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Abstract
Answer selection and knowledge base question answering
(KBQA) are two important tasks of question answering (QA)
systems. Existing methods solve these two tasks separately,
which requires large number of repetitive work and neglects
the rich correlation information between tasks. In this paper,
we tackle answer selection and KBQA tasks simultaneously
via multi-task learning (MTL), motivated by the following
motivations. First, both answer selection and KBQA can be
regarded as a ranking problem, with one at text-level while
the other at knowledge-level. Second, these two tasks can
benefit each other: answer selection can incorporate the ex-
ternal knowledge from knowledge base (KB), while KBQA
can be improved by learning contextual information from an-
swer selection. To fulfill the goal of jointly learning these two
tasks, we propose a novel multi-task learning scheme that uti-
lizes multi-view attention learned from various perspectives
to enable these tasks to interact with each other as well as
learn more comprehensive sentence representations. The ex-
periments conducted on several real-world datasets demon-
strate the effectiveness of the proposed method, and the per-
formance of answer selection and KBQA is improved. Also,
the multi-view attention scheme is proved to be effective in
assembling attentive information from different representa-
tional perspectives.

Introduction
Question answering (QA) is an important but challeng-
ing NLP application. Nowadays, there are many possible
sources of data for the QA systems, such as web docu-
ments, QA communities, knowledge bases and so on. Ac-
cording to these data sources, question answering can be di-
vided into several different tasks, including machine read-
ing comprehension (Rajpurkar et al. 2016), answer selec-
tion (Wang, Smith, and Mitamura 2007), knowledge base
question answering (Bordes et al. 2015) and more. Recent
years have witnessed many successes in applying deep neu-
ral networks on these QA tasks (dos Santos et al. 2016;
Wenpeng et al. 2016; Hao et al. 2017).

Despite the advancement of these models, different QA
tasks are still solved separately. Designing and training var-
ious models for specific tasks are time-consuming and ex-
pensive. Recently, as seen in many other NLP tasks, multi-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

task learning has been extensively studied to learn multiple
related tasks simultaneously. The applications of MTL are
extensive in NLP domain, such as text classification (Zheng,
Chen, and Qiu 2018), sequence labeling (Chen et al. 2018)
and text summarization (Guo, Pasunuru, and Bansal 2018),
etc. However, applying MTL on QA has received little at-
tention.

In this work, we explore multi-task learning approaches
to tackle answer selection and knowledge base question an-
swering at the same time, with the intuition that these tasks
both can be regarded as a ranking problem, but one in text-
level and the other in knowledge-level. Specifically, the task
of answer selection aims to pick out the correct answers
for the given question from a set of candidate answer sen-
tences, while the task of KBQA focuses on extracting the
corresponding facts from KB, such as Freebase (Bollacker
et al. 2008), to answer the given question. Besides, previ-
ous works prove that answer selection task can be benefited
from external knowledge (Savenkov and Agichtein 2017;
Deng et al. 2018; Ying et al. 2018), while incorporating
text information also enhances the performance of KBQA
task (Yu et al. 2017; Sorokin and Gurevych 2018).

Most existing multi-task learning schemes divide the lay-
ers of a model into task-specific and shared layers (Abhishek
and Hal 2012; Guo, Pasunuru, and Bansal 2018). The shared
layers are shared across all tasks, while the task-specific lay-
ers are separate for each task. However, these methods ne-
glect the interrelation between the task-specific layers and
the shared layers, and the interaction among different tasks.
Thus, we present a novel multi-task learning scheme to learn
multi-view attentions from different aspects, which enables
different tasks to interact with each other. Concretely, we as-
semble the attentive information from the task-specific lay-
ers to learn more comprehensive sentence representations
in the shared layers. In addition, the multi-view attention
mechanism enhances the sentence representational learning
by combining word-level and knowledge-level information.
That is to say, the attentive information in both word-level
and knowledge-level are shared and transferred among dif-
ferent tasks by using the multi-view attention scheme.

To demonstrate the effectiveness of the proposed method,
we conduct experiments on both answer selection and
KBQA datasets. Empirically, joint learning of answer se-
lection and KBQA tasks significantly improves the perfor-



Answer Selection KBQA

word Q what was johnny appleseed ’s real name ? what is the name of a track created by katy perry ?
A john chapman , aka american folk hero johnny appleseed . katy perry music artist track witness

knowledge Q johnny appleseed katy perry
A john chapman, johnny appleseed katy perry, music.artist.track, witness

Table 1: Examples of Answer Selection and KBQA Data

mance of each task compared to learning them indepen-
dently. The experimental results also indicate the effective-
ness of the multi-view attention scheme and each views at-
tention contributes.

In summary, our main contributions are as follows:
• We explore multi-task learning approaches for answer

selection and knowledge base question answering. An-
swer selection task can be improved by KBQA task in
knowledge-level, while KBQA task can be enhanced by
answer selection task in word-level.

• We propose a novel multi-task learning scheme that lever-
ages multi-view attention mechanism to bridge differ-
ent tasks, which integrates the important information of
the task-specific layers into the shared layers as well as
enables the model to interactively learn word-level and
knowledge-level representations.

• Experimental results show that multi-task learning of an-
swer selection and KBQA outperforms state-of-the-art
single-task learning methods. Besides, the multi-view at-
tention based MTL scheme further enhance the perfor-
mance.

Multi-Task Learning for Question Answering
In this section, we introduce the multi-task learning of an-
swer selection and knowledge base question answering.

Problem Definition
The tasks of answer selection and KBQA can be typically
regarded as a ranking problem. Given a question qi ∈ Q,
the task is to rank a set of candidate answer sentences or
facts ai ∈ A. Specifically, a function f(q; a) that computes
a relevancy score f(q; a) ∈ [0; 1] for each question-answer
pair.

The multi-task learning of answer selection and KBQA
starts with the entity linking results. As the example shown
in Table 1, a word sequence W = {w1; w2; :::; wL} and a
knowledge sequence K = {k1; k2; :::; kL} are prepared for
each question and each candidate answer. For the question
and answer in answer selection and the question in KBQA,
we derive the knowledge of the sentence by entity link-
ing (Savenkov and Agichtein 2017). For the answer fact in
KBQA, we obtain the word sequence from the tokenized en-
tity name and relation name (Yu et al. 2017).

In the multi-task scenario, we aim to rank the candidate
answers for each question from T related tasks. We refer Dt

as the t-th preprocessed task dataset with N samples:

Dt = {(W (t)
qi
;K(t)

qi
;W (t)

ai
;K(t)

ai
; Y

(t)
i )}Nt

i=1; (1)

where Y (t)
i denotes the label of i-th QA pair in t-th task.
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Figure 1: Basic Multi-Task QA Network

Multi-Task Question Answering Network
The basic multi-task learning model is a deep neural net-
work that adopts layer-specific sharing mechanism (Guo,
Pasunuru, and Bansal 2018) which shares some high-level
information across different tasks and the remained layers
are parallel and independent to learn task-specific low-level
information. Figure 1 illustrates the overall architecture of
multi-task QA network (MTQA-net) for answer selection
(AS) and knowledge base question answering (KBQA).

Task-specific Encoder Layer The preprocessed sen-
tences are first encoded into distributed vector representa-
tions. Different QA tasks are supposed to be diverse in data
distributions and low-level representations. Therefore, each
task is equipped with a task-specific siamese encoder for
both questions and answers, and each task-specific encoder
contains a word encoder and a knowledge encoder to learn
the integral sentence representations, as shown in Figure 2.

Word Encoder. The input of the word encoder module is
a sequence of word embeddings EW = {ew1

; ew2
; :::; ewL

}.
We employ Bi-LSTM (Bidirectional Long Short-Term
Memory Networks) to capture the context information from
both the head-to-tail and the tail-to-head context. The output
at l-th word is represented by hl = [

−→
hl :

←−
hl ], in which

−→
hl

is the output of the forward network and
←−
hl is that of the

backward network. Given a pair of word sequences of the
question q and the answer a, we generate the word-based
sentence representation HW ∈ RL×dh for both the question
and the answer, where L and dh are the length of sentences
and the size of hidden units:

HWq
= Bi-LSTM(EWq

);HWa
= Bi-LSTM(EWa

): (2)
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Figure 2: Task-specific Encoder Layer

Knowledge Encoder. Different from word encoder, a se-
quence of knowledge embeddings EK = {ek1

; ek2
; :::; ekL

}
is input into knowledge encoder. As the knowledge sequence
is composed by a series of tokenized entity or relation name,
the high-level knowledge-based representations are desired
for the latter learning procedure. We deal with this problem
by applying CNN on the knowledge sequences, in which fil-
ters of size n slide over the knowledge embedding matrix
to capture the local n-gram features. Each move computes a
hidden layer vector as

xl =[ek
l− n−1

2

; : : : ; ekl
; : : : ; ek

l+ n−1
2

]; (3)

hl = tanh (Wcxl + bc) ; (4)

where Wc and bc are the convolution kernel and the bias
vector to be learned.

Due to the uncertainty of the length of entities, a couple
of filters of various sizes are employed to obtain different
output vectors

�
H(1); H(2); : : : ;H(n)

	
, whereH(i) denotes

the output vector obtained by the i-th filter. We pass these
output vectors through a fully-connected layer to get the
knowledge-based sentence representation HK ∈ RL×df ,
where L is the length of the sentence and df is the total
filter sizes of CNN. Given the question q and the answer a,
the knowledge-based sentence representations are:

HKq
= [H

(1)
Kq

: H
(2)
Kq

: : : : : H
(n)
Kq

]; (5)

HKa
= [H

(1)
Ka

: H
(2)
Ka

: : : : : H
(n)
Ka

]: (6)

After obtaining the word-based and the knowledge-based
sentence representations, HKq

and HKa
are still vectors in

the order of words in the sentence, since the fully-connected
layer concatenates the outputs from all the filters in the di-
mension of the feature instead of the sequence. Thus, the
order of HKq

and HKa
is consistent with HWq

and HWa
.

Then we concatenate them into the encoded sentence repre-
sentations, Hq = [HWq : HKq ] and Ha = [HWa : HKa ].

Shared Representation Learning Layer After encoding
sentence into vector representations with task-specific en-
coder, we share high-level information across different tasks

via a shared representation learning layer. Compared with
the input of task-specific encoder layer, the integral sentence
representation contains richer semantic meaning and share
more similar distributions with other tasks. Therefore, we
integrate the encoded vectors from all the tasks and pass
through a high-level shared Siamese Bi-LSTM to generate
the final QA representations:

Sq = Bi-LSTM(Hq); Sa = Bi-LSTM(Ha): (7)
We apply average pooling over the Bi-LSTM output,

sq = Average(Sq), sa = Average(Sa). Inspired by pre-
vious works (Severyn and Moschitti 2015) and (Tay et al.
2017), we incorporate some word and knowledge overlap
features xol ∈ R6 to form the final feature space for bi-
nary classification, including word overlap score, non-stop
word overlap score, weighted word overlap score, non-stop
weighted word overlap score, knowledge overlap score and
weighted knowledge overlap score. Thus, the final feature
space will be x = [sq; sa; xol].

Task-specific Softmax Layer For a question-answer pair,
q
(t)
i and a(t)i , and its label y(t)i in k-th task, the final feature

representations is fed into the task-specific softmax layer for
binary classification:

p(t) = softmax
�
W (t)

s x+ b(t)s

�
; (8)

where p(t) is the predicted probability, W (t)
s ∈ Rdx×2 and

b
(t)
s ∈ R2 are the task-specific weight matrix and bias vector

in the hidden layer.

Multi-Task Learning
The overall multi-task learning model is trained to minimize
the cross-entropy loss function:

L = −
TX

t=1

�t

NtX
i=1

h
y

(t)
i log p

(t)
i +

�
1 − y

(t)
i

�
log
�

1 − p
(t)
i

�i
;

(9)
where �t is a parameter that determines the weight of t-th
task, and y(t)i is the ground-truth label of question-answer
pair (q

(t)
i ; a

(t)
i ). In practice, the same weight is assigned to

all tasks.

Multi-Task Model with Multi-View Attention
In order to enhance the interaction between different QA
tasks in latent representation space, we propose a multi-view
attention mechanism to fetch the important information from
task-specific layers as well as the shared layers.

Multi-View Attention Scheme
As shown in the Figure 3, different with other attention
sharing scheme, we not only draw attention from the task-
specific layers, but also combine the information from the
shared layers. In addition, we obtain the attentive infor-
mation from both word and knowledge perspectives, since
word-level and knowledge-level information may make a
joint contribution to representational learning. Specifically,
we compute five views of attention, including the views of
word, knowledge, semantic, knowledge semantic and co-
attention.
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Figure 3: Multi-View Attention

Word View & Knowledge View We first adopt a two-way
attention mechanism (dos Santos et al. 2016) to interactively
modeling a pair of QA sentences, by attending correspond-
ingly important information in two sentences. We collect the
attention weights from both the word and the knowledge em-
beddings:

MW = tanh
�
ET

Wq
UWEWa

�
;MK = tanh

�
ET

Kq
UKEKa

�
;

(10)
where UW ∈ Rdew×dew and UK ∈ Rdek

×dek are parameter
matrices to be learned; dew

and dek
are the dimensions of

word embeddings and knowledge embeddings.
Then we apply max-pooling over MW and MK row-wise

and column-wise to obtain the word view and the knowledge
view attention weights for the question and the answer:
�(1)

q = softmax(Max(MW ));�(1)
a = softmax(Max(MW

T ));
(11)

�(2)
q = softmax(Max(MK));�(2)

a = softmax(Max(MK
T ));

(12)

where �(1)
q and �(1)

a are the attention weights for the ques-
tion and the answer from word view; �(2)

q and �(2)
a are the

attention weights from knowledge view.

Semantic View & Knowledge Semantic View As the
context semantic information is of great importance in sen-
tence representational learning, we exploit the overall con-
text semantic information as the attention source over all the
elements in the sentence. Thus, we apply max/mean pooling
over the output of the task-specific encoder layer to obtain
the overall semantic information of a sentence. We experi-
mented on using either max or mean pooling to generate the
semantic information. The result shows that the following
pooling methods achieve the best performance:
owq

= Average
�
HWq

�
; owa

= Average (HWa
) ; (13)

okq
= Max

�
HKq

�
; oka

= Max (HKa
) ; (14)

Conceptually, the attention mechanism takes into consid-
eration the semantic information, which is expected to cap-
ture the correlations between question words and answer
words:

�(3)
q = softmax(wT

wq
tanh(Wwaowa +WwqHWq )); (15)

�(3)
a = softmax(wT

wa
tanh(Wwqowq +WwaHWa )); (16)

�(4)
q = softmax(wT

kq
tanh(Wkaoka +WkqHKq )); (17)

�(4)
a = softmax(wT

ka
tanh(Wkqokq +WkaHKa )); (18)

where Wwq ;Wwa ∈ Rdh×dh , wwq ; wwa ∈ Rdh ,
Wkq ;Wka ∈ Rdf×df , wkq ; wka ∈ Rdf are attention param-
eters to be learned; �(3)

q and �(3)
a are the attention weights

for the question and the answer from semantic view; �(4)
q

and �(4)
a are the attention weights from knowledge semantic

view.

Co-attention View Similar to word view and knowledge
view attention, we employ a two-way attention mechanism
to generate the co-attention between final question and an-
swer representations:

Mco = tanh
�
ST

q USSa

�
; (19)

�(5)
q = softmax(Max(Mco)); (20)

�(5)
a = softmax(Max(Mco

T )); (21)

where UW ∈ Rds×ds is the attention parameter matrix to
be learned; ds is the dimension of final QA representations;
�
(5)
q and �(5)

a are the co-attention weights for the question
and the answer.

Multi-View Attentive Representation We define the
multi-view attention fusion from word, knowledge, seman-
tic, knowledge semantic and co-attention views as:

�q = softmax
5X

i=1

�(i)
q �(i)

q ;�a = softmax
5X

i=1

�(i)
a �(i)

a ; (22)

where �(i)q and �(i)a are hyper-parameters that determines the
weights of the five kinds of attentions. In order to observe the
contribution of each view of attention, we assign the same
weight to all views of attention in the experiment. Finally,
the attentive QA representations will be:

sq = Sq�q; sa = Sa�a: (23)

Multi-View Attention Sharing
As the multi-view attention is applied over hidden states in
the shared representation layer, the parameters to compute
the attention weights are supposed to be shared across tasks
as well. Meanwhile, different tasks are connected by the
multi-view attention, since the multi-view attention scheme
gathers the information from both task-specific layers and
the shared layers.



Experiment
Datasets & Preprocessing
We use YahooQA (Tay et al. 2017) and TREC QA (Wang,
Smith, and Mitamura 2007) for answer selection task, and
SimpleQuestions (Bordes et al. 2015) and WebQSP (Yih et
al. 2016) for knowledge base question answering task. The
statistics of these datasets are described in Table 2.

Dataset #Question (train/dev/test) #QA Pair (train/dev/test)

Yahoo QA 50098/6289/6283 253K/31K/31K
TREC QA 1229/82/100 53417/1148/1517

SimpleQuestions 71038/10252/20464 571K/80K/164K
WebQSP 3067/-/1632 302K/-/160K

Table 2: Summary statistics of datasets.

YahooQA1 An open-domain community-based dataset
collected from Yahoo Answers. Tay et al. (2017) filters out
questions and answers whose length is out of 5-50, and gen-
erates 4 negative samples for each question. The same met-
rics as (Tay, Tuan, and Hui 2018a; Deng et al. 2018) are
adopted for evaluation, including Precision@1 and MRR.

TREC QA A widely-adopted factoid question answer-
ing dataset. Following previous works (Tay, Tuan, and Hui
2018a; Deng et al. 2018), we experiment on the raw TREC
QA dataset and use Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR) as evaluation metrics.

SimpleQuestions A single-relation KBQA dataset. This
dataset consists of questions annotated with a corresponding
fact from Freebase that provides the answer. We report Ac-
curacy as previous studies (Yih et al. 2016; Yu et al. 2017).
A question is considered answered correctly only when the
predicted positive answers match one of the ground-truths.

WebQSP A multi-relation KBQA dataset. Yih et al. (2016)
created this dataset by extracting the questions that are an-
swerable using Freebase from WebQuestions (Berant et al.
2014). We adopt Accuracy as the evaluation metric as the
SimpleQuestions dataset.

In our setting, we assume that the data are preprocessed
by entity linking, which means entities in sentences have al-
ready been extracted and linked to certain entities in the KB.

Entity Linking We use FB5M2 as the knowledge base,
which contains 4,904,397 entities, 7,523 relations, and
22,441,880 facts. For YahooQA and TREC QA3, we label
all the sentences with the entity mentioned in themselves.
We apply the TagMe4 entity linker to extract entity men-
tions from sentences, and only keep the entity mentions with
the confidence score above the 0.2 threshold. For each en-
tity mention, we retrieve one certain entity from FB5M. For
SimpleQuestions and WebQSP, we start with the entity link-
ing results5 as Yu et al. (2017).

1https://github.com/vanzytay/YahooQA Splits
2https://research.facebook.com/researchers/1543934539189348
3https://github.com/dengyang17/MTQA
4https://github.com/marcocor/tagme-python
5https://github.com/Gorov/KBQA RE data

Experiment Settings
The word embeddings for all the models are initialized
by pre-trained GloVE embeddings6 of 300 dimensions.
TransE (Bordes et al. 2013) is adopted as the knowledge em-
bedding method to generate the knowledge embeddings for
all the models. OpenKE7 is employed to implement TransE
with the default settings.

For all the implemented models, we apply the same pa-
rameter settings. The LSTM hidden layer size and the final
hidden layer size are both set to 200. The width of the convo-
lution filters is set to be 2 and 3, and the number of convolu-
tional feature maps is set to be 100. The learning rate and the
dropout rate are set to 0.0005 and 0.5 respectively. We train
our models in batches with size of 128. All other param-
eters are randomly initialized from [-0.1, 0.1]. The model
parameters are regularized with a L2 regularization strength
of 0.0001. The maximum length of sentence is set to be 40.

Multi-Task Learning Results
Table 3 summarizes the experimental results of different
methods on answer selection and knowledge base question
answering. For answer selection task, four methods listed in
Table 3 achieve the state-of-the-art results in Yahoo QA and
TREC QA datasets. The first three methods (Tay et al. 2017;
Tay, Tuan, and Hui 2018a; 2018b) are traditional single-
task learning methods, while Deng et al. (2018) employs
transfer learning method to pre-train the model with a large-
scale dataset and leverages external knowledge from KB to
improve the sentence representational learning. For KBQA
task, we compare the proposed method to four single-task
learning state-of-the-art methods. Note that we start with the
same entity linking results as Yu et al. (2017).

In general, the proposed multi-view attention based MTL
method, MVA-MTQA-net (MTL), outperforms the state-of-
the-art results by a noticeable margin on all the datasets. For
instance, on the YahooQA and SimpleQuestions dataset, the
proposed method improves about 8% and 2% on the metrics
over these baselines.

In both MVA-MTQA-net and its basic model (MTQA-
net), multi-task learning (MTL) methods can significantly
improve the performance of all four datasets compared with
single-task learning (STL), which demonstrates the effec-
tiveness of combining answer selection and knowledge base
question answering to conduct multi-task learning.

Ablation Analysis of Multi-View Attention
In this section, we conduct ablation experiments to illustrate
the effect of multi-view attention scheme in the proposed
method. We exclude the five kinds of views from MVA-
MTQA-Net one by one and report the results in Table 4, in-
cluding single-task learning and multi-task learning results.

From the results, we can observe that all kinds of view
contribute more or less performance boost to the model. Ap-
parently, co-attention view attention makes the most contri-
bution to the improvement, which brings about 2-3% incre-
ment on both STL and MTL of four tasks.

6http://nlp.stanford.edu/data/glove.6B.zip
7https://github.com/thunlp/OpenKE



Model
Yahoo QA TREC QA SimpleQuestions WebQSP

P@1 MRR MAP MRR Accuracy Accuracy

HD-LSTM (Tay et al. 2017) 0.557 0.735 0.750 0.815 - -
CTRN (Tay, Tuan, and Hui 2018a) 0.601 0.755 0.771 0.838 - -

HyperQA (Tay, Tuan, and Hui 2018b) 0.683 0.801 0.770 0.825 - -
KAN(AP-LSTM) (Deng et al. 2018) 0.744 0.840 0.797 0.850 - -

BiCNN (Yih et al. 2015) - - - - 0.900 0.777
AMPCNN (Wenpeng et al. 2016) - - - - 0.913 -

HR-BiLSTM (Yu et al. 2017) - - - - 0.933 0.825
Multiple View Matching (Yu et al., 2018) - - - - 0.937 0.854

MTQA-net (STL) 0.737 0.818 0.763 0.832 0.913 0.808
MTQA-net (MTL) 0.752 0.839 0.779 0.841 0.922 0.820

MVA-MTQA-net (STL) 0.806 0.878 0.783 0.838 0.931 0.823
MVA-MTQA-net (MTL) 0.833 0.909 0.811 0.862 0.957 0.858

Table 3: Multi-Task Learning Results

Model
Yahoo QA TREC QA SimpleQuestions WebQSP

P@1 MRR MAP MRR Accuracy Accuracy

STL MTQA-net 0.737 0.818 0.763 0.832 0.913 0.808
MTL MTQA-net 0.752 0.839 0.779 0.841 0.922 0.820

STL

MVA-MTQA-net 0.806 0.878 0.783 0.838 0.931 0.823
w/o word view 0.792 0.863 0.769 0.834 0.926 0.809

w/o knowledge view 0.781 0.854 0.761 0.827 0.930 0.818
w/o semantic view 0793 0.862 0.773 0.837 0.921 0.813

w/o knowledge semantic view 0.788 0.859 0.762 0.822 0.928 0.814
w/o co-attention view 0.775 0.850 0.761 0.824 0.917 0.803

MTL

MVA-MTQA-net 0.833 0.909 0.811 0.862 0.957 0.858
w/o word view 0.824 0.894 0.792 0.854 0.947 0.835

w/o knowledge view 0.826 0.893 0.796 0.861 0.944 0.844
w/o semantic view 0.822 0.886 0.789 0.856 0.945 0.836

w/o knowledge semantic view 0.822 0.890 0.793 0.856 0.944 0.840
w/o co-attention view 0.811 0.882 0.792 0.847 0.937 0.829

Table 4: Ablation Analysis of Multi-View Attention

For STL, knowledge and knowledge semantic view at-
tentions are more distinguishable than word view and se-
mantic view in two answer selection tasks, Yahoo QA and
TREC QA, which indicates that attending more informa-
tive knowledge in the sentence is important to measure the
correlation between question and answer sentence. Simi-
larly, slight difference exists between two word-level view
and two knowledge-level view attentions in SimpleQues-
tions and WebQSP tasks. However, the word view and se-
mantic attentions contribute more.

For MTL, we observe that each view of attention makes a
similar contribution to the improvement in four tasks, which
demonstrates that the multi-view attention scheme enables
each task to interact with each other in multi-task learning.

Case Study of Multi-View Attention
Multi-view attention scheme provides an intuitive way to in-
spect the importance of each word in the question and the
answer by visualizing the attention weight from each kind
of view. Due to the limited space, we randomly choose one
question-answer pair from TREC QA dataset and one from
SimpleQuestions, and visualize the attention weights pre-
dicted by MVA-MTQA-net. To be more differentiated, each

view of the attention weights is normalized to [0, 1].

Figure 4(a)(c) shows the predicted attention weights of
an example from TREC QA. For the attention weights from
the word view, we observe that words with rich information
(e.g., “johnny appleseed” and “real name”) in both question
and answer receive high weights. On the other hand, entity
with valuable information, such as “johnny appleseed” and
“john chapman”, are assigned with high weights in knowl-
edge view. In two semantic views, not only similar words
are attended, but also the related sentence elements, e.g.,
“aka american folk hero”. In co-attention view, there is a
more synthetical attention distribution over all the words. In
general, the distinction in word-level attentions is not as ef-
fective as that of knowledge-level. The results indicate that
the incorporation of knowledge-level information aids in at-
tending more valuable information in answer selection task.

Figure 4(b)(d) provides an example from SimpleQues-
tions. For the question, we observe a similar distribution
with the attention weights of the question example in Fig-
ure 4(a), since the form of questions in KBQA task is in ac-
cord with that in answer selection task. However, for the an-
swer, the word-level attentions compensate the insufficiency
of the knowledge-level attentions, e.g., “guidebooks”, which




