From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Dispatchable execution of schedules involving consumable resources *

R. J. Wallace, E. C. Freuder
Constraint Computation Center
University of New Hampshire, Durham, NH 03824
rjw,ccf@cs.unh.edu

Abstract

Earlier work on scheduling by autonomous systems
has demonstrated that schedules in the form of simple
temporal networks, with intervals of values for possi-
ble event-times, can be made “dispatchable”, i.e. ex-
ecutable incrementally in recal time with guarantees
against failure due to unfortunate cveni-time selec-
tions. In this work we show how the property of
dispatchability can be extended to networks that in-
clude constraints for consumable resources. We first
determine conditions under which a component of the
network composed of resource constraints associated
with a single sequence of activities that use a resource
{“bout™) will support dispatchability. Then we show
how to handle interactions betwcen resource and tem-
poral subnetworks to insure dispatchability and how to
handle sequences of bouts interspersed with resource
release. The results demonstrate that flexible han-
dliug of resource use can be safely extended to the
cxecutlion layer to provide more effective deployment
of consnmable resources,

Introduction.

From both an intellectual and practical standpoint, the
devclopment of autonomous systems that can schedule
their own operations is one of the most important ar-
cas of contemporary artificial intelligence. In this do-
main a de facto standard appears to have emerged, in
which the overall task of plan creation and execution
is apportioned to two distinct components, or “layers”
of the system, a high-level Planner-Scheduler and a
lower-level Executive. The Planner creates a plan to-
gether with an associated schedule of operations. This
schedule is passed to the Executive, which carries it
out by initiating execution of physical components of
the system at designated times.

An example of such a system is found within the
Remote Agent architecture developed at NASA-Ames
and currently deployed for experimental testing in
the Dcep Space 1 spacecraft. (See {Muscettola 1994)

*Carried out in association with NASA-Ames Rescarch
Center, Moffet Field, CA and supported in part by NSF
Grant No. 1RI1-9504316

Copyright ® 2000, American Association for
Artificial Intelligence. All rights reserved.

(Muscettola, Nayak, & Pell 1998) for detailed descrip-
tions of this system.) In this system the Executive is
given certain leeway in selecting times for scheduled
operations. This is necessary in order to adjust the
schedule to the actual conditions of execution. For ex-
ample, failure of a rocket engine to fire immediately
could break a schedule that did not allow a certain
amount of slack in this and subsequent activity times.
This is done by sending time bounds for each event to
be scheduled and allowing the Executive to choose a
specific time within cach pair of bounds.

Because the Exccutive is operating in real lime, the
constraints on its operation are severe. In particular,
during the instantiation of a schedule the Executive
cannot afford to backtrack, i.e. it cannot go back and
reschedule earlier activities whenever its previous deci-
sions have caused it to reach a point where there are no
options (a ‘dead end’), because these carlier activities
may have already begun. For this reason, when actual
plan execution begins there must be guarantees that a
schedule derived from the time-envelopes is executable
incrementally or “dispatchable”. That is to say, re-
gardless of the event times that arc selected by the
Executive (operating in real time), the result inust be a
viable schedule. In recent. work it has been shown that
consistent temporal constraint networks, which are a
basic component of the Planner-Scheduler’s output in
the Remote Agent system, can be made dispatchable
(Muscettola, Morris, & Tsamardinos 1998).

At present, flexibility of execution can only be pro-
vided with respect to temporal constraints. Ideally onc
would like to provide this flexibility for resource use as
well, with similar guarantees. In the present work we
extend the notion of dispatchability to networks that
include constraints for consumable resources in addi-
tion to temporal constraints. An example of the kind
of resource we arc concerned with is the solid state
recorder that is used in spacecrafl to store data from
recording devices prior to transmitting it to earth. In
this case there is a scries of activities that require data
storage (resource use), punctuated at more or less reg-
ular intervals by activities in which data is transmitted,
thus freeing storage space (resource release). Here, the

Wallace 283

Fromwni@uobotpréeéydmg}é!@obiﬂﬁ?ﬁa@wéu, samw%mig'). Al rightSrdderved. ="
S O

never exceeded regardles: the start- and end-times
that are chosen for these activities during plan execu-
tion.

As would be expected, establishing dispatchability
for the resulting simple temporal plus cousumable re-
source notwork (STN-cRN) is less straightforward than
the aralogous problem for the STN alone. We han-
dle this problen: throwgh a eries of decompaosition
straegies. Speciically, we establish conditions for dis-
puencsbility that pertain to the ¢cRN alone, then for
cliects of cach comporent on the other (STN—RN
and RN—S'I'N interactions). and finally for successive
‘bouts’ of activities thatl use the resource, that are sep-
arated by instanzes of resource release.

In Section 2 we describe the STN-cRN. Secction 3
discusses conditions for dispalchability involving the
¢RN. Section 4 discusses how to insure dispatchabil-
ity for an STN-cRN network, despite possible inter-
actions between the STN and RN. Section 5 extends
the analysis to cover successive bouts of resource use
as described above. Section 6 deseribes the revised
dispatching execution algorithm. Section 7 gives con-
clusions.

Structure of a
temporal-consumable-resource network

In the present Remote Agent scheduling system. the
FExecutive receives an envelope of acceptable scheduling
times in the form of a simple temporal network (STN).
An example of such a network is shown in Figure 1.
The key feature of such networks is that each event is
associated with a single interval. This insures that the
network is tractable, since it can be transformed into
a digraph and solved with shortest path algorithms
(Dechter, Meiri, & Pearl 1991).

That the STN in Figure 1 is nof dispatchable can
be shown by some simple examples. As in the original
work by (Muscettola. Morris, & Tsamardinos 1998),
we assume that during execution an event & is selected
from a pool of candidate events whose antecedents have
already been instantiated. and that the current time is
now within the interval bounded by the earliest lower
and upper bounds for event-times in this candidate set.
In addition, constraint propagation can take place after
an event has been given a specific time of occurrence,
and is restricted to adjacent nodes in the network. In
the following example, instantiations are shown on the
left and results of propagation on the right, in terms
of the acceptable interval for events whose nodes are
adjacent in the constraint graph.

a= b=4—-9,¢c=4-6
b=5 d=7-9

c=0 e=10-13

d=7 f=14-17

e =13 g=18-23

284 AIPS-2000

9

Here, lngal assigniments 1o d and e propagate to f and
z. respectively, producing non-overlapping intervals for
their domains. whicl vauses execution to fail when the
zonstrairt specifying cquality of the times for these lai-
ter events hecomes active. As another example, sup-
pose that e had been given the value of 12:

e =12 g = 1722
=16 g="

In this case, I'is given a value from its current domain
that is oulside the current domain of g. so that the
equality constraint cannot be satisfied, and again exe-
cution fails.

Figure 2 shows a dispatchable network derived from
the STN of Figure 1. lnspection of the figure shows
that an added explicit constraint between d and e pre-
vents ¢ from taking the value of 13 if d is given the
value 7, as in our first example. The constraiut be-
tween e and [prevents [from taking the value 16 if e is
given the valuec 12. (For formal arguments that such a
network is always dispatchable, the reader is referred
to {Muscettola, Morris. & Tsamardinos 1998).)

Resource constraints can be incorporated into the
data structure sent to the Executive via a separate
subgraph with different. characteristics (the ¢RN). In
this case. intervals represent bounds on resource use for
a given activity. For example, in Figure 3 each interval,
[10,20], represents a range of possible use of a resource
between 10 and 20 units. In addition, k-ary constraints
between endpoints prevent the resource capacity from
being exceeded. In the present example, the capacity
is 30 resource units, and the sum of the upper bounds
exceeds capacity by 10 units. Therefore, if activity
x starts before ¥, and il the duration stipulated for
the forrer activity results in its using more than 10
resource units, then the upper bound of y must be
reduced by the excess amnount in order to satisfy the
constraint between x and y.

In the full data structnee. ¢RN nodes are linked to
STN nodes that correspond to the same activity (Fig-
ure 4). Resource use is assumed to be a nondecreasing
function of time, and for expository purposes we will
assume a linear relation. specifically, multiplication of
the temporal bounds by a positive or negative quantity
for resource use and release, respectively, this quantity
being constant for a given activity. Of importance is
the fact that the mapping from STN event Lo associ-
ated resource use is bijective, 1.e. one-to-one and onto,
as well as monotonic. The linkage between STN and
cRN is indicated by the dashed lines in Figure 4, cach
labeled with its constant of proportionality.

Both here and in what follows. we focus on cases in
which there is a single consumable resource. If there
is more than oune such resource that must be handled.
then cach resource is associated with a separate ¢cRN,

From: AIPS 2000 Proceedings. Copyright © 2000, AAA

aBi%g). Al ripﬁé%\esenlgd_m]

{0

[0,0]

[5.10] -

[4,6] [4.7]

()
Y

Figure 1: A consistent simple temporal network.

(2,4] o~ [710]
[4,9] D
[7,10]
@ [-3,5] [0,0]
a0l (5,10]
w1 o [5.10]

Figure 2: The temporal nctwork of Figurc 1 made dispatchable.

[10,20]

[10,20]

Figure 3: A consumable resource network.

and each member of the set of cRNs is connected to
the STN in the manner depicted in Figure 4.

Before beginning the discussion of dispatchability of
the composite network, it is important to note that the
tractability of this network as a constraint satisfaction
problem is not in question. This is because all con-
straints in both the temporal and consumable resource
subnetworks are in the same tractability class, which
(Jeavons, Cohen, & Gyssens 1995) refer to as Class
2 (constraints closed under binary operations that are
associative, commutative, and idempotent).

Making the cRN support
dispatchability.

If activilies can either consumne or release a given re-
source, then the entire sequence of such activities can
be divided into ‘bouts’ of resource use separated by
instances of release. In the next two sections we will
confine our attention to a single bout of resource use
and its associated ¢cRN. and conditions for dispatcha-
bility will be specified within this context. In a later
section we show that the conditions for dispatchabil-
ity discovered for a single bout can be extended in a
straightforward way to an entire sequence of activities.

To support dispatchability, a ¢cRN must allow any
sequence of instantiations to be made in the ‘mother’
STN without resource capacity being exceeded. Given
the bijective mapping from STN event to resource use,
this implies that any choice of value for an instance of
resource use must allow some values to be chosen for
all future (as yet uninstantiated) variables. We refer
to this looscly as “cRN dispatchability™.

For a single bout, the simplest sufficient condition
for cRN dispatchability is that the sum of the upper
bounds on resource usc be less than or equal to the
initial resource capacity,

k
Z ub; < Cinit (1)

Wallace 285

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). AI@ts re[qq!{,\mq.
y<30-x z\

O

[11,20] / \\

(4.7]

Figure 4: Combined temporal-and-consumable-resource network. in which intervals for duration (STN) and resource
use (cRN) associated with the same activity are linked together. Such links are indicated by dashed lines; the linked
intervals are those associated with arcs directed foward the nodes of origin and destination for the cross-links. For
example, activity x in the ¢RN is associated with are (h,d) in the STN.

Obviously, in this case the Executive does not. need to
process the ¢cRN at all, since whatever values it selects
from the STN, the resulting resource use will be within
capacity.

Unfortunately. this simple condition puts limitations
on the range of choice that can be given to the Exec-
utive. This can be scen in Figure 3, where the sum
of upper bounds (40) is well above the capacity (30).
Nonetheless, the ¢cRN in this figure is dispatchable. be-
cause for every value of resource use chosen for activity
X there is a usage value for activity Y within the desig-
nated bounds. Tere, dispatchability obviously depends
on the constraint between x and y. This suggests a
weaker condition lor dispatchability that at the same
time allows more flexibility in the initial upper bounds
on resource use by single activities,

For a set of £ activities that use a given resource,
this condition can be stated as follows. For all subsets
of k — 1 activities, the difference between the initial
resource capacity and the sum of the upper bounds of
usage for these activities is greater or equal to the lower
bound of usage for the remaining kth activity. I.e.,

k=1
Cinis — Zubi > b (2)

Or, to put this in a form corresponding to the first
inequation,

k=1
lebi + b < Cinic &)

i=1

286 AIPS-2000

That the time complexity for determining whether
this condition holds is no greater than that required
for the first condition is shown by the following argu-
ment. There are O(k) subsets of size &£ — 1, and these
can be generated in sequence by swapping single ac-
tivities in and out, and respective sums after the first
can be generated by single additions and subtractions.
This indicates that dispatchability in this sense can be
determined for a set of &k activities in Q(k) time. (Note
also that this processing will be done during the plan-
uing phase, where tile constraints are not as severe.)

Adjusting upper bounds when we find that the dis-
patchability condition is violated also appears to be
easy, at least under some conditions. Thus, if the sum
for one of the subsets is < the capacity, then the upper
bound that docs net appear in the sum can be reduced
to insure dispatchabhilily. The amount. it must be re-
duced is equal to a difference of differences. Suppose o
is the element in question, i.e. the activity whose lower
bound is in the sum that is < the limit. And suppose
that b is the eleent whose lower bound is in the sum
that exceeds the limit by the greatest amount. Viz,

k-2
D ubi + uby + B < Cinig
i=1

and
k=2

D ubi + uby + by > Cinig

i=1
Then the upper bound of @ can be reduced by the
following amount to insure dispatchability for this set:

(ua — L) — (up — &) (4)

R R s R e ao

refic e~positive, and ‘obvious
it is < the original difference between u, and I,. If
there is no sum less than the limit, it is sufficient to
choose a sum, reduce one or more upper bounds uniil
the condition in equation (3) is met, and then use the
above procedure.

At present, this condition appears to be the weakest
one possible that is still practical. Consider the next
weakest condition,

k-2

> ubi + lbe_y + e < Cinit (5)

i=1
To insure dispatchability in this case, one must check
k(k — 1) subsets of k — 2 activitics. In addition, in-
stead of adding one constraint in the cRN, one must
add k constraints to insure dispatchability. Obviously,
the situation will be worse with still weaker conditions,
and, although for suins of a few upper bounds, the
number of subsets to test decreases, the number of con-
straints to add does not.

So, under the most general conditions, where it is
impossible to assume dependencies among the activi-
ties with respect to resource use (and for indefinite k),
the present condition is evidently the most powerful
possible.

To summarize, we have two conditions for ¢cRN dis-
patchability:

(i) Y, ub; < C
(i) Zk'l ub; + lby < C for all subsets of £ — | ub’s

i=]
In the first case, we don’t need to bother with the cRN
al all during execution; in the second case we need a
constraint Lo insurc dispatchability. Hereafter, these

will be referred to as conditions (i) and (ii).

Handling Interactions between STN
and cRN.

For purposes of schedule execution, the STN and ¢cRN
are combined into a single connected network (cf. Fig-
ure 4), so that changes in either component can affect
the other. Therefore, to establish dispatchability in
this network, we must consider interactions between
these basic components. (Note that we are still con-
sidering a single bout of instances of resource use prior
to release.) The basic problem is that propagation in
onc component that leads to domain restrictions can,
in turn. lead to restrictions in the other component
that can compromise the conditions for dispatchabil-
ity. Specifically,
1. Reductions in cRN upper bounds may delete values
in the STN that arc necessary to insure dispaicha-
bility in the temporal subnetwork.

2. Increasing a lower bound of an STN iuterval may
require an increase in the lower bound of the corre-
sponding resource interval in the ¢cRN, thus violating
c¢RN dispatchability condition (ii).

this sec&ion we describe procedures that can be

). All r}é‘ﬂts resery

dwed duting execution to avoid compromising dis-
patchability in these ways. Since these are different for
the two kinds of interaction, each is described in turn.

For the cRN—STN interaction, the following obser-
vation is pertinent. If changes are made to the STN,
the only part of the graph we have to worry about is be-
tween the point of change, which we will call the “crit-
ical point”, and variables that are already instantiated
(i.c. events that are already fixed). Dispatchability will
still hold with respect to future domains by virtue of
the original STN dispatchability. Now, when we detect
that a resource constraint may be violated, if instead of
lowering the upper bound of a future resource-interval
in order Lo satisfy that constraint, we change the up-
per bound associated with the variable currently being
instantiated, then we reduce the ‘dangerous’ region of
the STN (variables with domains that might contain
unsupported values) to NULL. Moreover, condition (i)
for cRN dispatchability insures that we will not have
to reduce any upper bounds for resource use until we
arrive at the penultimate member of the set of activ-
ities - regardless of the order in which these activities
are fixed. In this case, reduction of the upper bound of
the penultimate activity cannot compromise dispatch-
ability, given the dispatchability of the original STN
and the bijective character of the mapping of temporal
onto the resource intervals.

To insure that the ST'N—cRN interaction does not
compromise dispatchability, before selecting a tempo-
ral value for an event we must ascertain that this will
not lead to an increase in any lower bound for the inter-
val of a futurc activity that uses the resource. Given
condition (ii), the possibility that increasing a lower
bound for resource use will compromise dispatchabil-
ity does not even arise until one reaches the last ac-
tivity in the bout. T'his means that if a subset of the
activities associated with use of a resource can be des-
ignated as “candidate-last activities”, then we do not
have to consider this problem unless one of these ac-
tivitics is affected. Alternatively, we can consider the
set of “candidale-penultimate activities™, and in this
casc we can coordinate the set of STN domains with
the set of ¢cRN dornains that are relevant to the prior
interaction.

Both interaction problemns can be solved, therefore,
if it can be gnaranteed that when we encounter a situa-
tion where a change can compromise dispatchability by
limiting future options, we can always choose a value
that will not have this effect. Fulfilling the require-
ment thal such values always exist is simplified by the
following theorem.

Theorem 1. The requirements, that the lower
bound be present in the penultimate cRN domain, so
that the final domain does not need to be adjusted, and
thal there will be a value in a temporal domain that
does not necessitale increasing the lower bound of an

Wallace 287

Fro%ﬁffﬁ&()(bf’ﬁggeedmgs Copyright © 2

adjacent domain in the candidale- genultimatr sel, each

Proof: Given the cRN guarantee, the bijective,
monotonic mapping from STN to cRN implics that
the original lower bound will be present in the corre-
sponding STN domain and, therefore, that values were
present in adjacent domains to support this value. Al-
though the cRN guarantee involves a specific penulti-
mate activity, it must hold for any activity that might
hecome the penultimate one. It therefore pertains to
the sanie set of activities as the STN guarantee. Con-
verscly, the STN guarantee is that all lower bound val-
ues in the candidate-penultimate set can be supported,
and this implies the cRN guarautee by virtue of the hi-
jective, monotonic mapping.

Giiven this theorem, a demonstration of either guar-
antee is sufficient to solve the ‘interaction problem’.
We will show how to guarantee STN lower bounds.

First, we must determine which activities fall into
the candidate-penultimate set This can be done as
follows. First find the resource-activity in the cur-
rent bout with the latest end-time. If this activity
doesn’t overlap with any other resource-activity, then
it needn’t be considered, and one can start with the
nexi-latest activity. After locating the first activity
1o be considered, we must also find all other resource-
activities whose time hounds overlap with the first. To-
gether, these comprise the candidate-penultimate set.

Now, the only situation where the lowest value in a
critical domain might necessarily be increased is one
with, (i) a variable, or node, C that represents the
end-time of a resource-activity in the candidate penul-
timate set and, (ii) an arc (constraint), AC to that
node from a node other than the start-time, B. More-
over, there will only be a problem if constraint A(
forces the end-time C to he greater than a given value,
without putting similar constraints on the start-time.
In this case, depending on the start-time chosen, the
cnd-time and hence the interval-duration can be foreed
to take a value greater than the minimum. This can
be avoided when the STN is made dispatchable by
replacing the constraint between A and C with one
between A and B, the start-time for the same activ-
ity. 'This can be done (given the triangle inequality)
if | AB | | BC | = | AC | (Muscettola, Morris, &
Tsamardinos 1998). We will assume that this can be
done during the planning stage, where there is more
time for processing and cven undoing results to meet
this criterion. As a result of this manipulation, both
the start- and end-times are subject to the same con-
straint, so the restriction on end-times that we must
avoid cannot occur. If this is done for each such situ-
ation involving a candidate-penultimate activity, then
this establishes the guarantee.

The following idea allows us to generalize these guar-
antecs so that values need not be present to support
lower bounds, but only a specificd lowest value.

288 AIPS-2000

Definition 1. We will refer to the accumulated dif-

00, AAAT (wwiw.aai.org). Al IS Bl ween the original upper bounds for resource

use, u and the aclual usage r,

J

i=1 i=1

as the (accumulated) credit thal we may apply in the
Sulure when choosing ralues for resource use.

By “applying credit”, we mean that one can allow
for more than minimal usage, in effect increasing the
lower bonnds, as long as one does not exceed the credit.
(In this case, of course, we must reduce the quantity
of credit that is available by an amount equal to the
increase in the lower bound.) An important special
case is when the credit. equals or exceeds the maximum
excess use, Since we can calculate the latter quantity
before exccution by sublracting the capacity from the
sum of upper bounds, we can compare this with the
credit during execution. If atl any point during a hout
of resource use, the credit exceeds this quantity, then
dispatchability cannot be compromised by any further
choices of values for this bout.

More gencerally, the ynantity of credit can be used to
relax requirements on changing the upper bound for
an activity in the candidate-penultimate set. In this
cage, we can selecl a value if the consequent decrease
in the upper hound for the last activity is less than or
equal o the credit.

With these procedures we can insure dispatchability
in the combined STN-cRN network with only a very
modest restriction on the ‘frec-wheeling’ execution that
was possible with the STN alone. That is, we must in-
troduce a degree of look-ahead into the procedure in
order Lo handle the cRN-STN interaction. Fortunately.
condition (ii) insures that look-ahead will be fairly re-
stricted. To handle cRN—STN interaction, at the time
when a penultimate STN node is considered for iustan-
tiation, the Executive must check a node in the ¢RN
adjacent to the associated ¢RN node. On the other
hand, since the STN—cRN interaction is taken care
of before cxccution, no look-ahead is required to eflect
the associated guarantee, Moreover, if we are able to
set up a schedule so that only a limited number of ac-
tivities can ever become the penultimate activity, we
can also reduce decision making during planning.

One other potential restriction on dispatchable ex-
ecution with a simple STN must be mentioned. In
the original description of dispatchable networks by
(Muscettola, Morris, & Tsamardinos 1993) the authors
describe a procedure for deriving ST'Ns with the mini-
mum number of arcs consistent with dispatchability. In
the present situation, although it is still possible to de-
rive a “minimal network™, this might not include all the
arcs that represent activities associated with resource
use. As a consequence, it would sometinies be more
difficult to calculate resource use appropriately during

mohedute exeotioredngm any,cases; Fhoraactivitieass-or). A||1r1gﬂ‘t‘§tré§er\7eés"°"t}

sociated with resource use are a small minority of all
activities to be scheduled, the use of networks that are
not completely ‘minimalized’ will probably have only
minor effects on execution efficiency.

Dispatchability over Sequences of
Resource Release.
The conditions described in previous sections pertain
to schedule instantiation involving a single bout of re-
source usage, either before the first instance of resource
release, or between such instances if these latter return
the capacity to its initial value. Complications arise
when the capacity is not restored to its original value.
For one instance of release, dispatchability conditions

associated with resource use can be expressed in terms
of Crew,

Cnew = Cinit — max(0. min(Z «Cinit) — 1by) (6)

Rprev

where lb, is the lower bound for release and the sum on
Rprey is a sum of upper bounds on resource use prior

to release. .
More generally, we have the following nested recur-
rence relation for the ith instance of resource release,

Cc, = Cq — max(O,ma.x(_O,..max(_O,min(2 \Co) — 1by,)
v i-1 1

Ro
+ min(z.cl) = byp,) ...
Ry
+min(z,C,-_l) - Iby,) (7

This condition on dispatchability is conservative. How-
ever, during execution successive precise limits on ca-
pacity can be calculated when the values for usage and
release are established. In this case, ithe formula is
simply,

Ci = Ci—yx — mazx(0, Z - P) (8)

Rl—]

If, to avoid extra bookkeeping during execution,
limits are pre-calculated, this analysis suggests some
strategies for building a plan/schedule:

1. Limit the length of the plan sent to the Executive so
that there are only a small number of instances of
resource release. This will reduce the cost of comput-
ing equation (8) and will avoid overly conservative
values for C;, due to the fact that the latter is based
on upper bounds for resource use.

2. Arrange to have all of the capacity released; over-
schedule this activity il necessary.

The argument above does not consider situations in
which resource use overlaps release. In such cases, a
simple ordering by start times can be used to allocate
such aclivities to bouts so that dispatchability condi-
tions can be calculated correctly.

r-time = 0

S ={}

boutsize = ko
boutcounter = 0
curr_capacity = Cini

2. choose TP € A such that curr_time € [TP), TPu]

3. Let TP = curr_time
S=98 U TP

4. Propagate to neighbors in STN and cRN

5. If TP is the start of a resource activily
increment houtcounter
If (boutcounter = boutsize — 1)
check constraint in cRN to see if activity duration
must be reduced; if so, adjust [Ib,ub] for endtime
associated with this TP
clse if TP is the end of a resource activity
update) _rand Y (u — 1)
else if TP is the end of a release activity
update curr_capacity
set boutsize = kpext
boutcounter = 0

6. Let A = A J {TP;} such that no negative edges
from TP; have dostination ¢S

7. While curr_time ¢ [min TP A ,min TP A“]

curr_time = curr_-timne 4+ A time

8. IfITP ¢ S go to 2.
else
done

Figure 5: Dispatching executlion controller for ¢cRN-
STN. Lines in boldface are from original dispatching
controller for STN in Muscettola ct al 1998 (their Fig.

3).

Dispatching execution for cRN-STN

Once proper conditions arc established for execution,
the latter is not much different from the original dis-
patching execution algorithm of {Muscettola, Morris,
& Tsamardinos 1998) (Figure 5). The only important
difference is that the procedure must now keep track
of the instantiation of resource activity start-times in
order to detect when the next to last activity in a bout
has started so it can perform the tests for ¢cRN dis-
patchability. (The procedure in Figure 5 does not in-
clude the case where the sumined credit exceeds the
maximuin excess usage for this bout, but this can be
handled by elaboraling the test within the first if clause
in step 5.)

The procedure in Figure 5 handles only one resource.
With more than one resource one may have to track
more than one bout simultaneously. This can be done

Wallace 289

Fronfibiparzays srdreas

H%ﬂ). All rig
tion, and where cach resource time point is a‘SSOCIaL?H

wSpipgicetedde RESAURRRIR NG

with an index, without altering the time complexity.

To show the opcration of this algorithm, we return
to the earlier example of STN dispatchability (I'igure
2) and run through it again, this time considering also
the resource constraint (Figure 4). In the following
exccution, A is the set of candidates for instantiation,
as in the pseudocode above, and | is the interval used
in step 7.

=0 b=4-9,¢=4-6
= {b,c}, T = [4,6]
h=5 d=7-9
est cRN d=7-7
A-‘—{(_Ll} I = [4,6]
¢ = e=10—-13
A:{d(*} 1=[7,7
d=17 e=10—-12,f=14—-17,g= 14— I7
A = {ef}, 1 =[10,12]
c =12 f=1T-17.g=17-17
A={fg}.1=[17.17)
f=17 =17-17
A= {g}]. 1 =[17.17]
g=17
A={}

It will be observed that. in this case, the only effect
of the additional dispatchability requirements is the
lookahcad step in the ¢cRN after node b is instanti-
ated, which leads to a restriction of activity (b.d) to
the minimum duration.

Summary and Conclusions.

In this paper we have shown how to extend the iin-
portant property of dispatchability to the case where
consumable resource constiraints arc involved. More-
over, we have shown that it is possible to allow the
same kinds of flexibility with respect to feasible val-
ues thal is possible with simple temporal networks, as
demonstrated in the work of (Muscettola, Morris, &
Tsamardinos 1998).

Throughout the discussions in this paper, the crite-
rion for ¢cRN dispatchability referred to as condition
(i1) has played a prominent role. As shown in Sec-
tion 4, this criterion nol only guarantees dispatcha-
bility in the ¢RN component, but figures critically in
procedures that prevent interactions between the STN
and cRN from compromising dispatchability in either
coniponent.

Not surprisingly with a morc complex network to
process and with more conditions to test, the procedure
during execution is more complicated than it was with
the STN alone. However, since it is possible to estah-
lish many of the conditions for dispatchability before
schedule execution, the effect on efficiency of execution
should be relatively modest. At the same time, the ex-
ample in the previous section suggests that insuring

2% AIPS-2000

dispatchability under these conditions may set addi-

tional limits on the utilization of a resource. (But note
that with only two resource-activities, as in the present,
example, this eflect may be maximal.) This suggests
a need for further work to develop strategies for en-
hancing usage while complying with requirements for
dispatchability, and to better characterize the tradeoff
that may cxist between these two goals.

The present discussion is pertinent to a large class
of problems encountered in planning by autoncmons
systems such as spacecraft, of which the solid state
recording problem is one example. Tn these systems,
greater flexibility of resource use can make operavions
involving tasks such as data collection more effective,
thus increasing the likelihood that overall mission goals
are accomplished.

References

Dechter, R.: Meiri, L.; and Pearl, J. 1991. Temporal
constraint networks. Arlificial Intelligence 49:61-95.
Jeavons, P.; Coben, D.; and Giyssens, M. 1995. A uni-
fying framework [or tractable constraints. In Monta-
nari. U., and Rossi. F., eds.. Principles and Practicr
of Constraint Programming - CP 95, volume 976 of
Lecture Notes in Computer Science. Berlin: Springer.
276 291.

Muscettola, N. 1994, HSTS: Integrating planning
and scheduling. Tu Zweben, M., and Fox, M. S., eds.,
Intelligent Scheduling. San Mateo, C'A: Morgan Kauf-
mann. 169 212,

Muscettola, N.: Morris, P.; and Tsamardinos, [. 1998.
Reformulating temporal plcmb for efficient. execution.
In Proceedings, Sizth International Conference on
Principles of Knowledge Representalion and Reason-
ing, KR-98.

Muscettola, N.; Nayak, P. I’,; and Pell, B. 1998. Re-
mote agent: to boldly go where no Al system has gone
before. Artificial Intclligence 103:5 7.

