
Planning, Behaviours, Decomposition, and Monitoring
Using Graph Grammars and Fuzzy Logic

Jiirg-Michael Hasemann
Technical Research Centre of Finland

Machine Automation Laboratory
Mechatronic Systems Group

P.O.Box 13023, 90571 Oulu, Finland
Jorg-Michael.Hasemann @vtt.fi

Abstract
This paper presents new concepts for coordinating multiple
behaviours in task level comml tasks. Behaviours are intro-
duced as user-defined plans for different tasks with context
dependent priorities. A fuzzy logic based Behaviour Con-
trol System (BCS) engages and disengages behaviours
conditionally at suitable time points, or unconditionally in
very urgent cases.
Plans, i.e., behaviours, are user defined context free edge
replacement grammars, which introduce parallelisms,
loops, and choice in a natural straight forward way. A
fuzzy logic based Applicability Control System (ACS)
guides the planning process by choosing the "best" appli-
cable production rule. Plan execution and plan validity
monitoring are carried out by projecting plan effects using
Situation Grids.
Possible applications of this architecture arc intelligent
systems with high demands for autonomy, flexibility, and
problem solving capabilities such as flexible manufacturing
cells and mobile robots for forwarding or inspection tasks.

Introduction

Planning systems for real world applications demand
context dependent reactivity and behaviour switching,
plan execution and plan validation monitoring as well as
error handling and plan revision under real time con-
straints. Hence, they may be better and more precisely de-
noted as control systems.

For this reason, we believe that a Hierarchical Transi-
tion Network (HTN) Planner, as proposed, provides
good framework for real-time operation compared to time-
expensive precondition achievement planners despite their
proved correctness and completeness under heavy restric-
tions.

Furthermore, "easy to grasp" representations and engi-
neering tools supporting the design, analysis, and imple-
mentation of reactive planning techniques are needed to
facilitate their industrial applicability.

Within this paper we propose new concepts for the de-
sign of control systems for intelligent systems ranging
from telooperated manipulators to autonomous mobile ro-
bots, in essence systems for which the knowledge of ope-
ration is known very well beforehand. The key concepts
are-

Plans as Graph Grammars. Plans are modeled by con-
text free edge replacement grammars similar to top down
hierarchical transition networks. Hence, they feature pa-
rallel plan component execution and hierarchical plan de-
composition through plan component abstraction. Choice
and loops do not exist explicitly but may be introduced
using (end-)recursive production rules.

Model Based Behaviours. Behaviours in this approach
correspond to the conceptually different high level tasks of
an intelligent system and are modeled by plans. See Table
1.

Table 1. Examples for Behaviours with Context Dependent Criticality.
Application
Assembly Robot

PlaneteryEx.
ploration
Shop Floor Ro-
bot

Behaviours employed by the Application
different assembly tasks, sensor/tool calibration, ac-
tive sensing sequencesr ...
soil sample collection/delivery, data transmission, data
transmissionr ...
deliver, transport, ’go out of my’-tasks, recharge bat-
tedes, ...

Coordination of Behaviours. Behaviours employ con-
text dependent criticalifies, like the need to recharge de-
pends on the current charge level. Hence, depending on
the actual situation, behaviour switching may become
necessary and must take place at "most suitable" points in
time minimizing negative effects of behaviour switching,
like performance loss, (mutual) destruction of achieved
subgoal etc.

Monitoring Plan Execution and Construction. Obvi-
ously, plan execution monitoring, covering all three stages
of execution, initial, transient, and goal stage, as well as
plan validation monitoring, checking whether the current
plan is still valid under the current situation are vitally im-
portant.

Fuzzy Logic for Modeling and Reasoning. Fuzzy Logic
has been chosen to reason about the criticality and urgency
of behaviours and the applicability of production rules
during planning. The reason to use it within this work was
becuase of the possibility to comprehensively model engi-
neering knowledge ranging from very unsharp, linguistic,

HASEMANN 275

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

"fuzzy" knowledge up to precise, two-valued, "black and
white" knowledge.

Due to space limitations, the concepts of our system can
only be sketched within this paper, a more complete
thourough description can be found in (Hasemann 1994).

Relation to other Research Efforts
Different aspects of this work have been earlier addressed
by other researchers. Examples of hierarchically organized
intelligent control architectures (HI’N-planner) based
operator abstraction are NASREM (Albus, McCain & Lu-
mia 1989) and PEM (Heikkil~ & RiSning 1992). Situation
abstraction for traditional precondition achievement plan-
ners has been employed in ABSTRIPS (Sacerdoti 1974)
and ABTWEAK (Yang & Tenenberg 1990).

Behaviours are a metaphor for conceptual activities.
However, very often behaviours are associated with the
subsumption architecture (Brooks 1986) and consequently
became a metaphor for almost direct sensor-actuator coup-
ling denying any representation and conceptualisation.
Brooks-like behaviours are low level, biologically oriented
mechanisms and are very much the opposite of what is
understood as behaviours within this paper. We under-
stand behaviours as high level model based activities rep-
resented as plans.

Coordination of Behaviours/Plans, i.e. interrupting and
abandoning plans has been earlier addressed by Davis
(Davis 1992). However, it remains open how this ap-
proach can be extended towards hierarchical abstraction
and multiple behaviours.

Monitoring Plan Execution and Validity has surprising-
ly not been in the focus of research despite its importance
for systems operating in real world environments. Plan
execution monitoring is usually restricted to pre- and post-
condition checking. Transient states are surveyed by a
system proposed by (Noreils & Chatila 89) which has
been further extended (Chatila, Alami, Degallaix
Laruelle 1992) by hardwiring the different outcomes of
plan component to succeeding plan components. Plan exe-
cution monitoring covering all stages of execution (initial,
transient, and goal stages) and plan validity monitoring
using Situation Grids and World State Aspect Objects has
been proposed in (Hasemann & Heikkilii 93).

Fuzzy Logic (Zadeh 1965) for decision support (e.g.
goita 1985) and process control (e.g. Pedrycz 1989) based
on unsharp data and/or rules has been successfully applied
in many engineering domains.

Related Control Architectures. Among the large of pro-
posed systems (e.g. Brooks 1986, Kaelbling 1986, Am-
bros-Ingerson & Steel 1988, Firby 1989), the PRS (Geor-
geff & Lansky 1987) and the Task Control Architecture

(Simmons 1990) are the ones most closely related to the
system presented here.

The Task Control Architecture (TCA) is a distributed
planning and execution system with centralized control
applied to a walking robot. The TCA uses a hierarchical
plan representation (TCA Task Tree) with explicit infor-
mation goals (queries), explicit monitors to check assump-
tions underlying the plan, and synchronisation constraints
to sequentializ¢ plan component execution and delay
planning if necessary. The main achievement of this archi-
tecture is the development of a framework for parallel
execution and planning.

The Procedural Reasoning System (PRS) on the other
hand emphasizes the interruptability of "plans" called
Knowledge Areas (KA) are defined as sequences of sub-
goals to be achieved and roughly correspond to behav-
louts in our approach. KAs are triggered under certain
conditions, which in fact corresponds to the invocation of
behaviours by the BCS in our approach. Triggered KAs
are stacked on the process stack from which one is chosen
and pursued. Pursued KAs may be interrupted and re-
placed with another KA if needed. The PRS, however,
lacks monitoring abilities and true coordination of differ-
ent behaviours due to its unconditional KA switching
mechanism.

System Overview
In the following we briefly describe the concepts devel-
oped and give a brief overview to the proposed control
system architecture.

The proposed system consists of the following compo-
nents and structures: A set of behaviours which are either
active or dormant, a Behaviour Control System (BCS)
which continuously determines the criticality of each be-
haviour and determines possible time points for behaviour
switching, a graph grammar representation of each behav-
iour, an Applicability Control System (ACS) that deter-
mines the "best" applicable instantiation for a plan com-
ponent, and a Situation Grid (SG) used for plan execution
and plan validity monitoring.

The design of our control architecture was guided by
the believed need to recognise, separate, model, and coor-
dinate conceptually different mutually interrupting tasks
for intelligent systems situated in the real world. Consider-
ing the tasks of an assembly robot as given in Table I il-
lustrates the problem setting. These tasks are very well
defined, in the sense that hierarchical plans can be easily
formalized for each individual task. Furthermore, tasks
may need to be interrupted by other more urgent/critical
tasks. E.g. if it becomes necessary to recalibrate the actua-
tor this job might be accomplished at the next non-critical
time point. Afterwards the previously running task contin-
ues execution.

276 POSTERS

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Obviously, this kind of control system behaviour can be
also achieved using traditional control architectures by
inserting the planning sequence for recalibration into the
plan for assembly together with frequent checking of the
trigger conditions. Doing this for two interrupting tasks
may work, doing this for a bunch of - possible interrupting
- tasks is surely not tractable for a human control system
designer; hence our approach.

We claim from the engineering point of view that this -
among the lack of tools - is one of the major obstacles to-
wards a broad introduction of intelligent control architec-
tures into industrial applications. We also believe that a
behaviour switching mechanism as proposed similar to
interrupting mechanisms in operating systems will increa-
se the robustness and the chance of error recovery.

System Components in Details
The control system is described by a set of behaviour each
of which is represented by a plan. To each behaviour is
attached a measure of criticality which is continuously up-
dated and taken to decide at what points of time behav-
iours are interrupted. This job is accomplished by the Be-
haviour Control System (BCS).

Plalkq

Plans are the central data structure within control systems
for intelligent robots as ~ey define the sequence and alter-
natives, goals are tried to get achieved. Within this paper
plans are snapshots of the current planning and execution
process continuously changing by the dynamics of plan-
ning and execution.

Due to the runtime performance of precondition
achievement planners and the low expressiveness of the
produced plans, we decided to use the hierarchical top
down instantiation scheme of graph grammars as the un-
derlying planning mechanism with an additional control
system (ACS) to resolve conflicts among different appli-
cable instantiations.

Obviously, the resulting opportunistic planner is neither
complete nor sound for the general case, neither is any
other mechanism situated in the real world. The advantage
of our planner lies in the expressiveness of the plan
(including choice, loop, and hierarchical abstraction), it’s
visualization as graphs, the ease of modeling complex be-
haviours, and last not least it’s run time performance, i.e.
its applicability for real time tasks.

Within our approach, plans are represented as augmen-
ted context-free edge replacement grammars (Habel
Kreowski 1987) over plan components. Abstract plan
components or plan frames (pf), to be further decomposed,
correspond to nonterminal symbols and atomic plan com-
ponents (ape). not to be further decomposed, correspond
to terminal symbols. The graph grammar is defined as a
set of production rules with one nonterminal symbol as the

left hand side (lhs) and a double pointed graph (DPG)
the right hand side (rhs) of the production rule. A DPG
defined as a directed graph defining the sequence of exe-
cution with a specified entry and exit node to allow em-
bedding of the graph in the parent graph. Within this rep-
resentation edges correspond to plan components and ver-
tices correspond to (partial) states.

The planning process is then given by successively ap-
plying selected production rules to replace nonterminal
symbols. The dynamics of planning and execution are
given by the availability of planning data and the sequence
as described by plan. Completion of execution causes the
deletion of the plan component from the current graph.
Errors are yet treated by falling back to the next higher
level of abstraction and deletion of lower level plan com-
ponents.

Plan Components
Plan components are the entities of a plan. Three different
kinds of plan components may exist:

Plan frames (pf) are conceptual activities corresponding
to nonterminal symbols in the graph grammar represen-
tation. They are further decomposed during the planning
process.

Atomic actions (aa) are the lowest level plan components,
e.g. servo commands, corresponding to terminal symbols
in the graph grammar representation.

Protection intervals (pi): are virtual, not further decom-
posed, entities, stating and checking that during its lifetime
a specified proposition holds valid. Protection intervals are
partly set up automatically by analysing the plan compo-
nent relations (e.g. single-contributor-single-consumer
causal structures) or manually by the control system engi-
neer (e.g. other causal structures).

Plan Component Representation
Plan components are represented as parametrised STRIPS-
like operators including initial, transient, and goal state
descriptions. Initial state, transient states, and goal state
description (add- and delete list) are lists of conjunctively
connected predicates. The transient states description de-
scribes the behaviour of the plan component qualitatively
as well as the constraints put on it, such as security limita-
tions, e.g. maximum speed, minimum distance etc. and is
inherited during instantiation.

Furthermore, a plan component state is added to the
plan component description providing information about
the current state (planned, scheduled, started) of the
plan component. Plan component state transitions in turn
give rise to different activities like checking the initial,
transient, and goal state descriptions.

HASEMANN 277

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

Situation Grid

The Situation Grid (SG) (Hasemann & Heikkil~i 93)
data structure designed to keep track of the ongoing plan-
ning and execution process as well as on relations between
each plan component and all others. For monitoring pur-
poses the SG also hoJds the Initial State, Transient States,
and Goal State Descriptions of each plan component as
well as the plan component’s life cycle state. The relations
represented in the SG include:

"Ancestor of (AO)" and "Descendent of (DO)" to
scribe hierarchical relationships; "Comes before (CB)" and
"Comes after (CA)" tbr sequential relationships, "Optional
Choice (OC)" explicit model decomposition choices, i.e.
to detect possible imminent conflicts with particular in-
stantiations. Of particular importance is the "No Entry
(NE)" relationship denoting that the concerned plan com-
ponents may be executed concurrently.

The situation grid is updated by messages about newly
planned plan component and in turn signals possible or
evident conflicts/errors to other system components, like
planner/executor. The relationships among plan compo-
nents within the SG are determined by a small rule base.

The SG grid then continuously checks the currently
held assumptions for successful plan execution, similar to
verifying the Modal Truth Criterion (Chapman 1985).
Within our design, we created one SG for each behaviour
and add holding protection intervals from other behav-
iours as top level activities parallel to all others.

Figure 1. Decomposition of a Plan Frame NT

Applicability Control System

The Applicability Control System (ACS) determines the
applicability of each possible instantiation of a particular
plan frame and returns (if any) the best applicable instan-
tiation with respect to the current situation. Rules with an
applicability below a certain threshold are not considered
for application. Fuzzy Logic has been chosen to derive the
applicability of a rule and to model the aspects of interest
(AOI), which are model as fuzzy variables and determine

278 POSTERS

the different facts constituting the applicability of a rule.
Table 2 gives some examples.

Behaviour Control System

Behaviours may be viewed as tasks in multitasking operat-
ing systems. Each of the tasks pursues a different goal.
Analogously, behaviours correspond to jobs triggered by
certain conditions. Consequently, a behaviour switching
mechanism is needed to enable and disable bchaviours at
suitable points in time.

Two methods for behaviour switching have been incor-
porated: condititonal and unconditional behaviour
switching. Whereas conditional behaviour switching in-
cludes determining the best possible time for bchaviour
switching with respect to possibly negative effects on the
behaviour to be put asleep, unconditional behaviour
switching is more like a reflex producing immediate initia-
tion of the selected behaviour.

BCS
criticality

.f’
~ -

0.324
~

/ Behaviour 1 . .
\. . .

0.6 i! ;. i! i:.:! i ?..!%]

if." ." .:, i: ;.."i

constantly determines theL.----p____-- Aspectsof
criticality of each behaviour IntereSt

r
’ possible

switching points: ;
--i ,ot--~;~it.’,bl-~’] I
... not suitable]
10 selected [I
I I suitable]1
12 suitable ~’

Figure 2. Conditional Behaviour Switching

Conditional behaviour switching is the task of engaging
the most critical behaviour with respect to other behav-
iours. For conditionally interrupting a behaviour, initially
the time points of possible interruption are determined, fi)r
each of which the set of protection intervals is determined.
Among these time points the earliest possible (with no in-
terfering protection intervals) time point is taken. The cur-
rent protection intervals at the switching point are then
added to the SG of the behaviour to be engaged. The dis-
engaged behaviour enters a sleeping mode and waits for
the time to wake up. The current limitations of conditional
behaviour are still rather strong and hopefully will be re-
laxed in future: no mutually interrupting behaviours, no
plan merging, and no interfering protection interval as-

Table 2. Aspects of Interest for Different Rules
Plan Frame Aspects of Interest
Grasp Object object type/size, location, accuracy needed
Move Location visibility, charge level
Deliver Object route congestion, receiver location

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

sumption underlying the conditional behaviour switching
mechanism (i.e. no handling of startup and shutdown
handling). Admittedly, successive interuption of behav-
iours may result in an accumulation of global protection
intervals and thus cause exclusion of engagement of criti-
cal behaviours. However, if the criticality reaches a very
high level mutual exclusion is resolved by unconditional
behaviour switching at the expense of possible negative
effects on other behaviours. This problem is especially
apparent if the control system exhibits a high number of
behaviours and high frequency switching.

Unconditional behaviour switching occurs when the
BCS encounters a criticality above a certain threshold. In
this case the currently active behaviour is immediately
stopped and enters the sleeping mode. Later when teen-
gaged, the monitoring system automatically detects devia-
tions from the old state and initiates a fall back to a higher
level of abstraction in case of error.

Fuzzy Reasoning

Both the ACS and the BCS rely on Fuzzy Logic to model
"fuzzy" knowledge and to reason about criticality and
applicability. In both cases, aspects of interests (AOI),
which themselves may be the result of arbitrarily complex
reasoning, are mapped to criticality or applicability.

Each rule has the form: "if AOI X is A then the appli-
cability (criticality) for Y is B", where A and B are fuzzy
labels. The fuzzy rules can be represented as tables with
respect to each production rule applicable. For a produc-
tion rule "drive fast" the table may look like this:

Table 3. Fuzzy Rules for a Rule/Behavlour "drive fast’*
dflve fast NB NM NS ZO PS PM PB
visibility NB NB NB NS PS PS PB
road condition PB PS PS ZO NS NM NB
load PB PB PS ZO NS NS NB
* ’NB’, ...’ZO’, ’PB’ = (negative big zero positive big)

The selection of the AOIs (visibility, road condition,
load) as well as all entries in the table are done by the
system designer. Each entry in the table denotes the appli-
cability (criticality) of a rule/behaviour wrt. to an AOI
value, e.g. "if visibility is NS (negative small) then appli-
cability (criticality) of the drive-fast rule/behaviour is
(negative big)".

The reasoning process is described as follows: A sub-
script i (i=! n) distinguishes the n AOIs. The total ap-
plicability tt A is calculated as:

It,=~ j’~it~ty) (O-<y<l), with it,..==m~r~,~,.>l
r-~., os~l L / J

and I1 Ai(Y) denotes membership value at point y for AOI
i. Using the center of gravity method gives a numerical
value, interpreted as the applicability (criticality) of the
respective rulefeehaviour.

Ploughing Field Example

An example, although, due to space limitations, a very
simple one, may illustrate the way the control system op-
erates. The scenario is a field that needs to be ploughed.
For this a tractor exists which has an enormous fuel con-
sumption (for the sake of this example) so that it needs
be refueled every now then during ploughing the field.

The control system is represented with two behaviours:
"plough field" and "refuel" represented by two production
rules, one for "plough field" and one "refuel" in Figure 3.
All plan components are physical plan components except
"plough field" and "refuel" which is defined recursively.

b¯utn

~’" ’ / field
"’Protoct;on Inte~olI .o¯ J

¯ m ¯ndbg

Rgure 3. The two Behaviours of the Ploughing Example

The criticality of the two behaviouLrs is determined by
the BCS based on the fuzzy rule base attached to each be-
haviour and is shown in Table 4 and 5. Moreover, if the
criticality of a behaviour is extermely low (NB) it
switched off.

Table 4. BCS Fuzzy Rules for Behavlour ’plough field’
Behaviour: " NB NM NS ZO PS PM PB
plough field
AOI: field ready PS PS PS PS PS PS NB*

*i.e. behaviour is dormant

Table 5. BCS Fuzzy Rules for Behaviour ’refuel’
Behaviour: NB NM NS ZO PS PM PB
refuel
AOI: fuel left PB** PB* PM* PM* NB NB NB

* criticality exceeds ’plough field’ and results in conditionally behaviour
switching.
** criticality is extremely high and and causes unconditional behaviour
switching

The plan component "plough field" is defined recur-
sively to model a loop, i.e. to plough the field until it is
ready. The applicability of the rule "plough field" is de-
termined by the ACS using the rule set given in Table 6.
As can be seen termination of ploughing is guaranteed,
since "plough field" is no longer applicable when the field
is completely ploughed and is behaviour terminates.

Table 6. ACS Fuzzy Rules for Rule ’plough field’
Rule: NB NM NS ZO PS PM PB
plough field

AOI: field ready PS PS PS PS PS NB* NB*
*i.e. rule is not applicable

Table 4 and 5 show the fuzzy rules for the two behav-
iours "plough field" and "refuel" as used by the BCS. As
can be seen the criticality of refuel exceeds the criticality

HASEMANN 279

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

of "plough field" in case fuel left goes below PS. In case
the fuel left value is NM or NB the criticality reaches PB,

an indication that an unconditional behaviour switching
becomes necessary. In case fuel left is NS or ZO, i.e. still

some significant amount of fuel is left, the criticality ex-
ceeds the criticality of "plough field" but is still on a non-
critical level. Thus conditional behaviour switching is
tried. Let’s further assume "drive to gallon" and "drive to
field" are incompatible with the protection interval "On
field". Hence during the time the protection interval is ac-
tive no behaviour switching can occur. Figure 4 depicts
the situation that "forward" is currently execute when
conditional behaviour switching becomes necessary. Since
possible switching point ’I’ is within the protection inter-
val "On Field" the earliest point of conditional behaviour
switching is ’2’.

begin 1 2 end

’,,’ / ~Z~Id
Protection I~tervol I

"On tie d"

Figure 4i Current Execution Graph. Plan component ’forward’ is cur-
rently under execution.

The criticalities for both behaviours are continuously
determined and in case the criticality of "get-fuel" exceeds
the criticality of "plough-field" at point "2" behaviour
switching will take place at point "2". In case the critical-
ity of "get-fuel" reaches PB during "forward" or "back",
unconditional behaviour switching takes place, even if due
to "get-fuer’ the field needs to be partially re-ploughed
again.

Conclusions
Within this paper we presented a new control system for
intelligent systems. The system dynamics have been for-
malised using graph grammars and fuzzy logic to allow
flexible and reactive decomposition selection and behav-
iour switching. The use of fuzzy logic promises easy intro-
duction of linguistic knowledge both for deciding what
decomposition to take, and when to switch behaviours and
has, to our knowledge, not yet been tried before. Similarly
graph grammars provide a solid framework for mani-
pulating graph structures like plans. The system integrates
easily in the existing monitoring system based on Situation
Grids for plan execution and plan validation monitoring.
As of now, behaviour switching is exclusive, i.e. only one
behaviour is active at a time. This is an unnatural restric-
tion for non-conflicting behaviours and will be abandoned
in future. The introduction of shutdown and bootup

activities to store and restore situations may be helpful and
is matter of ongoing research. Moreover, further efforts
need to be spent to determine the ’best’ switching point
among all possible. The system described is currently
under implementation based on the existing monitoring

system. A detailed description can be found in (Hasemann
94).

Acknowledgements
This research was financed by the Technical Research
Centre of Finland. The helpful comments of the two
anonymous reviewers are also gratefully acknowledged.

References
Albus, J.S.; McCain, H.G.; Lumia, R. 1989. NASA/NBS Standard Ref-
erence Model for Telerobot Control System Architecture (NASREM),
NIST Technical Note 1235, 1989 Edition. National Inslitute of Stan-
dards and Technology, U.S. Dept. of Commerce.
Ambros-ingerson, J.A.; Steel, S. 1988. Integrating Planning and Moni-
toring. Proc. of the Seventh National Conference on Artificial In-
telligence AAAI-88, 83-88. St. Paul, Minnesota.
Brooks, R.A. 1989. A Robot that Walks; Emergent Behaviour from a
Carefully Evolved Network. In Proe. of the IEEE International
Conference on Robotics and Automation, 693-696. Sconsdale, Arizona.
Chapman, D. 1987. Planning for Conjunctive Goals. Artificial Intelli-
gence 32: 333-378.
Chatila. R.; Aiami, R.; Degallaix. B.; Laruelle, H. 1992. Integrated
Planning and Execution of Autonomous Robot Actions, In Proe. of the
IEEE International Conference on Robotics and Automation. Nice,
France.
Davis, E. 1992. Semantics for tasks that can be interrupted or aban-
doned. In Proceedings of the Ist Int’l Conference on AI Planning Sys-
lem.s, 37-43. College Park, Maryland.
Firby, RJ. 1989. Adaptive Execution in Dynamic Domains. Ph.D. diss..
Yale University.
Georgeff, M.P.; Lansky, A.L. 1987. Reactive Reasoning and Planning,
In Proceedings of the AAAI87, 677-682.
Habel. A.; Kreowski, H.-J. 1987. On context-free Graph Languages
generated by Edge Replacement. Theoretical Computer Science. Vol.
51. 81-115.
Hasemann..I.-M. 1994. Planning and Monitoring in Dynamic Environ-
ments. (Lie. Thesis) Univ. of Oulu, Finland. Forthcoming.
Ha,¢mnnn J.-M.; Heikkil~i T. 1993. A new Approach towards Monitor-
ing in Intelligent Robots, In Proc. of the Stand. Conf. on Artificial
Intelligence SCAI’93, 60-76. Amsterdam, Netherlands: lOS Press.
Heikkilfi T.; R6ning J. 1992. PEM Modelling: A Framework for Design-
ing Intelligent Robot Control. Journal of Robotics and Mechatronies
Vol.4 No.5, 432 -444.
Kaelbling L.P. 1986. An Arehiteclure for Intelligent Reactive Systems.
Technical Note 400, SRI International, Menlo Park. California.
Negoita C.V. 1985. b:xpert System and Fuz,.~.’ Systems. Menlo Park,
Cal.: Benjamin/Cumming’s Publishing Company, Inc.
Noreils, F.R.; Prajoux R. 1991. From Planning to Execution Monitoring
Control for Indoor Mobile Robot, In Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, 1510-1517. Sacra-
mento, California.
Pedryez, W. 1989. Fuzzy Cantrol and Fuz,.’?" Systems. New York. NY:
John Wiley & Sons Inc.
Sacerdoti, E.D. 1974. Planning in a hierarchy of abstraction spaces. Arti-
ficial Intelligence 5(2): I 15-135.
Simmons, R. 1990. Concurrent Planning and Execution for a Walking
Robot. Technical Report, CMU-RI-TR-90-I 6. Robotics Institute, CMU.
Yang, Q.; Tenenberg, J.D. 1990. ABTWEAK: Abstracting a nonlinear,
least commitment planner. In Proceedings of the AAAI-90, 204-209.
Zadeh, L.A. 1965. Fuzzy Sets. Information and Control 8, 338-353.

280 POSTERS

From: AIPS 1994 Proceedings. Copyright © 1994, AAAI (www.aaai.org). All rights reserved.

