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Abstract

In computational linguistics, specificity quantifies how much
detail is engaged in text. It is an important characteristic of
speaker intention and language style, and is useful in NLP ap-
plications such as summarization and argumentation mining.
Yet to date, expert-annotated data for sentence-level speci-
ficity are scarce and confined to the news genre. In addition,
systems that predict sentence specificity are classifiers trained
to produce binary labels (general or specific).
We collect a dataset of over 7,000 tweets annotated with
specificity on a fine-grained scale. Using this dataset, we train
a supervised regression model that accurately estimates speci-
ficity in social media posts, reaching a mean absolute error
of 0.3578 (for ratings on a scale of 1-5) and 0.73 Pearson
correlation, significantly improving over baselines and previ-
ous sentence specificity prediction systems. We also present
the first large-scale study revealing the social, temporal and
mental health factors underlying language specificity on so-
cial media.

1 Introduction
Texts vary in their levels of detail and their involvement of
particular concepts, objects and events, i.e., their specificity.
Consider the two posts below from Twitter; the first one is
very specific, while the other is rather general:

[1]: I was eating a cookie over the trashcan to catch
the crumbs. One of the chocolate chips jumped ship. I
considered diving after it. #Finals
[2]: How curious that I, looking at you, am thinking
exactly what you, looking at me, are thinking and yet...
we both cannot understand

Specificity is a pragmatic concept of text whose signif-
icance spans across various fields of research. Studies in
cognitive linguistics showed that the organization of gen-
eral and specific information in text impacts reading com-
prehension speed (Dixon 1987). In discourse analysis, speci-
ficity is connected with several discourse relations (Mann
and Thompson 1988; Prasad et al. 2008), making it a co-
herence device. Several works also highlighted the role of
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specificity in serving effective communication, e.g., in polit-
ical discourse (Cook 2016), argumentation (Swanson, Ecker,
and Walker 2015) and classroom discussions (Luo and Lit-
man 2016; Lugini and Litman 2017). Prior work in clinical
psychology explored potential links between specificity and
autism (Li et al. 2017).

Findings from these studies, though encouraging, relied
on either hand-coded analysis of limited scale, or sen-
tence specificity prediction systems (Li and Nenkova 2015;
Lugini and Litman 2017) that are trained to produce 2-3 cat-
egories of specificity sentences, which is too coarse to be
analyzed (Li et al. 2016). Furthermore, the only open-source
tool (Li and Nenkova 2015) is trained from news sentences,
a genre vastly different from the spontaneous and expres-
sive text from social media which can reveal more about the
writer (Schwartz et al. 2013). Because of these bottlenecks,
our understanding of text specificity and its relationship with
an individual’s traits, as well as its utility in automated text
processing, is still in its infancy.

To this end, we first introduce a large dataset of 7,267
tweets annotated with text specificity on a fine-grained scale
of 1-5. The tweets are sampled from an existing dataset with
demographic information such as age, gender, education,
income, political ideology, and religion obtained through
survey-based methods (Preoţiuc-Pietro et al. 2017), making
it ideal for large-scale sociolinguistics studies. The dataset is
also sufficiently large to train supervised systems for speci-
ficity prediction that enable the automatic analysis of speci-
ficity in informal, spontaneous text. Our dataset and system
are openly available online.2

Using this dataset, we train regression models that can ac-
curately estimate the specificity of tweets. The models use
hand crafted features that capture the lexical, content, and
emotional aspects of the data. Our system achieves a mean
absolute error of 0.3578 and 0.73 Pearson correlation, sub-
stantially improving upon several baselines and existing sys-
tems for sentence specificity.

We also present a series of analyses that reflect the so-
cial and temporal dynamics of language specificity on so-
cial media. We uncover that specificity is significantly as-
sociated with demographic factors such as age and educa-

2https://github.com/cs329yangzhong/
specificityTwitter



tion level. Specificity displays distinct temporal patterns that
vary throughout the day as a reflection of different activities.
Finally, we observe that specificity is related to depression—
a major mental health issue: moderately and severely de-
pressed people are more likely to tweet with less specificity.

In sum, this work presents a dataset, a predictive model
and insights that advance the computational modeling of text
specificity as well as our understanding of its various inter-
actions with social and temporal factors.

2 Related Work
Louis and Nenkova (2011a) developed the first sentence
specificity prediction system. They repurposed discourse re-
lation annotations (Prasad et al. 2008) as training data to
classify whether sentences are general or specific. Li and
Nenkova (2015) later developed and open-sourced an im-
proved system. However, both studies used the same news
sentences with binary labels as training data. In reality,
analyses involving text specificity routinely use real-valued
estimates (from classifier posterior probabilities), instead
of the predicted binary labels (Louis and Nenkova 2011b;
Swanson, Ecker, and Walker 2015; Cook 2016; Luo and Lit-
man 2016; Kleinberg et al. 2017). The intuition of treating
specificity as a real-valued variable conforms with findings
from Li et al. (2016). Recently, Lugini and Litman (2017)
predicted specificity of classroom discussion conversations;
however they also used coarse labels (low/medium/high
specificity), and the system and data are not available.

Our data annotation effort is partly inspired by Li et
al. (2016) and Li et al. (2017), who annotated sentence speci-
ficity on a fine-grained scale and reported good agreement.
Li et al. (2017) further demonstrated two potential demo-
graphic and psychological factors that influence the percep-
tion of specificity. However these studies are limited to a
small number of manually analyzed news sentences; our
work contributes a large scale dataset. We analyze multiple
demographic, mental health and temporal factors.

3 Data
We first present a corpus of tweets annotated with speci-
ficity. We follow insights from Li et al. (2016) who argued
that specificity should be annotated on a fine-grained scale.
The tweets are sampled from an existing data set, introduced
and used in past research (Preoţiuc-Pietro et al. 2017), where
users self-reported demographic information. The data col-
lection process received approval from the Institutional Re-
view Board (IRB) of the University of Pennsylvania. We an-
notated 7,267 tweets for analysis and modeling.

3.1 Data Sampling
We sample tweets from users who have posted at least
four tweets. From each user, we uniformly sample 2 tweets
that contain at least 3 unique tokens. Re-tweets are ex-
cluded as they mostly carry information posted by others
and would thus impact the demographic analysis. URLs and
usernames are replaced by special tokens following Cachola
et al. (2018). All emojis are preserved and can be viewed in

a browser. There are a total of 7,330 tweets sampled from
3,665 users.

3.2 Demographic Information
The user demographics from our dataset are obtained using
surveys and include gender, age, faith, political ideology, an-
nual income, and education level.

Gender is represented as a binary value with 0 for Male
and 1 for Female.

Age is an integer value calculated by taking the differ-
ence between the year when the tweet is posted and the self-
reported year of birth.

Faith is represented as an ordinal variable with 6 differ-
ent levels to measure the degree of a user’s participation in
religious events. The value is the frequency a user attends
religious events in a week ranging from 1 (“Never”) to 6
(“Multiple times a week”).

Political ideology is measured over the US conservative-
liberal spectrum: Very conservative (1), Conservative (2),
Moderately conservative (3), Moderate (4), Moderately lib-
eral (5), Liberal (6), Very liberal (7); Other (8) and Apa-
thetic (9) (Ellis 2012). Users whose political ideology is ei-
ther “Other” or “Apathetic” are excluded from the dataset
following Preoţiuc-Pietro et al. (2017).

Annual income is measured with 8 values ranging from
“less than $20,000” to “more than $200,000”.

Education level is measured as an ordinal variable that
represents the highest degree obtained, from 1 (“No high
school degree”) to 6 (“Most advanced degree, e.g. PhD or
MD”).

3.3 Data Annotation
Instructions for annotating specificity are based on sentence
specificity annotation from Li et al. (2016). Specific instruc-
tions for each coding option are as follows:

1 = Very General: posts that do not make references to
any specific person, object or event, e.g., “Always too
much.”
2 = General: posts that make references to a per-
son, object or event, but rely on the personal, spatio-
temporal or external context to understand, e.g., “I’ve
been waiting all of August for tomorrow.”
3 = Specific: posts that make references to a person,
object or event, and can be mostly understood even with
some missing information, e.g., “So many people at the
Turner Center. That will be over by next week.”
4 = Very specific: posts that mention concrete persons,
objects or events, and do not rely on any context to un-
derstand or to identify the subjects and actions in the
post, e.g., “The dance this morning on GMA with Ali-
cia Keys made my day”
5 = Extremely Specific: posts that mention concrete
persons, objects or events, and do not rely on any con-
text to fully understand and, additionally, provide sig-
nificant levels of detail, e.g., “Mascara is the most com-
monly worn cosmetic, and women will spend an aver-
age of $4,000 on it in their lifetimes”
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Figure 1: Distribution of specificity of annotated tweets.

Ratings are crowdsourced via Amazon Mechanical Turk.
For quality control, workers need to be located in the US,
have at least 100 HITs approved and with an approval rate
of at least 90%. Furthermore, for each worker we calculate
their Cronbach’s alpha (Cronbach 1951) of their ratings with
the consolidated rating and exclude those whose alpha val-
ues are below 0.3, which we analyzed to be of low qual-
ity. Each tweet was annotated by at least 5 workers after all
quality control measures. The intra-class correlation coeffi-
cient is 0.575, indicating moderate agreement (Koo and Li
2016). The Krippendorf’s Alpha (interval) value is 0.507,
again moderate agreement (Artstein and Poesio 2008), on
par with other annotations using non-expert crowds (Hol-
gate et al. 2018). Finally, we exclude tweets where more
than half of the annotators mark as not understandable. This
yields a total of 7,267 qualified tweets posted by 3,665 users.

The consolidated specificity rating for each tweet is the
average of the ratings from each annotator. The distribution
of rated specificity is summarized in Figure 1. Clearly, most
tweets are of mid-specificity, i.e., they contain a mixture of
general and specific information. The graph is bell-shaped,
similar to that found in Li et al. (2016). This further war-
rants datasets and systems that do not treat sentences as ei-
ther general or specific.

4 Predicting Specificity
We develop and evaluate a regression model to predict lan-
guage specificity of tweets.

4.1 Model Training
Unlike prior work that trained classifiers to predict sentence
specificity (Louis and Nenkova 2011a; Li and Nenkova
2015; Lugini and Litman 2017), we train a regression model
that treats specificity as a continuous value. Specifically,
we use Support Vector Regression (SVR) with Radial Basis
Function (RBF) kernel3 for sentence specificity prediction.
We experimented with other models, including linear regres-
sion, SVR with linear kernel, and neural networks that use

3Implemented with Scikit-Learn.

CNNs and LSTMs to generate tweet representations. They
all led to significantly worse performance on our develop-
ment set.

4.2 Features
We design features to capture lexical, semantic, and emotion
aspects of tweets.

Surface and lexical features Since specificity captures
“the quality of belonging or relating uniquely to a particular
subject” (from Oxford Dictionary), we use named entities as
one feature group. Indicators of named entities from seven
categories (Location, Person, Organization, Money, Percent,
Date, and Time) are included. We use the Stanford Name
Entity Recognizer (Finkel, Grenager, and Manning 2005) to
extract these features.

Word categories are very useful in identifying discourse
relations related to specificity (Li and Nenkova 2016). For
example, specific sentences contain more proper nouns
and general sentences contain more adjectives. We extract
part-of-speech (POS) tags using the Stanford POS Tag-
ger (Toutanova and Manning 2000) with a pre-trained twit-
ter model (Derczynski et al. 2013). We then group POS tags
into eight categories: determiners, nouns, proper nouns, pro-
nouns, adjectives, prepositions, and punctuation. For each
category, we calculate the number of tags in that group pre-
sented in a tweet as a feature.

We also derive a concreteness score for each tweet as a
feature. Concreteness reflects the degree to which the con-
cept expressed by a word refers to a perceptible entity, hence
reflecting word specificity. We use the lexicon from Brys-
baert, Warriner, and Kuperman (2014) consisting of 37,058
English words rated from 1 (very abstract) to 5 (very con-
crete). The tweet concreteness score feature is calculated by
taking the average of the concrete score of each word (if
present in the lexicon).

Finally, we use several string surface features from Li and
Nenkova (2015): the length (number of tokens) in a tweet (in
general longer sentences carry more information); average
word length (to measure the complexity of a tweet on word
level); percentages of capital letters, numbers, and non-
alphanumeric symbols including punctuation marks (special
symbols and capital letters are more likely to belong to a
particular entity). In our experiments, we use tweet length
as one of the baselines.

Distributional word representations To capture the
overall content of a tweet, we average the embeddings
of words in the tweet; this method is simple yet shown
to be surprisingly effective in many text classification
tasks (Coates and Bollegala 2018; Iyyer et al. 2015). We use
the pre-trained GloVe word embedding of 27 billion tokens
trained on 2 billion tweets (Pennington, Socher, and Man-
ning 2014)4.

4Words not in the lexicon are assigned to a random vector with
the same scale.



We also use Brown clusters as features, which prior work
showed to be effective in both sentence specificity predic-
tion (Li and Nenkova 2015) and social media classifica-
tion tasks (Preoţiuc-Pietro et al. 2015a; Holgate et al. 2018).
Brown clusters partition words into compact word clusters
where words in adjacent positions are likely to appear in
the same context. We use pre-computed Brown clusters from
Turian, Ratinov, and Bengio (2010). Those clusters are com-
puted on the RCV1 corpus with roughly 37 million words of
news text. This feature group is represented as the count of
words in each cluster mentioned in a given tweet normalized
by the tweet length.

Social media content We capture sentence features that
are prominent in social media posts, including indicators
of URLs and mentions of other Twitter users (@users).
The presence of these features may indicate an existing
context of the post, which can impact specificity of utter-
ances (Djalali et al. 2011). For URLs, we include an indica-
tor variable of whether an URL is present. For tweets with
user mentions, we further categorize them into two classes:
whether a tweet is a reply to another user or not. To approx-
imate reply tweets, we simply check if an @user is men-
tioned at the beginning of a tweet.

Emotion features We also explore if emotional fea-
tures carry additional specificity information, as prior work
showed that subjectivity and adjectives may indicate a lack
of specificity (Li and Nenkova 2015; 2016). In social me-
dia posts, emotion is manifested in both words and emojis.
To this end, we include features as follows: (1) indicators
of positive and negative words, using Hu and Liu (2004)’s
sentiment lexicon of around 6,800 English words labeled as
either positive or negative; (2) the percentage of tokens that
are emojis.

4.3 Settings
We use the dataset described in Section 3 for training (5,767
examples), validation/development (500 examples) and test-
ing (1,000 examples). The dimension for word embeddings
and the number of Brown clusters are 100, tuned on valida-
tion set.

Three baselines are used to benchmark our model:

1. Average: the average annotated specificity from the train-
ing data, since most of the probability mass of specificity
distribution concentrates in the middle (c.f. Figure 1).

2. Length: using tweet length as the only feature in the SVR
model.

3. Speciteller: using the only available sentence specificity
predictor (Li and Nenkova 2015) trained on news corpora.
Speciteller returns its posterior probabilities, so we multi-
ply the results by 4 and add 1 to fit our scale of 1-5.

4.4 Results
For evaluation, we report the mean absolute error (MAE)
values and the Pearson correlations with annotated speci-
ficity on the test set. We also perform Wilcoxon signed-rank

Feature MAE Correlation

Average 0.5318 N/A
Speciteller 1.0614 0.446
Length 0.4726 0.465

Surface & lexical 0.3914 ** 0.671
Dist. word rep. 0.3885 ** 0.661
Social Media Content 0.5180 0.232
Emotion 0.5324 0.186
All 0.3583 ** 0.734

All - Surface & lexical 0.3856 ** 0.668
All - Dist. word rep. 0.3965 ** 0.683
All - Social Media Content 0.3578 0.735
All - Emotion 0.3617 * 0.727

Table 1: Baseline and supervised training results (MAE and
Pearson correlations). Showing significance testing results
for: individual feature vs. best baseline; all vs. best baseline;
all vs. excluding each feature group. (*) p < .05, (**) p <
.01 using Wilcoxon on absolute errors.

test on the absolute errors for each tweet for model compar-
ison and feature ablation. Results are shown in Table 1.

Overall, our model performs significantly better than all
baselines and achieves a MAE of 0.3578 (with the highest
possible value of 4.0). This is 32.72% lower than just pre-
dicting the average specificity, and 24.29% lower than using
sentence length alone. Correlation reaches 0.73, a strong re-
lation with the annotated specificity and at least 0.27 greater
than the best baseline approach.

Among the baselines, sentence length (SL) is the best pre-
dictor, indicating that long text is one of the most important
factors for it to be more detailed. The MAE of Speciteller is
much higher than the others, but the correlation is not con-
sistently lower. A possible explanation is that Speciteller, as
a classifier, aims to predict a binary value of either specific
or general. Figure 2 shows that the posterior distribution of
Speciteller is highly polarized, making the distribution par-
ticularly inadequate at estimating specificity whose values
are more concentrated around the mid-range (Figure 1). This
effect is less obviously noticed from correlations.

For the four groups of features, using any of them individ-
ually significantly outperforms all baselines (p < 0.01). Dis-
tributional word representations perform the best; however
surface and lexical features perform comparable to word
representations (< 0.01 difference in MAE).

The feature ablation study shows that all groups except
Social Media Content bring significant predictive power to
the model. Removing surface/lexical or word representation
features has a significant impact on the MAE: excluding
those two features increases the error by 7.6% and 10.66%
respectively. Emotion feature themselves are not powerful,
but removing them results in significantly worse predictions,
hence they are valuable to the model. Finally, Social Media
Content related features such as URLs and user mentions
does not bring additional predictive power to the model.
These findings show that specificity is mostly related to se-
mantic content and word use.



Tweet Score Speciteller Length Our Model

IM HYSTERICALLY CRYING IM SO PROUD OF THEM 1.86 4.91 2.33 2.15

<USER> Its November!!!!! Crunch Time Bro!!!! Lets Do It!!! #Cueupu 2.43 4.92 2.96 2.37

just reached level 15 on Paradise Island on my Android <URL> #Android #An-
droidgames

3.63 3.77 2.50 3.59

I’m at Macadams Bar & Grill (5833 SW Macadam Ave, Portland) <URL> 4.25 4.96 2.86 3.87

Table 2: Examples from testing results with their predictions.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
score

0

20

40

60

80

100

co
un

t

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
score

0

50

100

150

200

250

co
un

t

Figure 2: Distribution of specificity on 1,000 testing data.
Left: Speciteller (rescaled); right: Our model.

4.5 Qualitative Analysis
We first plot the distribution of predicted specificity, to see
if it conforms with the distribution of annotated specificity
shown in Figure 1. Figure 2 shows the distribution of pre-
dictions from Speciteller (left) and our model (right). No-
tice that the result from Speciteller is highly polarized. More
than 51% of tweets are rated in the range 1.00 to 1.50 and
4.50 to 5.00 when the mean is calculated as 2.47. In our
model, the average is computed to be 2.64 and more than
66% and 96% of scores fall within one or two standard de-
viation from the average. The shape is much more similar to
the distribution from human judgments.

Next we show some examples from the testing set to il-
lustrate the difference in predictions, shown in Table 2. The
first two examples illustrate the domain discrepancy that led
Speciteller to mispredict specificity. For the first tweet, Spe-
citeller gives an extremely high score 4.91, indicating that
this tweet is very specific. However, this tweet has an av-
erage rating of only 1.86, which is rather general. This is
possibly because all letters in the tweet are upper cases. The
number of capitalized letters is used as a feature in Spe-
citeller. In news (where Speciteller was trained), text is well-
formated, so capital letters are good approximations for spe-
cific named entities. In social media posts however, capital
letters can often be used for expression of emotion, as in this
tweet, or emphasis. Speciteller also made an extremely spe-
cific (4.92) prediction for the second tweet. This is because
the tweet consists of 13 symbols: the number of symbols
is again a feature in Speciteller, motivated by the style of
news sentences. In social media text, symbols—like capital
letters—have different pragmatic functions.

Examples 3 and 4 illustrate how length alone can be in-

adequate to estimate specificity. The length baseline gives
the two tweets scores of 2.50 and 2.86 respectively, which
results in absolute errors of 1.13 and 1.39. In general, sen-
tence length is positively related to text specificity. The lim-
ited length of these tweets (13 and 14 tokens in total, com-
paring with average tweet length of 15.25 in annotated data)
restricted the baseline model from assigning higher scores.
Combining length with other features led to a much more
accurate prediction.

5 Analysis
We now present the first analysis uncovering social and tem-
poral factors that influence text specificity in social media.
The first two studies in this section are done using annotated
data, as there are enough data for a large-scale analysis. The
third study looks into the relation between mental health (de-
pression) and specificity, and is a use case for our regression
model as we have a limited number of tweets associated with
user mental health information.

5.1 Demographics and Specificity
Demographic traits have been shown to be reflected through
writing style in social media (Rao et al. 2010; Burger et al.
2011; Schwartz et al. 2013; Preoţiuc-Pietro et al. 2015b).
We first consider the influence of user demographic traits on
tweet specificity.

We calculate the partial Pearson correlation between the
average specificity score of annotated tweets from each
user and their demographic traits. As in Preoţiuc-Pietro et
al. (2017), we treat gender and age as controls to prevent
potential results being driven by these two basic human
traits. Since the length of a tweet has a large influence over
specificity, we perform a separate analysis that has sentence
length as an additional control. When studying the influence
of age and gender, we use the other trait (and length in the
length-controlled analysis) as a control.

Table 3 shows the original and length controlled correla-
tion analyses. Significance results are presented with Bon-
ferroni Correction. Without controlling for length, age and
education level are significant factors with positive correla-
tion, showing that older and more educated people tend to
post tweets with more details. The result that age is pos-
itively correlated to specificity corresponds to Pennebaker
and Stone (2003)’s finding that certain linguistic categories
(e.g., word length, sentence length) are linearly related to
age. Education is correlated with reading levels, which in
turn is partially reflected by an individual’s vocabulary size



w/o length control length controlled

Corr. p-value Corr. p-value

Gender -0.002 0.91 -0.021 0.26
Age 0.219 2.5e-33 0.181 5.2e-23
Faith 0.004 0.82 0.008 0.64
Politics 0.011 0.55 -0.002 0.88
Income 0.005 0.77 0.002 0.89
Education 0.064 4.8e-4 0.036 0.045

Table 3: Partial correlation controlled by age and gender be-
tween each feature and specificity scores (with and without
controlling by sentence length). Bold font denotes signifi-
cance (α = 0.01/6) with Bonferroni correction.
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Figure 3: Tweet count over hour on annotated data.

and difficulty of words used. After controlling for length, the
correlations between specificity and age/education decrease
slightly although the statistical significance for age remains.
This indicates that older people not only post longer tweets,
but also presented more specific content.

We do not find significant correlations between text speci-
ficity and other demographic traits, including gender, faith,
political ideology, and income level.

5.2 Time and Specificity
Temporal variation of text style has been studied before to
bring new insights into psychological behavior (Flekova,
Ungar, and Preoţiuc-Pietro 2016). We now present insights
from a temporal analysis of text specificity, exploring influ-
ences of the hour of day when a tweet is posted.

We first extract the exact posted time from the tweet meta-
data (obtained via Twitter API). Since the post time of tweets
are stored in UTC, we convert it back to user local time by
checking self-reported time zone from the meta-data. Tweets
with unknown time zone are excluded. 4,716 tweets in our
specificity dataset are recovered to their local post time.
Figure 3 is a histogram of number of tweets posted across
hour-of-the-day. The number of tweets posted at each hour
steadily increases during the day, with a slight decrease ap-
pearing around lunch break. The number peaks after dinner,
then decreases during the night hours.

To illustrate the influence of time over the specificity
of posts, we plot the average specificity with posting hour
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Figure 4: Distribution of specificity scores over hours on an-
notated data.

Time Interval Entire week Weekdays Weekends

before dawn 2.581 2.595 2.548
early morning 2.733 2.722 2.771
morning 2.657 2.646 2.691
afternoon 2.637 2.651 2.598
early evening 2.640 2.638 2.644
late evening 2.552 2.526 2.624

Table 4: Average specificity score over time intervals on an-
notated data.

(scaled from 0 to 23). Figure 4 shows three distributions of
average specificity: (1) of each hour (solid black line); (2)
for weekdays only (dotted blue line); (3) for weekends (dash
red line).

Clearly, the relation between specificity and time is not
linear. In particular, the specificity of tweets posted from
night till dawn is lower than those posted during day-
time. For those that are posted during the night, notice
that the drop in the frequency of tweets between midnight
and early morning does not mean that people are express-
ing less details—in fact, the specificity of early morning
posts are much higher than those from evenings (when
people tweet most frequently). The average tweet speci-
ficity increases dramatically at around 7-9 am. This increase
matches with Shellenbarger (2012)’s summary over tweet
posting trend that people choose to read and write longer
and positive emotional tweets to refresh at the beginning of
each day.

We also group hours into several intervals to see the po-
tential influence of typical activities, e.g., work and leisure.
We bin the 24 hours each day into 6 intervals: before dawn (0
am—6 am), early morning (6 am—9am), morning (9 am—
12 pm), afternoon (12 pm—5 pm), early evening (5 pm—8
pm) and late evening (8 pm—0 am). Table 4 shows the aver-
age specificity of posts at each time interval. Again we ob-
serve that tweets are substantially more specific during the
morning periods. In particular, there is a significant increase
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Figure 5: Specificity scores over hours in people with defer-
ent depression conditions.

in specificity (p = 0.001 using the Mann–Whitney U test)
from before dawn to early morning (mostly before work),
conforming with the per-hour analysis earlier.

When comparing weekdays vs. weekends (the type of ac-
tivities people engage in are typically different), the levels of
details engaged in Twitter posts are strikingly similar. This
is illustrated in Table 4. That said, people tend to write less
specific tweets during weekend afternoons and before dawn,
and more specific ones after dinner. During weekdays, there
is a significant drop (p = 0.002) in text specificity between
early evening and late evening; this can presumably due to
change of activities (work vs. leisure) that happen more of-
ten during weekdays than weekends.

5.3 Depression and Temporal Changes in
Specificity

Temporal activity patterns are also related to mental health,
with insomnia or hypersomnia being one of the diagnos-
tic criteria for depression (Association 2013). Having found
that the production of text—engaging a lot of details vs
not—varies across time, we also aim to uncover interactions
between time, specificity and depression.

Specifically, a subset of 538 users in our dataset took the
Beck Depression Inventory-II (BDI-II) questionnaire (Beck,
Steer, and Brown 1996) to assess depression tendencies.
BDI-II is one of the most widely used inventory for mea-
suring the level of depression for people older than 13. It
contains 21 questions and each answer is scored for 0 to 3.
The raw score is scaled from 0 to 63 and is interpreted as 4
different classes from minimal to severe depression.

Since we do not have enough tweets annotated for these
users (only 1,065), we use predicted specificity for this anal-
ysis. For each user, we sample up to 100 tweets5 and label
them with our best model.

First, we inspect whether there is any general relationship
between depression level and the level of details engaged
by an individual. We calculate the partial Pearson correla-

5The median # tweets posted by these users is 621.5.

tion between depression level and specificity controlled by
age and gender. We observe a small, negative correlation
of −0.01 with both categorized depression levels (c.f. Sec-
tion 3.2) and raw BDI-II scores. The correlations are sta-
tistically significant using two-tailed t-test. This is a weak
indication that the more depressed a user is, the less specific
their tweets.

The trend is much clearer between people without depres-
sion and those who are moderately or severely depressed
when we also observe temporal changes. A total of 349 users
who filled out the depression inventory with correct time
zone information are sifted out. We have 95 users in the
moderately/severely depressed group and 197 users in the
non-depressed group. Again, we sample up to 100 tweets
from each users and label tweet specificity using our model.

Figure 5 depicts the average specificity versus hours in
the day for the two groups; there is significant difference
on the specificity of posts (Wilcoxon signed-rank test, p =
3.43e − 05), showing that people with moderate or severe
depression tend to write less specific posts. In addition, the
scores among depressed people have a larger variance (0.057
vs. 0.052), with a substantial spike in the morning (around 7
am) and a larger drop in the afternoon (around 2 pm).

6 Conclusion
This paper presented an analysis and a prediction model for
language specificity of social media posts. We collected a
dataset of 7,267 tweets labeled for specificity on a 5 point
scale. We built a regression model for tweet specificity pre-
diction, achieving a mean absolute error of 0.3578 (max pos-
sible value is 4), significantly better than baselines. Social
and temporal analyses over the dataset showed that speci-
ficity interacts with age and education, and displays distinct
patterns throughout the day. Applying our model on men-
tal health analysis revealed that people with moderate/severe
depression would write less specific social media posts.
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