · · · , M , where M is
the number of regimes.

In Figure 1 we distinguish five regimes, which we call ex-
treme over-supply (R1), over-supply (R2), balanced (R3),
scarcity (R4), and extreme scarcity (R5). Regimes R1 and
R2 represent a situation where there is an over-supply situ-
ation, which depresses prices. Regime R3 represents a bal-
anced market situation, where most of the demand is satis-
fied. In regime R3 the agent has a range of options of price
vs sales volume. Regimes R4 and R5 represent a situation
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Figure 1: Regime probabilities over normalized price.

where there is scarcity of products, which increases prices.
In this case the agent should price close to the customer re-
serve price – the maximum price a customer is willing to
pay.

We marginalize the product of p(np|ci) and P (ci|Rk)
over all Gaussians ci to obtain P (np|Rk). The probabil-
ity of regime Rk dependent on the normalized price np can
be computed using Bayes rule as:

P (Rk|np) =
P (np|Rk)P (Rk)

∑M
k=1 P (np|Rk)P (Rk)

∀k = 1, · · · , M.

where M is the number of regimes, which in our case is 5.
The prior probabilities P (Rk) of the different regimes are
determined by a counting process over multiple games. Fig-
ure 1 depicts the regime probabilities for a sample market.
Online Regime Identification. During the game, the
agent estimates the current regime every day by calculat-
ing the mid-range normalized price npday for the day and
by selecting the regime with the highest probability, i.e.
argmax1≤k≤M

~P (Rk|npday). The mid-range price is com-
puted from the daily report of the minimum and maximum
prices of the computers sold the day before.
Online Regime Prediction. Since regimes are correlated
with prices, predicting regime changes can help predicting
price changes. We model regime prediction as a Markov
process and construct a transition matrix off-line by a count-
ing process over past games. This matrix represents the
posterior probability of transitioning in day t + 1 to a
regime given the current regime in day t . The predic-
tion is based on two distinct operations: (1) a correction
(recursive Bayesian update) of the posterior probabilities
~P (rt−1|{npt0 , . . . ,npt−1}) for the regimes based on the
history of measurements of the mid-range normalized price
np from the day of the last regime change, t0, to the previous
day, t− 1, and (2) a prediction of the regime posterior prob-
abilities for the current day, t, ~P (rt|{npt0 , . . . ,npt−1}).
Price Density and Trend Prediction. The agent predicts
the price density using the predicted regime distribution and
the learned GMM for every day over the planning horizon
n using a range of values for np. To predict price trends
we track the 5%, 10%, and 50% percentiles of the predicted
price density. Figure 2 shows price trends for a sample game
from day 10 until day 30. These predicted price trends are
then used to compute optimal sales quotas.
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Figure 2: Predicted price trend from day 10 to day 30. The
solid curve is the real mean price trend and the dashed and
dotted curves are predicted prices trends based on the 5%,
10% and 50% percentiles of the predicted price density.

Tactical Sales Decision
Given the daily sales quotas, price trend predictions, and the
current demand dg, the final decision is to set the highest
possible offer price opg for each product g at which g’s sales
are expected to reach its desired quota qg . We maintain a
current pricing model that approximates the probability that
customers will accept an offer. This is a simple linear ap-
proximation giving the expected median price mg (derived
from np) and slope sg of the acceptance probability func-
tion. Using this model, the offer price opg for each product
is

opg =
1
sg

(
qg

dg
− 1

2

)
+ mg.

Offer prices are slightly randomized, and actual sales perfor-
mance is used to update the model.

Conclusions and Future Work
We have described an approach to sales decision-making
that uses economic regimes, resource allocation, and pre-
diction of order probabilities. The approach presented is fo-
cuses on sales decisions, but price trends can also be used
for decision making in procurement and production.
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