
Dispatchable execution of schedules involving consumable resources *

R. J. Wallace, E. C. Freuder
Constraint Computation Center

University of New Ilampshire, Durham, NH 03824
rjw,ecft~cs.unh.edu

Abstract

Earlier work on scheduling by autonomous systems
has demonstrated that schedules in the form of simple
temporal networks, with intervals of values for possi-
ble event-times, can bc maxle "dispatchable~, i.e. ex-
ecutable incrementally in real time with guarantees
against failure due to unfortunate cvcnt-time selec-
tions. In this work wc show how the property of
dispatchabi]ity can be extended to networks that in-
clude constraints for consumable resources. We first
determine conditions under which a component of thc
network composed of resource constraints associated
with a single sequence of activities that use a resource
(’~bout") will support dispatchability. Then we show
how to handle interactions betwcen resource and tem-
poral subnetworks to insure dispatchability and how to
handle sequences of bouts interspersed with resource
release. The results demonstrate that flexible han-
dling of resource use can be safely extended to the
execution layer to provide more effective deployment
of consumable resource.s.

Introduction.
From both an intellectual and practical standpoint, the
development of autonomous systems that can schedule
their own operations is one of the most important ar-
eas of contemporary artificial intelligence. In this do-
main a de facto standard appears to have emerged, in
which the overall task of plan creation and execution
is apportioned to two distinct components, or "layers"
of the system, a high-level Planner-Scheduler and a
lower-level Executive. The Planner creates a plan to-
gether with an associated schednle of operations. This
schedule is passed to the Executive, which carries it
out by initiating execution of physical components of
the system at designated times.

An example of such a system is found within the
Remote Agent architecture developed at NASA-Ames
and currently deployed for experimental testing in
the Deep Space 1 spacecraft. (See {Muscettola 1994)

*Carried out in association with NASA-Ames Research
Center, Moffct Field, CA and supported in part by NSF
Grant No. IRI-9504316

(Muscettola, Nayak, & Pell 1998) for detailed descrip-
tions of this system.) In this system the Executive is
given certain leeway in selecting times for scheduled
operations. This is necessary in order to adjust the
schedule to the actual conditions of execution. For ex-
ample, failure of a rocket engine to fire immediately
could break a schedule that did not allow a certain
amount of slack in this and subsequent activity times.
This is done by sending time bounds for each event to
be scheduled and allowing the Executive to choose a
specific time within each pair of bounds.

Because the Executive is operating in real time, the
constraints on its operation are severe. In particular,
during the instant|at|on of a schedule the Executive
cannot afford to backtrack, i.e. it cannot go back and
reschedule earlier activities whenever its previous deci-
sions have caused it to reach a point where there are no
optkms (a ’dead cud’), bccause these caxlier activities
may have already begun. For this reason, when actual
plan execution begins there must be guarantees that a
schedule derived from the time-envelopes is executable
incrementally or "dispatchab]e". That is to say’, re-
gardless of the event times that are selected by the
Executive (operating in real time), the result must be
viable schedule. In recent work it has been shown that
consistent temporal constraint networks, which are a
basic component of the Planner-Scheduler’s output in
the Remote Agent system, can be made dispatchable
(Muscettola, Morris, & Tsamardinos 1998).

At present, flexibility of execution can only be pro-
vided with respect to temporal constraints. Ideally one
would like to provide this flexibility for resource use as
well, with similar guarantees. In the present work we
extend the notion of dispatchability to networks that
include constraints for consumable resources in addi-
tion to tempor’cd co,sl.raints. An example of the kind
of resource we are concerned with is the solid statc
recorder that is used in spacecraft to store data from
recording devices prior to transmitting it to earth. In
this case there is a scries of activities that require data
storage (resource use), punctuated at more or less reg-
ular intervals by activities in which data is transmitted,
thus freeing storage space (resource relemse). Here, the

Copyright © 2000, American Association for
Artificial Intelligence. All rights reserved.

Wallace 283

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

probietn is to insure that the capacity of the resource is
never exceedpd regardlpss of the start- attd end-times
that are chosen for these activities during plan execu-
tion.

As wo~dd be expected, establishing dispatchability
for I he resulting simple temporal plus consumable re-
sou r(:o n:,twork (STN-c El.N} is less straightforwar,! than
the at;alogous probletn for tim STN alone. We han-
dle th.s [)rot.lien: t.hroi.gh a -eri,~s of :h,coutposi~ion
st r,uegies. Spec-lically, we establish conditions for dis-
I:’d,"n.:btlity that pert, am to the cRN ahme, then for
efi’ects of each component on the other (STN--RN
and R.N~STN interactions), and finally for successiw,
"1:outs’ or activities that use the resource, that are sep-
aram+ by ins:an:’.,’s of resource release.

In Section 2 w,’- describe the STN-cR.N. Section 3
discusses con,liti,,ns fi)r dispal.chal:ility involving th,-
cP~N. Section 4 discusses how to insure dispatchabil-
ity for an STN-cRN network, despite possible inter-
actions between tit(’ STN and R.N. Section 5 extends
the analysis to cover successive bouts or resource use
as described shove. Section 6 describes Ih, ¯ revised
dispatdfing exee,ltion algorithm. Section 7 gives con-
ch,sions.

Structure of a
temporal-consumable-resource network

In the prese, nt Remote Agent scheduling system, the
E.xecutiw: receiw,s all envelope of acceptable scheduling
times in the form of a simple temporal network (STN).
An exarnple of such a network is shown in Figure !.
The key feature or such networks is that each event is
azsociated with a single interval. This insures that the
network is tractable, since it can be transformed into
a digraph and solw:d with shortest path algorithms
(Dechter, Meiri, &. Pearl 1991).

That the STN in Figure 1 is not dispatchable can
be shown by some simple examples. As in the original
work hy (Muscettola. Morris, & Tsamardinos 1998),
we assume that during execution an event x is selected
front a pool of candidate events whose antecedents have
already been instantiated, and that the current tin,’+ is
now within the interval bounded by the earliest lower
and tipper bounds for event-times in this candidate set.
In addition, constraint propagation can take place after
an event has been given a specific time of occurrence,
and is restricted to adjacent nodes in the network. In
the following example, instantiations are shown on the
left and results of propagation on the right, in terms
of the acceptable interval for events whose nodes are
adjacent in the constraint graph.

a=0 b=4-9, c=4-6
b=5 d=7-9
c = 6 e = 10- 13
d = 7 f = 14- 17
e= 13 g= 18-23

f=17 g=?

llere, legal assignmet,ts 1.o d and e propagate to f and
g. respectively, l)roduciug t,on-overlapping int.crvals for
~heir domains, whic], causes execution to fail when the
constraivt, specie’trig t.quality of th,’ t, in,.s for t.h,.st, hat-
Id, r events be¢olncs active. As anothe.r t, XalllpJe, Sll[’t-

pose thai e lied l)epll giv,,n the vahm of 12:

e = 12 g= 17-22
f= 16 g=?

In this cast:, f is giw,n a vahn, from its currenl domain
that is eel.stile the current domain of g. so that th,"
equality coostraint cannot be satisfied, and again exe-
cutler, fails.

Figure 2 shows a dispatchabh’ network derived I’rc)m
the STN of Figure 1. htspf’ction of the figure shows
thal. an added explicit constraint between d and <-’ pre-
vents e from taking tile value of 13 if (i is given the
valne 7, as in our first example. The constraint I)e-
tween e a.nd f prevents f from taking the value 16 ife i.~
given the value 12. (l"or t’ornlal argun|euts that sitch
network is always ,lispatchable. the reader is refi,rred
to (Muscettola, Morris. ,L" Tsamar(linos 1998).)

Resource constraints can be incorporated into the
data structure sent t.o the Executive via a separal.e
suhgraph with different, characteristics (the cElN).
this c~u~, ini,erv~ls l’ei)l’(-’sPIII I.)ounds 01II rt, SOllr(’e ilSe
a given acl.ivi|,y. For (’xattll)h., in I,’igure 3 each illlprval,
[10,20], reprvsonts it range or possil)le use of a resource
between lO and 20 tlllit.s. In addition, k-ary constraints
between ,.’ndpoints l)r,w,:nt the resource capacity front
beiug exceeded. In t.]m pres,’nt exampl,-, the capacity
is 30 resource units, all(l the Sillll Of the ul)per I)ounds
exceeds cal)acity I)y 10 units. Therefore, if activity
x starts I)efore y, atn,.I if the duration stipulated fox"
the former activity res,,Ir.s in its using more than Ill
resource units, then the upper bound of y must be
reduced by the ,,xcess amount in order to satisfy the
constraint between x attd y.

In the full data strt,cture, cKN nodes are linked to
STN nodes that correspond to the same activity [Fig-
tire 4). Resource unse is assumed to t)e a nondecreasing
fimction of time, and h)r expository purposes we will
a.ssmne a linear relation, specifically, multiplication of
the temporal bounds by a positive or negative quantity
for resource use and reh’ase, respectively, this quantity
being constant for a giwm activity, or imi)orl.ance is
the fact that the maplfing from STN event to associ-
ated resource use is bijective, i.e. one-to-one and o,Lto,
as well as monotonic. The linkage between STN and
cKN is indicated by the desired lines il, Figure .1, each
labeled witlt its constant of proportionality.

Both her,: and il, wl,;+t fi)llows, we focus on (’t~ses
which there is a single consumable resource. If there
is more I,han one sut’h resource l, hat nunst I)e handh:d.
theu each resource is associated with a Sel)arat,e cRN.

284 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

E2,1 .Q ETi0j .©

E,,I -G E ,01
[0,0]

Figure 1: A consistent simple temporal network.

[2,4] ,(T) [7,101 .(7")

Figure 2: The temporal network of Figure 1 made dispatchable.

©

Q [1o,2o]

y_<30-x /

[10,20] "~

Figure 3: A consumable resource network.

and each member of tile set of cRNs is connected to
the STN in the maturer depicted in Figure 4.

Before beginning the discussion of dispatchability of
the composite network, it is important to note that the
tractability of this network as a constraint satisfaction
problem is not in question. This is because all con-
straints in both the temporal and consumable resource
subnetworks are in the same tractability class, which
(Jeavons, Cohen, & Gyssens 1995) refer to as Class
2 (constraints closed under binary operations that are
associative, commutative, and idempotent).

Making the cRN support
dispatchability.

If activities can either consume or release a given re-
source, then the entire sequence of such activities call
be divided into ’bouts’ of resource use separated by
instances of release. In the next two sections we will
confine our attention to a single bout of resource use
and its associated cRN. and conditions for dispatcha-
bility will be specified within this context. In a later
section we show that the conditions for dispatchabil-
ity discovered for a singlc bout can be extended in a
straightforward way to an entire sequence of activities.

To support dispatchability, a cRN nmst allow any
sequence of instantiatio,ls to be made in tim ’mother’
STN without resource capacity being exceeded. Given
the bijective mapping from STN event to resource use,
this implies that any choicc of value for an instance of
resource use must allow some values to be chosen for
all future (as yet uninstantiated) variables. We refer
to this loosely as "cRN dispatchability".

For a single bout, the simplest sufficient condition
for cH, N dispatchability is that the sum of the upper
bounds on resource use be less than or equal to the
initial resource capacity,

k

ubi _< C.,. (1)
i----I

Wallace 285

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Figure 4: C.ornbined temporal-and-consumable-resource m~l, work. in which intervals fbr duration (STN) and resource
use (cRN) associated with the same activity arc linked together. Such links ar<, iudical.(,d by dashed lines; the linked
intervals are those associated with arcs directed toward the nodes of origin and destination for the cross-links. For
example, activity x in the cRN is associated with arc (b,d) in the. STN.

Obviously, in this case the Executive does not. need to
process the cRN at all, since whatever values it selects
from the STN, the resulting resource use will be within
capacity.

Unfortonately. this simple condition puts limitations
on tire range of choice that can he given to the Exec-
ut.iwy. This can be seen in Figure 3, where the sum
of upper bounds (40) is well above t.hc capacity (30).
Nonetheless, the cl’tN in this figure is dislmtchable, be-
cause for every value ot" resource use chosen for activity
X there is a usag,: value for activity Y within the desig-
nated bounds, llere, disl~atchability obviously depends
on the constraint between x and y. This suggests a
weaker condition for dispatchability that at tire same
tim,’ allows more flexibility in the initial upper hounds
on resource use by single activities.

For a set of k activities that use a given resource,
this condition can be stated as follows. For all subsets
of k - 1 activities, the difference between the initial
resource capacity and the sum of the upper bounds of
usage for these activities is greater or equal to the lower
bound of usage for the remaining kth activity. I.e.,

k-I

Cinit -- E ltbi > Ib~
i=1

Or, to put this in a form corresponding to the first
in(:quation,

k-I

E ubi + lblc < Cinit
i=t

(3)

That the lime complexity for determining whether
this condition hohls is no greater than that r(,quired
for the [irst condition is shown by the following argu-
ment.. There are O(k) subsets of size k- i, and these
can be generated in sequence by swapping single, ac-
tivities in anti out, and respective sums after the first.
can be generated by single additions and subtractions.
This indica/q~s that disl)atchability in this sense can be
determined for a set of k activities in ()(k) time. (Note
also that this processing will be. done during the plan-
ning l.+,ha,s,’,+, where t.itne constraints are not as severe.)

Adjusting upper bounds when w,. find that the dis-
patchahility condition is violat~ed also appears to be
easy, at. least, under some conditions. Thus, if the sum
for one of the subsets is < the capacity, t, he, the upper
bound that does not appear in the mtm can be reduced
to insure dispatchability. The amount it must be re-
duced is equal to a difference of differences. Suppose a
is the element in question, i.e. the activity whose lower
bound is in the sum that is < the limit. And suppose
that b is the elenl(,nt whose lower bouud is in I,hc sum
thai. exceeds the limit by the grealt:st amount. Viz,

k--2

ttbi + ubb + Iba < ~’~,tit
iml

and
k-2

y~ ttbi q- rtb,, A- Ibb :> (;init

i=1
Then the Ul.)per boun<l of a can be reduced hy the
following amount to insure dispatchability for this set:

(tt a -- I,,) -- tub -- lb) (4)

286 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Since (Ua - la) must be greater than (Ub -- ib), we know
that this difference must be positive, and obviously
it is <_ the original difference between ua and la. If
there is no sum less than the limit, it is sufficient to
choose a sum, reduce one or more upper bounds until
the condition in equation (3) is met., and then use the
above procedure.

At present, this condition appears to be the weakest
one possible that is still practical. Consider the next
weakest condition,

k-2

y~ubi + lb~_l + lbk < Cinit (5)
i=1

To insure dispatchability in this case, one must check
k(k - 1) subsets of k - 2 activities. In addition, in-
stead of adding one constraint in the cRN, one must
add k constraints to insure dispatchability. Obviously,
tile situation will be worse with still weaker conditions,
and, although for sums of a few upper bounds, the
mmlber of subsets to test decreases, the number of con-
straints to add does not.

So, under the most general conditions, where it is
impossible to assume dependencies anmng the activi-
ties with respect to resource use (and for indefinite k),
tile present condition is evidently the most powerful
possible.

To summarize, we have two conditions for cRN dis-
patchability:

(i) EY=I ubi < C

(it) ~-~y-i1 ubi + lb, <_ C for all subsets of k - I ub’s
In the first case, we don’t need to bother with the cRN
at all during execution; in the second case we need a
constraint to insure dispatchability. Hereafter, these
will be refe.rred to as conditions (i) and (ii).

Handling Interactions between STN
and cRN.

For purposes of schedule execution, the STN and cRN
are combined into a single connected network (of. Pig-
ure ,t), so that changes in either component can affect
the other. Therefore, to establish dispatchability ill
this network, we must consider interactions between
these basic componeots. (Note that we are still con-
sidering a single bout of instances of resource use prior
to release.) The basic problem is that propagation in
one component that leads to domain restrictions can,
in turn. lead to restrictions in the other component
that can compromise the conditions for dispatchabil-
ity. Specifically,

1. Reductions in cRN upper bounds may delete values
ill the STN that are necessary to insure dispatcha-
bility ill the temporal subnetwork.

2. Increasing a lower bound of an STN iuterval may
require an increase in tile lower bouud of the corre-
sponding resource interval in the cR.N, thus violating
cRN dispatchability condition (ii).

In this section we describe procedures that can be
followed during execution to avoid compromising dis-
patehability in these ways. Since these are different for
the two kinds of interaction, each is described in turn.

For the cRN--+STN interaction, the following obser-
vation is pertinent. If changes are made to the STN,
the only part of tile graph we have to worry about is be-
tween the point of change, which we will call the "crit-
ical point", and variables that are already instantiated
(i.e. events that are already fixed). Dispatchability will
still hold with respect to future domains by virtue of
the original STN dispatchability. Now, when we detect
that a resource constraint may be violated, if instead of
lowering the upper bound of a future resource-interval
in order to satisfy that constraint, we change the up-
per bound associatcd with the variable currently being
instantiated, then we reduce the ’dangerous’ region of
the STN (variables with domains that might contain
unsupported values) to NULL. Moreover, condition (ii)
for cltN dispatchability insures that we will not have
to reduce any upper bounds for resource use until we
arrive at the penuhimate member of the set of activ-
ities - regardless of the order in which these activities
are fixed. In this case, reduction of the upper bound of
the penultimate activity cannot compromise dispatch-
ability, given tile dispatchability of the original STN
and the bijective character of the mapping of temporal
onto tile resource intervals.

To insure that the STN--,cRN interaction does not
compromise dispatchability, before selecting a tempo-
ral value for an event, we must ascertain that this will
not lead to all increase in any lower bound for the inter-
val of a future activity that uses the resource. Given
condition (ii), tile possilfility that increasing a lower
bound for resource use will compromise dispatchabil-
ity does not even arise, t,ntil one reaches the last ac-
tivity in the bout. This means that if a suhset of the
activities associated with use of a resource can be des-
ignated as "candidate-last activities", then we do not
have to consider this problem unless one of these ac-
tivitics is affected. Alternatively, we call consider the
set of "candidate-penultimate activities", and in this
case we can coordinate the set of STN domains with
the set of cRN domains that are relevant to the prior
interaction.

Both interaction problems can he solved, therefore,
if it can be guaranteed that when we encounter a situa-
tion where a change can compromise dispatchability by
linfiting future options, we can always choose a value
that will not have this effect, l~hflfilling the require-
ment that such values always exist is simplified by tile
following theorem.

Theorem 1. "1he requirements, that the lower
bound be proseat in th¢ penultimate cRN domain, so
that lhe final domain does not need to be adjusted, and
lhat there u, ili be a value in a tempo~ul domain that
does not necessitate increasing the Ion.,er bound of an

Wallace 287

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

adjacent domain in the candidate-penultimate set, each
imply the other.

Proof: Given the cRN guarantee, the bijective,
monotonic mapping from STN to cR, N inlplies that
the original lower bound will be present ill the corr~
spending STN domain and, therefore, that, values were
present in adjacent domains to support this value. Al-
though the cRN guarantee involves a specific penulti-
mate activity, it must hold for any activity that might
become the penultimate one. It therefore pertains to
the same set of activities as the STN guarantee. Con-
versely, tile STN guarantee is that all lower bound val-
ues in the eandidate-penultilnate set can be supported,
and this implies the cRN guarantee by virtue of tile hi-
jective, monotonic nlapping.

Given this theorenl, a denlonstration of either guar-
antee is sufficient to solve tile ’interaction problem’.
We will show how to guarantee STN lower bounds.

First, we must deternfine which activities fall into
tile candidate-penultinlate set This can be done as
follows. First find the resource-activity in the cur-
rent bout with tile latest end-time. If t.his activity
doesn’t overlap with any other re.source-activity, then
it. needn’t be considered, and one call start with tile
next-latest activity. After Io(,ating the first activity
to be considered, we must also lind all other resouree-
activities whose time bounds overlap with the first. To-
gether, these comprise the candidate-penultimate set.

Now, the only situation where the lowest value in a
critical domain ,night necessarily be increased is one
with, (i) a variable, or node, (7 that represents tile
elld-t.ime of a resourct~-activity in the candidate penul-
timate set and, (it) all arc (constraint}, AC to tllal
node from a node other than the start-time, B. Mor,~-
over, there will only be a problem if constraint AC
fi)rces the end-time C to be greater than a given value.
without putting similar constraints on the start-time.
Ill this case, depending on the start-time chosen, the
end-time and hence the interval-duration call be forced
to take a value greater than the mininmm. This can
bc avoided when the STN is nlade dispatchable by
replacing the constraint between A and C. wit.ll one
between A and B, the start-time lbr tile same activ-
ity. This can be done (given the triangle inequality)
if IABI + IBCI= IACl(Muscettola, Morris, g+
Tsamardinos 1998). We will assume that this can be.
done during the planning stage, where there is more
time for processing and even undoing results to meet
this criterion. AA a result of this manipulation, both
the start- and end-times are subject to the same con-
straint, so the restriction on end-times that we must
avoid cannot occur. If this is done for each such situ-
ation involving a candidate-penultimate activity, then
this establishes the guarantee.

The following idea allows us to generalize these guar-
antees so that values need not be present to support
lower bounds, but only a specified lowest value.

Definition 1. IVe will refer to the accumulated dif-
ference b(,twcen the original upper bounds for resource
use, u and the actual usage r,

J

ZI’b’ - Z",.
i=1 i=1

as the (accumulated) credit that we may apply in the.
futu1~ when. choosing valses for resource use.

By "applying credit", we mean that one (’all allow
for more than minimal usage, in elfect increa.siltg the
lower bounds, a.s long as one does not exceed lilt, (’rediL
(In this case, of course, we inust reduce tile quantity
of credit that is available I)y an amount equal to the
increase ill the lower bound.) An important sl)ecial
case is when the credit equals or exceeds tile nlaxirnunt
ex(‘ess lisle. Since w," cao calculate the latter quantity
before execution by suhl.ract.ing the capacity from the
sum of upper bounds, we can cosit)are I.his wilh the
credit during execution. If al. ally point during a bout
of resource use. the credil excet~ds this quantit.y, then
dispatchability calmer be conlpromisc.d by any further
choices of values for this bout.

More gent:rally, the quantity of c,’edit can be used to
relax requirelnents on changing the upl)er I)ound for
an activity ill tile (,andidatcx-penultil|mte set. Ill this
ca.,~e, we (,all seleel, a value if the c.onst’tlUe|ll ,lecrea.,~e
ill the upper hound for I.ht, last activity is less than or
equal to the credit.

With these procedures w,." Call insure disi)at.chability
ill the. combined STN-cRN nelwork with only a v,,ry
nlodest rest riot.ion ¢)n I.he ’fre(.’-wheeling’ ,~xecution t hat
was possible with the STN ak)ne. That is, we must in-
troduce a degree of look-ahead into the I)rocedure in
order to handle the cR.N-S’rN interaction. Fortunately.
condition (it) insures that look-ahead will be fairly re-
stricted. To handle cR.N~STN interaction, at the time
when a penultimate STN node is considered for instan-
tiation, tile Executive nmst check a node ill the eRN
adjacent to the associated cH.N node. On I.hc other
hand, since tile STN--cRN interaction is laken care
of before execution, no look-ahead is required to ,,flea
tile asso(,iated guarantee. Moreover, if we are able to
set up a schedt|h’ so I.hat only a limit,:d nunlber of ac-
tivities Call ever I)econle the penultimate activity, we
call also reduce de(’ision nlaking during planning.

One other i~ot.ential restriction on dispatchable ex-
ecution with a sinlph: STN nnist I)e nlentioned. In
the original description of dispatdmble networks by
(Muscettola, Morris, & Tsamardil,os 19!)8) tile authors
describe a procedure for deriving STNs with the mini-
muln number ()lares consistent with dispatchability,
tile prese.nt situation, although it. is still possibh: to de-
rive a "mininlal network", this might not include all the
arcs that represent activit.ies associated with resource
use. As a consc’tllitrll(’e, it. wouhl solnpt, illle8 be IIIOr(.’

diflh:ult to calculate r(.sourtre use appropriately during

288 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

schedule execution. In many cases, where activities as-
sociated with resource use are a small minority of all
activities to be scheduled, the use of networks that are
not completely ’minimalized’ will probably have only
minor effects on execution efficiency.

Dispatchability over Sequences of
Resource Release.

The conditions described in previous sections pertain
to schedule instantiation involving a single bout of re-
source usage, either before the first instance of resource
release, or between such instances if these latter return
the capacity to its initial value. Complications arise
when the capacity is not restored to its original value..
For one instance of release, dispatchability conditions
associated with resource use can be expressed ill terms
of C.e,~,

= Cm,t - max(0, min(,C init) - Ib p) (6
Rpre~

where lbp is the lower bound for release and the sum on
Rpre~ is a sum of upper bounds on resource use prior
to release.

More generally, we have the following nestcd recur-
rence relation for the ith instance of resource release,

= CO -max(O, max(O ..max(O, min(’~ "~, Co} - lbp~)Ct
1

RO

+ min(~-~,Cl) - tbpa)...

R1

+ min(~, Ci-I) - Ib~i) (7)
Ri--!

This condition on dispatchability is conservative. Ilow-
ever, during execution successive precise limits on ca-
pacity can be calculated when the values for usage and
release are established. In this case, the formula is
simply,

C’i = Ci-I - max(O, ~ - PO (8)
Rl--I

If, to avoid extra bookkeepiug during execution,
limits are pre-calculated, this analysis suggests some
strategies for building a plan/schedule:

1. Limit the length of the plan sent to the Executive so
that there are only a small number of instances of
resource release. This will reduce the cost of comput-
ing equation (8) and will avoid overly conservative
values for Ci, due to the fact that the latter is based
on upper bounds for resource use.

2. Arrange to have all of the capacity released; over-
schedule this activity if necessary.

The argument abovc does not consider situations in
which resource use overlaps release. In such cases, a
simple ordering by start times can be used to allocate
such activities to bouts so that dispatchability condi-
tions can be calculated correctly.

1. Let A = {start}
eurr_tlme -- 0
s={}
boutsize = k0
boutcounter = 0
curr_capacity ---- Cinit

2. choose TP E A such that curr_time E [TP1, TPu]

3. Let TP ---- curr_time
S’- S~TP

4. Propagate to neighbors in STN and eRN

5. If TP is the start of a resource activity
increment boutcounter
If (bouteounter = boutslze - I)

cheek constraint in cRN to see if activity duration
must be reduced; if so, adjust [lb,ub] for endtime
associated with this TP

else if TP is the end of a resource activity
update ~ r &nd ~"~(u -- r)

else if TP is the end of a release activity
update curr_capaeity
set boutsize = knext

boutcounter = 0

6. Let A -- A U {TPi} such that no negative edges
from TPi have destination ¢ S

7. While curr_time ~ [min TPAl,min TPAu]
curr_time ---- curr_time q- A time

8. If3 TP ~ Sgo to 2.
else

done

Figure 5: Dispatching execution controller for cRN-
STN. Lines in boldface are from original dispatching
controller for STN in Muscettola et al 1998 (their Fig.
3}.

Dispatching execution for cRN-STN
Once proper conditions arc established for execution,

the latter is not much different from the original dis-
patching execution algorithm of (Muscettola, Morris,
& Tsamardinos 1998) IFigure 5). The only important
difference is that the procedure must now keep track
of the instantiation of resource activity start-times in
order to detect wheu the next to last activity in a bout
has started so it ca. perform the tests for cRN dis-
patchability. (The procedure in Figure 5 does not in-
clude the case where the summed credit exceeds the
maximum excess usage for this bout, but this can bc
handled by elaborating the test within the first if clause
in step 5.)

The procedure in Figure 5 handles only one resource.
With more than one resource one may have to track
more than one bout sinmltaneously. This can be done

Wallace 289

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

with arrays whose indices indicate the resource in ques-
tion, and where each resource time point is associated
with all index, without altering tile time complexity.

To show the opcration of this algorithm, we return
to the earlier example of STN dispatchability (Figure
2) and run through it, again, this time considering also
the resource constraint (Figure 4). In the following
execution, A is the set of candidates for instantiation,
as in the pseudocodc above, and 1 is the interval used
in step 7.

a--O b=4-9, c--4-6
A = {b,c}, I= [4,6]
b -- 5 d = 7 - 9
test cRN d = 7-7
h = {c,d}, I-- [4,6]
c -- 6 e : 10- 13
A = {d,e}, l: [7,1]
d = 7 e= 10-12, f= 14-17, g= 14- 17
A : {e,l’}, I ---- [I0,I’)]
c-- 12 f= 17--I7. g= 17-17
A = {f,g}, 1= [17,17]
f= 17 g= 17-17
A : {g}, I : [17.17]
g--17
g={}

It will be observed that. in this case, the only effect
of the additional dispatchability requirements is tim
Iookahead step in the cRN afl.er node b is instanti-
ated, which leads to a restriction of ac.tivity (b.d)
the minimum dural ion.

Sulnmary and Conclusions.
In this paper we haw; shown how to extend the im-
portant property of dispatchability to the case where
consumable resource constraints are involved. More-
over, we have shown that it is possible to allow the
same kinds of flexibility with respect to feasible val-
ues that is possible with simple temporal networks, as
demonstrated in the. work of (Muscettola, Morris,
Tsamardinos 1998).

Throughout the discussions in this papeL the crite-
rion for cRN dispatchability referred to as condition
(it) has played a prominent role. As shown in Sec-
tion 4, this criterion not only guarantees dispatcha-
bility in the cRN component, but figures critically in
procedures that prevent, interactions between the STN
ant! cR.N from compromising dispatchability in either
component.

Not surprisingly with a rnore complex network to
process and with more conditions to test, the procedure
during execution is more complicated than it was with
the STN alone. However, since it is possible to estab-
lish many of the conditions for dispatchability before
schedule execution, the effect on efficiency of execution
should be relatively modest. At the same time, the ex-
ample in the previous section suggests that insuring

dispatchability under these conditions may set addi-
tional limits ou the utilization of a resource. (But note
that with only two resource-activities, as in the present
example, this effect may I)e maximal.) This suggests
a need for further work to develop strategies for en-
hancing usage while complying with requirem,mts for
dispatchability, and to better characterize the t radeoff
that may exist between these two goals.

The present discussion is pertinent to a large claas
of problems encountered ix] planning by auto,),,mu),,s
systems such as spacecraft, of which the solid slate
recording problcm is one example. In these syslenas.
greater flexibility of resource use, can make opera,.ions
involving t,’mks such as data collection more effectiw:,
thus increasing the likelihood that overall mission goals
are accomplished.

References
Dechwr, R.: Me.iri, 1.; and Pearl, .I. 1991. Temporal
constraint mrtworks. Arl,ificial Intelligence 49:61-95.
Jeavons, P.; C.ohen, D.; and Gysseus, M. 1.995. A uni-
~’ing framework for tractable constraints. In Monta-
hart. U., and R.ossi. F., eds.. Principles and Practice
of Consl,rainl P1vgramming - CP ’95, volume 976 of
Lecture Nol,,.s in. Computer Science. Berlin: Springer.
276 291.
Muscettola, N. 199.1. HS’fS: Integrating planning
and scheduling, lu Zweben, M., and I"ox, M. S., ells.,
fnl.elligcnt Scheduhng. San Marco, C.A: Morgan Kauf-
mann. 169 212.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998.
Refornmlating temporal plans for efficient execution.
In Proceeding,s, Sixlh [nl,ernational Confertnce o1~
Principles of Knowh.dgc Represent,alton and Reason.-
ing, KR-g&

Muscettola, N.; Nayak, P. P.; and PelI, B. I998. Re-
mote agent: to boldly go where no Al system has gone
before. Artifici,d hdclligcncc 103:5 .’17.

290 AIPS-2000

From: AIPS 2000 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

