
Solving Robot Navigation Problems with Initial Pose Uncertainty
Using Real-Time Heuristic Search

Sven Koenig

College of Computing

Georgia Institute of Technology

skoenig@cc.gatech.edu

Reid G. Simmons
Computer Science Department

Carnegie Mellon University

reids@cs.cmu.edu

Abstract

We study goal-directed navigation tasks in mazes, where the
robots know the maze but do not know their initial pose (po-
sition and orientation). These search tasks can be modeled
as planning tasks in large non-deterministic domains whose
states are sets of poses. They can be solved efficiently by
interleaving planning and plan execution, which can reduce
the sum of planning and plan-execution time because it al-
lows the robots to gather information early. We show how
Min-Max LRTA*, a real-time heuristic search method, can
solve these and other planning tasks in non-deterministic
domains efficiently. It allows for fine-grained control over
how much planning to do between plan executions, uses
heuristic knowledge to guide planning, and improves its plan-
execution time as it solves similar planning tasks, until its
plan-execution time is at least worst-case optimal. We also
show that Min-Max LRTA* solves the goal-directed naviga-
tion tasks fast, converges quickly, and requires only a small
amount of memory.

Introduction
Situated agents (such as robots) have to take their planning
time into account to solve planning tasks efficiently (Good
1971). For single-instance planning tasks, for example,
they should attempt to minimize the sum of planning and
plan-execution time. Finding plans that minimize the plan-
execution time is often intractable. Interleaving planning
and plan execution is a general principle that can reduce the
planning time and thus also the sum of planning and plan ex-
ecution time for sufficiently fast agents in non-deterministic
domains (Genesereth & Nourbakhsh 1993). Without inter-
leaving planning and plan execution, the agents have to find
a large conditional plan that solves the planning task. When
interleaving planning and plan execution, on the other hand,
the agents have to find only the beginning of such a plan.
After the execution of this subplan, the agents repeat the pro-
cess from the state that actually resulted from the execution
of the subplan instead of all states that could have resulted
from its execution. Since actions are executed before their
complete consequences are known, the agents are likely to
incur some overhead in terms of the number of actions ex-
ecuted, but this is often outweighed by the computational

Copyright 1998, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Goal Pose PtLtsiblc Slatting Poses
(Starting Belief)

Figure 1: Goal-Directed Navigation Task #1

savings gained. As an example we consider goal-directed
navigation tasks in mazes where the robots know the maze
but do not know their initial pose (position and orienta-
tion). Interleaving planning and plan execution allows the
robots to make additional observations, which reduces their
pose uncertainty and thus the number of situations that their
plans have to cover. This makes subsequent planning more
efficient.

Agents that interleave planning and plan execution have
to overcome two problems: first, they have to make sure
that they make progress towards the goal instead of cy-
cling forever; second, they should be able to improve their
plan-execution time as they solve similar planning tasks,
otherwise they do not behave efficiently in the long run in
case similar planning tasks unexpectedly repeat. We show
how Min-Max LRTA*, a real-time heuristic search method
that extends LRTA* (Korf 1990) to non-deterministic do-
mains, can be used to address these problems. Min-Max
LRTA* interleaves planning and plan execution and plans
only in the part of the domain around the current state of
the agents. This is the part of the domain that is immedi-
ately relevant for them in their current situation. It allows
for fine-grained control over how much planning to do be-
tween plan executions, uses heuristic knowledge to guide
planning, and improves its plan-execution time as it solves
similar planning tasks, until its plan-execution time is at least
worst-case optimal. We show that Min-Max LRTA* solves
the goal-directed navigation tasks fast, converges quickly,
and requires only a small amount of memory.

Planning methods that interleave planning and plan exe-
cution have been studied before. This includes assumptive
planning, deliberation scheduling (including anytime algo-
rithms), on-line algorithms and competitive analysis, real-

Koenig 145

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

time heuristic search, reinforcement learning, robot explo-
ration techniques, and sensor-based planning. The proceed-
ings of the AAAI-97 Workshop on On-Line Search give a
good overview of these techniques. The contributions of this
paper are threefold: First, this paper extends our Min-Max
LRTA* (Koenig & Simmons 1995), a real-time heuristic
search method for non-deterministic domains, from look-
ahead one to arbitrary Iook-aheads. It shows how the search
space of Min-Max LRTA* can be represented more com-
pactly than is possible with minimax trees and discusses
how it can be solved efficiently using methods from Markov
game theory. Second, this paper illustrates an advantage of
real-time heuristic search methods that has not been studied
before. It was already known that real-time heuristic search
methods are efficient alternatives to traditional search meth-
ods in deterministic domains. For example, they are among
the few search methods that are able to find suboptimal plans
for the twenty-four puzzle, a sliding-tile puzzle with more

24 3than 7 x 10 states (Korf 199_). They have also been used
to solve STRIPS-type planning tasks (Boner, Loerincs.
Geffner 1997). The reason why they are efficient in deter-
ministic domains is because they trade-offminimizing plan-
ning time and minimizing plan-execution time. However,
many domains from robotics, control, and scheduling are
nondeterministic. We demonstrate that real-time heuristic
search methods can also be used to speed up problem solving
in nondeterministic domains and that there is an additional
reason why they are efficient in these domains, namely that
they allow agents to gather information early. This informa-
tion can be used to resolve some of the uncertainty caused
by nondeterminism and thus reduce the amount of plan-
ning done for unencountered situations. Third. this paper
demonstrates an advantage of Min-Max LRTA* over most
previous planning methods that interleave planning and plan
execution, namely that it improves its plan-execution time
as it solves similar planning tasks. As recognized in both
(Dean et al. 1995) and (Stentz 1995), this is an important
property because no planning method that executes actions
before it has found a complete plan can guarantee a good
plan-execution time right away, and methods that do not
improve their plan-execution time do not behave efficiently
in the long run in case similar planning tasks unexpectedly
repeat.

The Robot Navigation Problem
We study goal-directed navigation tasks with initial pose un-
certainty (Nourbakhsh 1996), an example of which is shown
in Figure I. A robot knows the maze, but is uncertain about
its start pose, where a pose is a location (square) and orien-
tation (north, east, south, west). We assume that there is
uncertainty in actuation and sensing, fln our mazes, it is in-
deed possible to make actuation and sensing approximately
100 percent reliable.) The sensors on-board the robot tell it
in every pose whether there are walls immediately adjacent
to it in the four directions (front, left, behind, right). The
actions are to move forward one square (unless there is
wall directly in front of the robot), turn left ninety degrees,
or turn right ninety degrees. The task of the robot is to nay-

146 Robotics and Agents

Figure 2: Goal-Directed Navigation Task #2

igate to any of the given goal poses and stop. Since there
might be many poses that produce the same sensor reports
as the goal poses, solving the goal-directed navigation task
includes localizing the robot sufficiently so that it knows
that it is at a goal pose when it stops. We use the following
notation: P is the finite set of possible robot poses (pairs of
location and orientation). A(p) is the set of possible actions
that the robot can execute in pose p E P: left, right, and
possibly forward, succ(p, a) is the pose that results from
the execution of action a 6. A(p) in posep E P. o(p) is the
observation that the robot makes in pose p E P: whether
or not there are walls immediately adjacent to it in the four
directions (front, left, behind, right). The robot starts
pose Pstart E P and then repeatedly makes an observation
and executes an action until it decides to stop. It knows the
maze, but is uncertain about its start pose. It could be in
any pose in Pstart C_ P. We require only that o(p) = o(ff)
for all p: p’ E Patart, which automatically holds after the
first observation, and pstart E Pstort, which automatically
holds for Pstart = {P : P 6- P A o(p) = o(pstart)}. The
robot has to navigate to any pose in Pooaz C_ P and stop.

Even if the robot is not certain about its pose, it can
maintain a belief about its current pose. We assume that
the robot cannot associate probabilities or other likelihood
estimates with the poses. Then, all it can do is maintain a
set of possible poses ("belief"). For example, if the robot
has no knowledge of its start pose for the goal-directed
navigation task from Figure I, but observes walls around it
except in its front, then the start belief of the robot contains
the seven possible start poses shown in the figure. We use
the following notation: B is the set of beliefs, bstart the
start belief, and Bgo~,! the set of goal beliefs. A(b) is the set
of actions that can be executed when the belief is b. O(b, a)
is the set of possible observations that can be made after the
execution of action a when the belief was b. succ(b, a, o)
is the successor belief that results if observation o is made
after the execution of action a when the belief was b. Then,

B = {b : b C_ P A o(p) = o(p’) for all p,p’ E b}

bstart m P.start

Bgo~t = {b:bC_Pgo~t A o(p)=o(p’) forall p, p’ Eb}
A(b) = A(p) for anypEb

O(b,a) = {o(succ(p,a)) : pE

stw£(b,a,o) = {succ(p,a) : p E b A o(succ(p,a))

To understand the definition of A(b), notice that A(p)
A(p’) for all p,p’ 6. b after the preceding observation since
the observation determines the actions that can be executed.
To understand the definition of Bgor, t, notice that the robot
knows that it is in a goal pose if its belief is b C_ Pgo~t. If

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Figure 3: Goal-Directed Navigation Task #3

the belief contains more than one pose, however, the robot
does not know which goal pose it is in. Figure 2 shows an
example. To solve the goal-directed navigation task, it is
best for the robot to move forward twice. At this point, the
robot knows that it is in a goal pose but cannot be certain
which of the two goal poses it is in. If it is important
that the robot knows which goal pose it is in, we define
Bgoat = {b : b C Pgo=t A Ibl = l}. Min-Max LRTA*
can also be applied to localization tasks. These tasks are
identical to the goal-directed navigation tasks except that
the robot has to achieve only certainty about its pose. In this
case, we define Bgoai = {b : b C_ P AIbm = 1}

The robot navigation domain is deterministic and small
(pose space). However, the beliefs of the robot depend
on its observations, which the robot cannot predict with
certainty since it is uncertain about its pose. We therefore
formulate the goal-directed navigation tasks as planning
tasks in a domain whose states are the beliefs of the robot
(belief space). Beliefs are sets of poses. Thus, the number
of beliefs is exponential in the number of poses, and the
belief space is not only nondeterministic but can also be
large. The pose space and the belief space differ in the
observability of their states. After an action execution, the
robot will usually not be able to determine its current pose
with certainty, but it can always determine its current belief
for sure. We use the following notation: S denotes the
finite set of states of the domain, sstart E S the start state,
and G _C S the set of goal states. A(s) is the finite set
(potentially nondeterministic) actions that can be executed
in state s E S. succ(s, a) denotes the set of successor states
that can result from the execution of action a E A(s) in
state s E S. Then,

S = B
8atar¢

-~-
batart

G = Bgo=t
A(s) = A(b) fors=b

succ(s,a) = {succ(b,a,o) : o E O(b,a)} fors = b

The actual successor state that results from the execution
of action a in state s = b is succ(b, a, o) if observation o is
made after the action execution. In general, traversing any
path from the start state in the belief space to a goal state
solves the goal-directed navigation task. To make all goal-
directed navigation tasks solvable we require the mazes to be
strongly connected (every pose can be reached from every
other pose) and asymmetrical (localization is possible). This
modest assumption allows the robot to solve a goal-directed

Initially, the u-values u(s) 0 arc approximations oftheminimax
goal distances (measured in action executions) for all s E

Given a set X, the expression "one-ofX" returns an element of
X according to an arbitrary rule. A subsequent invocation of
"one-ofX" can return the same or a different element. The ex-
pression "argmin~x f(x)" returns the set {z E X : f(x)
min=,~x f(x’)}.

1. s :---- 8stQrt.

2. If s E G, then stop successfully.
3. Generate a local search space St,, with a E St,, and St,, n G = 0.
4. Update u(s) for all s E Stss (Figure

5. a := one-ofargmin, eA(,) max,,e (,.,~) u(s’).
6. Execute action a. that is, change the current state to a state in

succ(s, a) (according to the behavior of nature).
7. s :ffi the current state.
8. (Ifs E St,,, then go to 5.)
9. Go to 2.

Figure 4: Min-Max LRTA*

The minimax-search method uses the temporary variables u’(s)
for all s E St,~.

1. Forall s E Stjs: ut(s) := u(s)and u(s) := co.
2. If u(s) < co for all s E Stss, then return.

3. s’ := one-ofargmin,Es, (,)=oo max(u’(s),
min=~A(,) max,,,E (o,=) u(s")).

4. If max(ut(s’), 1 + min=EA(,,) max,,,~ (,,.=) u(s")) = oo, then
return.

5. u(s’) := max(ut(s’), 1 -I- rain=eAts,) maxs,,Es=eeO,.=) u(s")).
6. Go to 2.

Figure 5: Minimax-Search Method

navigation task by first localizing itself and then moving to
a goal pose, although this behavior often does not minimize
the plan-execution time. Figure 3 shows an example. To
solve the goal-directed navigation task, it is best for the
robot to turn left and move forward until it sees a corridor
opening on one of its sides. At this point, the robot has
localized itself and can navigate to the goal pose. On the
other hand, to solve the corresponding localization task, it
is best for the robot to move forward once. At this point,
the robot has localized itself.

Min-Max LRTA*
Min-Max Learning Real-Time A* (Min-Max LRTA*)

a real-time heuristic search method that extends LRTA*
(Korf 1990) to non-deterministic domains by interleaving
minimax search in local search spaces and plan execu-
tion (Figure 4). Similar to game-playing approaches and
reinforcement-learningmethods such as (~-Learning (Heger
1996), Min-Max LRTA* views acting in nondetvrministic
domains as a two-player game in which it selects an ac-

Koenig !47

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

tion from the available actions in the current state. This
action determines the possible successor states from which
a fictitious agent, called nature, chooses one. Acting in
deterministic domains is then simply a special case where
every action uniquely determines the successor state. Min-
Max LRTA* uses minimax search to solve planning tasks in
nondeterministic domains, a worst-case search method that
attempts to move with every action execution as close to the
goal state as possible under the assumption that nature is an
opponent that tries to move Min-Max LRTA* as far away
from the goal state as possible. Min-Max LRTA* associates
a small amount of information with the states that allows it
to remember where it has already searched. In particular, it
associates a u-value u(s) _> 0 with each state s E S. The
values approximate the minimax goal distances of the states.
The minimax goal distance gd(s) E [0, ~¢] of state s E
is the smallest number of action executions with which a
goal state can be reached from state s, even for the most
vicious behavior of nature. Using action executions to mea-
sure the minimax goal distances and thus plan-execution
times is reasonable if every actkm can be executed in about
the same amount of time. The minimax goal distances are
defined by the following set of equations for all s E S:

gd(s)= { 0 . , ifsEG1 + mm,,eAfs} max,,e,~c(s,~)gd(s) otherwise.

Min-Max LRTA* updates the u-values as the search pro-
gresses and uses them to determine which actions to execute.
It first checks whether it has already reached a goal state and
thus can terminate successfully (Line 2). If not, it generates
the local search space Sis8 C_ S (Line 3). While we require
only that s E Stss and Slss N G = ¢, in practice Min-Max
LRTA* constructs Stss by searching forward from s. It then
updates the u-values of all states in the local search space
(Line 4) and, based on these u-values, decides which action
to execute next (Line 5). Finally, it executes the selected ac-
tion (Line 6), updates its current state (Line 7), and iterates
the procedure.

Min-Max LRTA* uses minimax search to update the u-
values in the local search space (Figure 5). The minimax-
search method assigns each state its minimax goal dis-
tahoe under the assumption that the u-values of all states
in the local search space are lower bounds on the cor-
rect minimax goal distances and that the u-values of all
states outside of the local search space correspond to their
correct minimax goal distances. Formally, if u(s)
[0, co] denotes the u-values before the minimax search
and fi(s) E [0, oo] denotes the u-values afterwards, then
fi(s) = max(u(s), I +mina~AIs)max,,~,~C,,,O fi(s’))
all s E St,s and 6(s) = u(s) otherwise. Min-Max LRTA*
could represent the local search space as a minimax tree,
which could be searched with traditional minimax-search
methods. However, this has the disadvantage that the mem-
ory requirements and the search effort can be exponential in
the depth of the tree (the look-ahead of Min-Max LRTA*),
which can be a problem for goal-directed navigation tasks
in large empty spaces. Since the number of different states

often grows only polynomiaily in the depth of the tree,
Min-Max LRTA* represents the local search space more
compactly as a graph that contains every state at most once.
This requires a more sophisticated minimax-search method
because there can now be paths of different lengths between
any two states in the graph. Min-Max LRTA uses a simple
method that is related to more general dynamic program-
ming methods from Markov game theory (Littman 1996).
It updates all states in the local search space in the order of
their increasing new u-values. This ensures that the u-value
of each state is updated only once. More details on the
minimax search method are given in (Koenig 1997).

After Min-Max LRTA* has updated the u-values, it greed-
ily chooses the action for execution that minimizes the u-
value of the successor state in the worst case (ties are broken
arbitrarily). The rationale behind this is that the u-values ap-
proximate the minimax goal distances and Min-Max LRTA*
attempts to decrease its minimax goal distance as much as
possible. Then, Min-Max LRTA* can either generate an-
other local search space, update the u-values of all states that
it contains, and select another action for execution. How-
ever, if the new state is still part of the local search space (the
one that was used to determine the action whose execution
resulted in the new state), Min-Max LRTA* also has the
option (Line 8) to select another action for execution based
on the current u-values. Min-Max LRTA* with Line 8 is
a special case of Min-Max LRTA* without Line 8: After
Min-Max LRTA* has run the minimax-search method on
some local search space, the u-values do not change if Min-
Max LRTA* runs the minimax-search method again on the
same local search space or a subset thereof. Whenever Min-
Max LRTA* with Line 8 jumps to Line 5, the new current
state is still part of the local search space Stu and thus not a
goal state. Consequently, Min-Max LRTA* can skip Line 2.
Min-Max LRTA* could now search a subset of Stsa that in-
cludes the new current state s, for example {s}. Since this
does not change the u-values, Min-Max LRTA* can, in this
case, also skip the minimax search. In the experiments, we
use Min-Max LRTA* with Line 8, because it utilizes more
information of the searches in the local search spaces.

Features of Min-Max LRTA*
An advantage of Min-Max LRTA* is that it does not de-
pend on assumptions about the behavior of nature. This is
so because minimax searches assume that nature is vicious
and always chooses the worst possible successor state. If
Min-Max LRTA* can reach a goal state for the most vi-
cious behavior of nature, it also reaches a goal state if
nature uses a different and therefore less vicious behav-
ior. This is an advantage of Min-Max LRTA* over Trial-
Based Real-Time Dynamic Programming (Barto, Bradtke,
& Singh 1995), another generalization of LRTA* to non-
deterministic domains. Trial-Based Real-Time Dynamic
Programming assumes that nature chooses successor states
randomly according to given probabilities. Therefore, it
does not apply to planning in the pose space when it is im-
possible to make reliable assumptions about the behavior of
nature, including tasks with perceptual aliasing (Chrisman

148 Robotics and Agents

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

1992) and the goal-directed navigation tasks studied in this
paper. A disadvantage of Min-Max LRTA* is that it cannot
solve all planning tasks. This is so because it interleaves
minimax searches and plan execution. Minimax searches
limit the solvable planning tasks because they are overly
pessimistic. They can solve only planning tasks for which
the minimax goal distance of the start state is finite. In-
terleaving planning and plan execution limits the solvable
planning tasks further because it executes actions before
their complete consequences are known. Thus, even if the
minimax goal distance of the start state is finite, it is pos-
sible that Min-Max LRTA* accidentally executes actions
that lead to a state whose minimax goal distance is infinite,
at which point the planning task becomes unsolvable. De-
spite these disadvantages, Min-Max LRTA* is guaranteed
to solve all safely explorable domains. These are domains
for which the minimax goal distances of all states are finite.
To be precise: First, all states of the domain can be deleted
that cannot possibly be reached from the start state or can
be reached from the start state only by passing through a
goal state. The minimax goal distances of all remaining
states have to be finite. For example, the belief space of
the robot navigation domain is safely explorable according
to our assumptions, and so are other nondeterministic do-
mains from robotics, including manipulation and assembly
domains, which explains why using minimax methods is
popular in robotics (Lozano-Perez, Mason, & Taylor 1984).
We therefore assume in the following that Min-Max LRTA*
is applied to safely explorable domains. For similar reasons,
we also assume in the following that action executions can-
not leave the current state unchanged. The class of domains
that Min-Max LRTA* is guaranteed to solve could be ex-
tended further by using the methods in (Nourbakhsh 1996)
to construct the local search spaces.

Min-Max LRTA* has three key features, namely that it
allows for fine-grained control over how much planning to
do between plan executions, uses heuristic knowledge to
guide planning, and improves its plan-execution time as it
solves similar planning tasks, until its plan-execution time is
at least worst-case optimal. The third feature is especially
important since no method that executes actions before it
knows their complete consequences can guarantee a good
plan-execution time right away. In the following, we explain
these features of Min-Max LRTA* in detail.

Heuristic Knowledge

Min-Max LRTA* uses heuristic knowledge to guide plan-
ning. This knowledge is provided in the form of admissi-
ble initial u-values. U-values are admissible if and only if
0 < u(s) < gd(s) for all s 6 S. In deterministic domains,
this definition reduces to the traditional definition of admis-
sible heuristic values for A* search (Pearl 1985). The larger
its initial u-values, the better informed Min-Max LRTA*.

Theorem I Let ~(s) denote the initial u-values. Then, Min-
Max LRTA * with initially admissible u-values reaches a goal
state after at most ~(s,tart) + ~-’~,~s[gd(s) - ~(s)] action
executions, regardless of the behavtor of nature.

All proofs can be found in (Koenig 1997). The theo-
rem shows that Min-Max LRTA* with initially admissible
u-values reaches a goal state in safely explorable domains
after a finite number of action executions, that is, it is correct.
The larger the initial u-values, the smaller the upper bound
on the number of action executions and thus the smaller
its plan-execution time. For example, Min-Max LRTA*
is fully informed if the initial u-values equal the minimax
goal distances of the states. In this case, Theorem 1 pre-
dicts that Min-Max LRTA* reaches a goal state after at most
gd(sstart) action executions. Thus, its plan-execution time
is at least worst-case optimal and no other method can do
better in the worst-case. For the goal-directed navigation
tasks, one can use the goal-distance heuristic to initialize
the u-values, that is, u(s) = maxv~s gd({p}). The cal-
culation of gd({p}) involves no pose uncertainty and can
be done efficiently without interleaving planning and plan
execution, by using traditional search methods in the pose
space. This is possible because the pose space is deter-
ministic and small. The u-values are admissible because
the robot needs at least maxv~s gd({p}) action executions
in the worst case to solve the goal-directed navigation task
from pose p’ = one-of art maxp~ a gd({p}), even i f it knows
that it starts in that pose. The u-values are often only par-
tially informed because they do not take into account that
the robot might not know its pose and then might have
to execute additional localization actions to overcome its
pose uncertainty. For the localization tasks, on the other
hand, it is difficult to obtain better informed initial u-values
than those provided by the zero heuristic (zero-initialized
u-values).

Fine-Grained Control

Min-Max LRTA* allows for fine-grained control over how
much planning to do between plan executions. For example,
Min-Max LRTA* with line 8 and Slaa = S \ G = S rl
performs a complete minimax search without interleaving
planning and plan execution, which is slow but produces
plans whose plan-execution times are worst-case optimal.
On the other hand, Min-Max LRTA* with SI,j = {s} per-
forms almost no planning between plan executions. Smaller
look-aheads benefit agents that can execute plans with a sim-
ilar speed as they can generate them, because they prevent
these agents from being idle, which can minimize the sum
of planning and plan-execution time if the heuristic knowl-
edge guides the search sufficiently. Larger Iook-aheads are
needed for slower agents, such as robots.

Improvement of Plan-Execution Time

If Min-Max LRTA* solves the same planning task repeat-
edly (even with different start states) it can improve its be-
havior over time by transferring domain knowledge, in the
form of u-values, between planning tasks. This is a famil-
iar concept: One can argue that the minimax searches that
Min-Max LRTA* performs between plan executions are in-
dependent of one another and that they are connected only
via the u-values that transfer domain knowledge between

Koenig 149

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

them. To see why Min-Max LRTA* can do the same thing
between planning tasks, consider the following theorem.

Theorem 2 Admissible initial u-values remain admissible
after every action execution of Min-Max LRTA * and are
monotonicaUy nondecreasing.

Now assume that a series of planning tasks in the same
domain with the same set of goal states are given, for exam-
ple goal-directed navigation tasks with the same goal poses
in the same maze. The actual start poses or the beliefs of the
robot about its start poses do not need to be identical. If" the
initial u-values of Min-Max LRTA* are admissible for the
first planning task, then they are also admissible after Min-
Max LRTA* has solved the task and are state-wise at least as
informed as initially. Thus, they are also admissible for the
second planning task and Min-Max LRTA* can continue to
use the same u-values across planning tasks. The start states
of the planning tasks can differ since the admissibility of
u-values does not depend on the start states. This way, Min-
Max LRTA* can transfer acquired domain knowledge from
one planning task to the next, thereby making its u-values
better informed. Ultimately, better in formed u-values result
in an improved plan-execution time, although the improve-
ment is not necessarily monotonic. The following theorems
formalize this knowledge transfer in the mistake-bounded
error model. The mistake-bounded error model is one way
of analyzing learning methods by bounding the number of
mistakes that they make.

Theorem 3 Min-Max LRTA * with initially admissible u-
values reaches a goal state after at most gd(sstart) action
executions, regardless of the behavior of natare, if its u-
values do not change during the search.

Theorem 4 Assume that Min-Max LRTA * maintabzs u-
values across a series of planning tasks in the same do-
main with the same set of goal states. Then, the number
of planning tasks for which Min-Max LRTA * with initially
admissible u-values reaches a goal state after more than
gd(sstart) action executions is bounded from above by
finite constant that depends only on the donuabz and goal
states.

Proof: If Min-Max LRTA* with initially admissible u-
values reaches a goal state after more than gd(sstart) action
executions, then at least one u-value has changed according
to Theorem 3. This can happen only a finite number of
times since the u-values are monotonically nondecreasing
and remain admissible according to Theorem 2, and thus
are bounded from above by the minimax goal distances. ̄

in this context, it counts as one mistake when Min-Max
LRTA* reaches a goal state after more than gd(saa,t) action
executions. According to Theorem 4. the u-values converge
after a bounded number of mistakes. The action sequence
after convergence depends on the behavior of nature and is
not necessarily uniquely determined, but has gd(sstart)
fewer actions, that is, the plan-execution time of Min-Max
LRTA* is either worst-case optimal or better than worst-
case optimal. This is possible because nature might not
be as malicious as a minimax search assumes. Min-Max

150 Robotics and Agents

I. s,. := {s}.
2. Improve u(s) for all s E Sz,, (Figure 5).

3. S: := 8.

4. a := one-of arg min,,EA(,,) max,,,¢,~,,~(.,,.,e) u(s").

5. If lance(d, a)l > 1. then return.
6. s’ := s". where s" E s~zec(s’, a) is unique.
7. If s’ E St,~. then go to 4.

8. If s’ E G, then return.
9. St** := St,, O {s’} and go to 2.

Figure 6: Generating Local Search Spaces

g’lllld Stifling Pt~se

Figure 7: Goal-Directed Navigation Task #4

LRTA* might not be able to detect this "problem" by in-
trospection since it does not perform a complete minimax
search but partially relies on observing the actual successor
states of action executions, and nature can wait an arbitrarily
long time to reveal it or choose not to reveal it at all. This can
prevent the u-values from converging after a bounded num-
ber of action executions and is the reason why we analyzed
its behavior using the mistake-bounded error model. It is
important to realize that, since Min-Max LRTA* relies on
observing the actual successor states of action executions, it
can have computational advantages even over several search
episodes compared to a complete minimax search. This is
the case if nature is not as malicious as a minimax search
assumes and some successor states do not occur in practice,
for example, because the actual start pose of the robot never
equals the worst possible pose among all start poses that are
consistent with its start belief.

Other Navigation Methods
Min-Max LRTA* is a domain-independent planning method
that does not only apply to goal-directed navigation and lo-
calization tasks with initial pose uncertainty, hut to planning
tasks in nondeterministic domains in general. It can, for ex-
ample, also be used for moving-target search, the task of a
hunter to catch a moving prey (Koenig & Simmons 1995).
In the following, we compare Min-Max LRTA* to two more
specialized planning methods that can also be used to solve
the goal-directed navigation or localization tasks. An im-
portant advantage of Min-Max LRTA* over these methods
is that it can improve its plan-execution time as it solves
similar planning tasks.

Information-Gain Method

The Information-Gain Method (IG method) (Gencscreth
Nourbakhsh 1993) first demonstrated the advantage of inter-

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

leaving planning and plan execution for goal-directed nav-
igation tasks) It uses breadth-first search (iterative deep-
ening) on an and-or graph around the current state in con-
junction with pruning rules to find subplans that achieve
a gain in information, in the following sense: after the
execution of the subplan, the robot has either solved the
goal-directed navigation task or at least reduced the number
of poses it can be in. This way, the IG method guarantees
progress towards the goal. There are similarities between
the IG method and Min-Max LRTA*: Both methods inter-
leave minimax searches and plan execution. Zero-initialized
Min-Max LRTA* that generates the local search spaces for
goal-directed navigation tasks with the method from Fig-
ure 6 exhibits a similar behavior as the IG method: it also
performs a breadth-first search around its current state until
it finds a subplan whose execution results in a gain in in-
formation. The method does this by starting with the local
search space that contains only the current state. It performs
a minimax search in the local search space and then simu-
lates the action executions of Min-Max LRTA* starting from
its current state. If the simulated action executions reach a
goal state or lead to a gain in information, then the method
returns. However, if the simulated action executions leave
the local search space, the method halts the simulation, adds
the state outside of the local search space to the local search
space, and repeats the procedure. Notice that, when the
method returns, it has already updated the u-values of all
states of the local search space. Thus, Min-Max LRTA*
does not need to improve the u-values of these states again
and can skip the minimax search. Its action-selection step
(Line 5) and the simulation have to break ties identically.
Then, Min-Max LRTA* with Line 8 in Figure 4 executes ac-
tions until it either reaches a goal state or gains information.
There are also differences between the IG method and Min-
Max LRTA*: Min-Max LRTA* can use small look-aheads
that do not guarantee a gain in information and it can im-
prove its plan-execution time as it solves similar planning
tasks, at the cost of having to maintain u-values. The second
advantage is important because no method that interleaves
planning and plan execution can guarantee a good plan-
execution time on the first run. For instance, consider the
goal-directed navigation task from Figure 7 and assume that
Min-Max LRTA* generates the local search spaces with the
method from Figure 6. Then, both the IG method and zero-
initialized Min-Max LRTA* move forward, because this is
the fastest way to eliminate a possible pose, that is, to gain
information. Even Min-Max LRTA* with the goal-distance
heuristic moves forward, since it follows the gradient of
the u-values. However, moving forward is suboptimal. It is
best for the robot to first localize itself by turning around and
moving to a corridor end. If the goal-directed navigation
task is repeated a sufficient number of times with the same
start pose, Min-Max LRTA* eventually learns this behavior.

n(Genesereth & Nourbakhsh 1993) refers to the IG method
as the Delayed Planning Architecture (DPA) with the viable plan
heuristic. It also contains some improvements on the version of
the IG method discussed here, that do not change its character.

Homing Sequences

Localization tasks are related to finding homing sequences
or adaptive homing sequences for deterministic finite state
automata whose states are colored. A homing sequence
is a linear plan (action sequence) with the property that
the observations made during its execution uniquely deter-
mine the resulting state (Kohavi 1978). An adaptive hom-
ing sequence is a conditional plan with the same property
(Schapire 1992). For every reduced deterministic finite state
automaton, there exists a homing sequence that contains at
most (n- !)2 actions. Finding a shortest homing sequence
NP-complete but a suboptimal homing sequence of at most
(n - 1)2 actions can be found in polynomial time (Schapire
1992). Robot localization tasks can be solved with homing
sequences since the pose space is deterministic and thus can
be modeled as a deterministic finite state automaton.

Extensions of Min-Max LRTA*
Min-Max LRTA* uses minimax searches in the local search
spaces to update its u-values. For the robot navigation
tasks, it is possible to combine this with updates over a
greater distance, with only a small amount of additional ef-
fort. For example, we know that gd(s) >_ gd(s’) for
two states s, d E S with s _D d (recall that states are sets
of poses). Thus, we can set u(s):= max(u(s),u(d))for
selected states s, s’ E S with s D s’. If the u-values are
admissible before the update, they remain admissible after-
wards. The assignment could be done immediately before
the local search space is generated on Line 3 in Figure 4. It
is also straightforward to modify Min-Max LRTA* so that it
does not assume that all actions can be executed in the same
amount of time, and change the theorems appropriately. Fi-
nally, it is also straightforward (but not terribly exciting)
drop the assumption that action executions cannot leave the
current state unchanged, and change the theorems appropri-
ately. Future work will remove some of the limitations of
Min-Max LRTA*. For example, our assumption that there
is no uncertainty in actuation and sensing is indeed a good
approximation for robot navigation tasks in mazes. Future
work will investigate how Min-Max LRTA* can be applied
to similar tasks in less structured environments in which
our assumption is not a good one. Similarly, Min-Max
LRTA* works with arbitrary Iook-aheads. Future work will
investigate how it can adapt its look-ahead automatically
to optimize the sum of planning and plan-execution time,
possibly using methods from (Russell & Wefald 1991).

Experimental Results
Nourbakhsh (Nourbakhsh 1996) has already shown that
performing a complete minimax search to solve the goal-
directed navigation tasks optimally can be completely in-
feasible. We take this result for granted and show that
Min-Max LRTA* solves the goal-directed navigation tasks
fast, converges quickly, and requires only a small amount
of memory. We do this experimentally since the actual
plan-execution time of Min-Max LRTA* and its memory
requirements can be much better than the upper bound of

Koenig 151

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

after.., measudag... using... Min-Max LRTA* with look-ahead one

goal-directed navigation localization
goal-distance heuristic zero heuristic

the first run plan-execution time action ezacuuons I 13.32 13.33
planning time state expansions I 13.32 13.33
memory usage u-values remembered 31.88 13.32

coovergcm:e plan-egecution time action executions 49.15 8.82
planning time state expansions 49.15 8. 82
memory usage u-values remembered 446.13 1,782.26

number of rims until convergence 16.49 102.90

Min-Max LRTA* with larger look-ahead
(nsinl~ the method in Figure 6)

goal-directed navigation localization
goal-distance heuristic zae heuristic

50.48 12.24
73.46 26.62
:40.28 26.62
49.13 8.81
49.13 8.81
85.80 506.63
3.14 21.55

Figure 8: Experimental Results

Theorem I suggests. We use a simulation of the robot nav-
igation domain whose interface matches the interface of an
actual robot that operates in mazes (Nourbakhsh & Gene-
sereth 1997). Thus, Min-Max LRTA* could be run on that
robot. We apply Min-Max LRTA* to goal-directed naviga-
tion and localization tasks with two different Iook-aheads
each, namely look-ahead one (Sz~ = {s}) and the larger
look-ahead from Figure 6. As test domains, we use 500 ran-
domly generated square mazes. The same 500 mazes are
used for all experiments. All mazes have size 49 × 49 and the
same obstacle density, the same start pose of the robot, and
(for goal-directed navigation tasks) the same goal location,
which includes all four poses. The robot is provided with
no knowledge of its start pose and initially senses open-
ings in all four directions. The mazes are constructed so
that, on average, more than 1100 poses are consistent with
this observation and have thus to be considered as poten-
tial start poses. We let Min-Max LRTA* solve the same
task repeatedly with the same start pose until its behavior
converges.2 To save memory, Min-Max LRTA* generates
the initial u-values only on demand and never stores u-values
that are identical to their initial values. Line 5 breaks ties be-
tween actions systematically according to a pre-determined
ordering on A(s) for all states s. Figure 8 shows that Min-
Max LRTA* indeed produces good plans in large domains
quickly, while using only a small amount of memory. Since
the plan-execution time of Min-Max LRTA* after conver-
gence is no worse than the minimax goal distance of the start
state, we know that its initial plan-execution time is at most
23 i, 15 I, 103, and 139 percent (respectively) of the worst-
case optimal plan-execution time. Min-Max LRTA* also
converges quickly. Consider, for example, the first case,
where the initial plan-execution time is worst. In this case,
Min-Max LRTA* with look-ahead one more than halves
its plan-execution time in less than 20 runs. This demon-
strates that this aspect of Min-Max LRTA* is important if
the heuristic knowledge does not guide planning sufficiently
well.

-’Min-Max LRTA* did not know that the start pose remained
the same. Otherwise, it could have used the decreased uncertainty
about its pose after solving the goal-directed navigation task to
narrow down its start pose and improve its plan-execution time
this way.

Conclusions

We studied goal-directed navigation (and localization) tasks
in mazes, where the robot knows the maze but does not know
its initial pose. These problems can be modeled as nondeter-
ministic planning tasks in large state spaces. We described
Min-Max LRTA*, a real-time heuristic search method for
nondeterministic domains and showed that it can solve these
tasks efficiently. Min-Max LRTA* interleaves planning and
plan execution, which allows the robot to gather information
early that can be used to reduce the amount of planning done
for unencountered situations. Min-Max LRTA* allows for
fine-grained control over how much planning to do between
plan executions and uses heuristic knowledge to guide plan-
ning. It amortizes learning over several search episodes,
which allows it to find suboptimal plans fast and then im-
prove its plan-execution time as it solves similar planning
tasks, until its plan-execution time is at least worst-case
optimal. This is important since no method that executes
actions before it knows their complete consequences can
guarantee a good plan-execution time right away, and meth-
ods that do not improve their plan-execution time do not
behave efficiently in the long run in case similar planning
tasks unexpectedly repeat. Since Min-Max LRTA* partially
relies on observing the actual successor states of action ex-
ecutions, it does not plan for all possible successor states
and thus can still have computational advantages even over
several search episodes compared to a complete minimax
search if nature is not as malicious as a minimax search
assumes and some successor states do not occur in practice.

Acknowledgements

Thanks to Matthias Heger, Richard Korf, Michael Littman,
Tom Mitchell, and Illah Nourbakhsh for helpful discus-
sions. Thanks also to Richard Kerr and Michael Littman
for their extensive comments and to Joseph Pemberton for
making his maze generation program available to us. This
research was sponsored by the Wright Laboratory, Aeronau-
tical Systems Center, Air Force Materiel Command, USAF,
and the Advanced Research Projects Agency (ARPA) under
grant number F33615-93- I- 1330. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official
policies, either expressed or implied, of the sponsoring or-
ganizations or the U.S. government.

152 Robotics and Agents

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artificial
Intelligence 73(1):81-138.

Bonet, B.; Locrincs, G.; and Geffner, H. 1997. A robust
and fast action selection mechanism. In Proceedings of the
National Conference on Artificial Intelligence.

Chrisman, L. 1992. Reinforcement learning with per-
ceptual aliasing: The perceptual distinctions approach. In
Proceedings of the National Conference on Artificial In-
telligence, 183-188.

Dean, T.; Kaelbling, L.: Kirman, J.: and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial h~telligence 76(I-2):35-74.

Genesereth, M., and Nourbakhsh, I. 1993. Time-saving
tips for problem solving with incomplete information. In
Proceedings of the National Conference on Artificial In-
telligence, 724-730.
Good, I. 1971. Twenty-seven principles of rationality. In
Godambe, V., and Sprott, D., ods., Foundations of Statisti-
cal Inference. Holt, Rinehart, Winston.
Hegel M. 1996. The loss from imperfect value functions
in expectation-based and minimax-based tasks. Machine
Learning 22(1-3): 197-225.
Koenig, S., and Simmons, R. 1995. Real-time search in
non-deterministic domains. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 1660-
1667.

Koenig, S. 1997. Goal-Directed Acting with Incomplete
lnfornu~tion. Ph.D. Dissertation, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh (Pennsylva-
nia).
Kohavi, Z. 1978. Switching and Finite Automata Theol..
McGraw-Hill, second edition.

Korf, R. 1990. Real-time heuristic search. Artificial Intel-
ligence 42(2-3): 189-211.
Korf, R. 1993. Linear-space best-first search. Artificial
Intelligence 62(1):41-78.

Littman, M. 1996. Algorithms for Sequential Decision
Making. Ph.D. Dissertation, Department of Computer
Science, Brown University, Providence (Rhode Island).
Available as Technical Report CS-96-09.

Lozano-Perez, T.; Mason, M.; and Taylor, R. 1984. Auto-
matic synthesis of fine-motion strategies for robots. Inter-
national Journal of Robotics Research 3(1):3-24.

Nourbakhsh, I., and Genesereth, M. 1997. Teaching AI
with robots. In Kortenkamp, D.; Bonasso, R.; and Murphy,
R., eds., Artificial Intelligence Based Mobile Robotics:
Case Studies of Successful Robot Systems. MIT Press.

Nourbakhsh, I. 1996. Interleaving Planning and Execu-
tion. Ph.D. Dissertation, Department of Computer Science,
Stanford University, Stanford (California).

Pearl, J. 1985. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison-Wesley.

Russell, S., and Wefald, E. 1991. Do the Right Thing -
Studies in Limited Rationali~.,. MIT Press.
Schapire, R. 1992. The Design and Analysis of E17icient
Learning Algorithms. MIT Press.

Stentz, A. 1995. The focussed D* algorithm for real-
time replanning. In Proceedings of the International Joint
Conference on Artificial Intelligence, 1652-1659.

Koenig 153

From: AIPS 1998 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

