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Abstract

Effective coordination of distributed human planners re-
quires timely communication of relevant information to
ensure the overall coherence of activities and the com-
patibility of assumptions. This paper presents a frame-
work called CODA that provides targeted informa-
tion dissemination among distributed human planners
as a way of improving coordination. Within CODA,
each planner declares interest in different types of plan
change that could impact his or her local plan devel-
opment. As individuals develop plans using a plan
authoring tool, their activities are monitored; changes
that match declared interests trigger automatic notifica-
tion of appropriate planners. In this way, distributed
planners can receive focused, real-time updates of plan
changes that are relevant to their local planning efforts.

Introduction
The scope and complexity of large-scale planning tasks gen-
erally requires cooperation among multiple planners with
differing areas of expertise, each of whom contributes por-
tions of the overall plan. These planners may be distributed
both geographically and temporally, further complicating
coordination.

As a concrete illustration, special operations forces (SOF)
mission planning involves numerous people working on sep-
arate but interconnected facets (e.g., strategic, logistical,
medical, intel) of an overall plan. The SOF planning pro-
cess itself is time constrained, concurrent, and iterative. In-
dividual planners construct subplans based on their expecta-
tions for the operating environment and requirements. As
the overall plan develops, these expectations change and
modifications must be made to reflect new information. Cur-
rently, such changes are communicated informally by word
of mouth, or transmitted in batch mode at regularly sched-
uled coordination sessions. This approach can lead to omis-
sions and delays that reduce the effectiveness of the overall
planning process and the quality of the resulting plans.

The SOF planning domain lies well beyond the range of
current automated planning technologies. Moreover, fully
automated solutions are unlikely ever to succeed, due to two
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main factors. First, effective planning for this domain in-
volves a huge strategic component that requires evaluating
options with respect to expected plan quality. This type of
knowledge is extremely difficult to capture and model, be-
ing grounded in a combination of intuition, vast experience,
and common sense. Planning knowledge bases constructed
to date mostly ignore strategic issues, focusing instead on
modeling preconditions/postconditions for action applica-
bility and effects. Second, SOF planning tasks (e.g., disaster
relief, counterterrorism) tend to be unique and distinctive,
making it difficult to formulate reusable background knowl-
edge with adequate coverage. As an additional considera-
tion, human planners in this area are reluctant to cede full
control to automated planning systems, even in situations
where automation is possible.

The above characteristics apply to a range of planning
domains, including more general military operations plan-
ning, workflow management, and certain types of space mis-
sions. Techniques from the AI planning community can still
contribute to complex problem solving in these domains.
In particular, plan authoring tools that build on AI plan-
ning concepts are being introduced to improve the qual-
ity and process of plan development (Valente et al. 1999;
GTE 2000; Muñoz-Avila et al. 1999; Knoblock et al. 2001;
desJardins et al. 2002). Plan authoring tools provide a set
of plan editing operations and manipulation capabilities that
support users in exploring and developing plans. These tools
may provide some automated capabilities; however, their
main role is to augment rather than replace human planning
skills. Plan authoring tools introduce a degree of structure
to the planning process, yielding principled representations
of plans with well-defined semantics. Planning aids that rea-
son over these structures can be defined, including tools to
support interplanner coordination.

Three main considerations drive the development of coor-
dination techniques within this type of setting.

Selectivity Coordination strategies must strike a balance
between disseminating too little and too much informa-
tion. Failure to communicate enough information could
be disastrous, if planners do not receive notification of
critical changes. Conversely, flooding planners with much
extraneous information can lead to cognitive overload,
with critical changes being lost in a sea of irrelevant up-
dates. Overcommunication can be a further problem for
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situations where bandwidth is limited (e.g., wireless de-
vices) or communication is expensive.

Timeliness Information about plan changes must be re-
ceived in a timely manner to ensure adequate time for
human planners to assess impact on their local plans and
develop appropriate repairs.

Nonintrusiveness Users are generally reluctant to embrace
technologies that require changes to traditional work
habits (Conklin & Yakemovic 1991). In particular, a user
is unlikely to perform activities beyond his normal sphere
of responsibility unless there are immediate and substan-
tial benefits for him. Thus, coordination tools that impose
demands on users must incentivize their participation.

This paper describes the CODA (Coordination of Dis-
tributed Activities) framework, which provides automated
support for focused information sharing during collaborative
plan development by a team of humans. While motivated by
the SOF planning problem, CODA more generally targets
applications where distributed human planners are assigned
responsibility for developing subportions of a global plan.
These subplans are expected to have a moderate degree of
coupling due to the need for coherent strategy, coordinated
actions, and sharing of limited resources.

Within CODA, each planner declares the kinds of plan
change that are of interest to him or her; we call these dec-
larations plan awareness requirements (or PARs). As users
develop plans with a plan authoring tool, their activities are
monitored. Changes that match plan awareness require-
ments are forwarded automatically to the person who de-
clared interest in them. In this way, distributed planners can
receive focused, real-time updates of plan changes that are
relevant to their local planning efforts.

Because local planners declare precisely the information
in which they are interested, CODA satisfies the criteria for
selectivity stated above. The declaration of plan awareness
requirements constitutes the only additional effort required
by the human planners above and beyond their normal oper-
ation. Because this declaration process will produce direct
benefits to the planner (namely, notification of changes in
which they are interested), the motivation for this specifica-
tion phase is strong. Finally, the real-time nature of the plan
updates within CODA addresses the timeliness concern.

The paper begins with an overview of the planning model
within CODA, followed by a description of the CODA ar-
chitecture. Next, we define our language for expressing plan
awareness requirements along with a formal semantics and
algorithms for matching them to evolving plans. We then
describe an implementation of the CODA framework, focus-
ing on different matching modes that it supports and tools
for creating and registering plan awareness requirements.
Finally, we compare our approach to related work in dis-
tributed AI, active databases, and concurrent engineering.

Plan Model
The generative planning community typically models a plan
as a partial order of actions, and planning as an action se-
lection problem. More generally, planning can be viewed

Objective a goal to be achieved within a plan

Action an activity that can be performed to achieve objec-
tives

Effect a world-state condition denoting an expected result
of plan activities

Event a world-state condition denoting an expected exter-
nality

Decision Point a condition for branching among subplans

Role a required capacity within a plan

Relation a semantic connection among plan objects (e.g.,
an Action supports an Objective or enables an effect)

Figure 1: Plan Ontology for CODA

as a design task that involves creating, refining, and link-
ing objects to produce a composite structure that satisfies
stated design objectives. The plan authoring model underly-
ing CODA embodies this more general model of planning.

Plan Ontology and Structure A CODA plan is composed
of a collection of objects drawn from the plan ontology pre-
sented in Figure 1. Each plan object is characterized by a
unique id and may optionally have a (not necessarily unique)
name. A collection of domain objects augments the plan on-
tology, representing the basic entities within a specific do-
main.

While most of the ontology elements correspond to stan-
dard concepts in AI planning, roles are somewhat different.
A role defines an abstract capacity within a plan, indepen-
dent of the specific object that will eventually fill that ca-
pacity. For example, place roles are used frequently within
the SOF domain: in a disaster relief plan, there may be
one or more assembly-point roles that denote places where
evacuees should assemble to be evacuated. A planner often
knows early on that assembly-points with certain capacities
are required, but the exact physical locations for them and
the actions that make use of them may not be chosen until
later in the planning process.

Planning Process The planning process for CODA in-
volves specifying roles required within a plan, selecting ob-
jects to instantiate those roles, selecting particular actions to
be executed, declaring expected effects and events, and as-
serting relationships among objects and actions. The plan-
ning process is incremental in nature, involving the selec-
tion, extension, and refinement of selected objects and ac-
tions until the plan meets the human planner’s criteria for
adequacy with respect to stated objectives.

Plan Query Language The language for expressing plan
awareness requirements (described in a subsequent section)
builds on a general-purpose plan query language for the
CODA plan ontology. The query language consists of a
typed first-order language specialized to the Generic Frame
Protocol (GFP) model of frame representation systems (i.e.,
it includes the full range of GFP-defined functions and pred-
icates for manipulating classes, instances, and relationships
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(Karp, Myers, & Gruber 1995)). Thus, for example, the lan-
guage supports predicates of the form (C <x>) and terms
of the form (Attr <x>) for every class C and attribute
Attr defined within the ontology. The language further in-
cludes equality, term constructors for lists and intensionally
defined sets, and quantification with respect to an enumer-
able type.

CODA Architecture

Figure 2 presents the architecture of CODA. Within the con-
text of a global plan, individuals work independently to pro-
duce local plans for their assigned tasks. Plans are developed
using a structured plan editor, which supports a broad range
of plan manipulation capabilities. User interactions with the
plan editor are tracked by an observer module, which main-
tains a complete history of editing operations. As events are
logged, a semantically grounded representation of the local
plan is built within CODA. This internal representation can
be annotated and used for reasoning, independent of the plan
editor GUI.

The matcher provides the main inferential capability
within CODA, being responsible for linking observed plan
changes to declared PARs. The matching process may in-
volve reasoning with a background theory, whose role is to
bridge the gap between low-level plan edits and PARs ex-
pressed in high-level languages. When matches are detected,
notification is sent to the local planner who registered the
matched plan awareness requirement.

SOFTools Temporal Plan Editor CODA could be linked
to a variety of manual and automated planning tools. Cur-
rently, it is connected to a specific plan editor, the SOFT-
ools Temporal Plan Editor, which was developed to support
graphical editing of SOF plans (GTE 2000). SOF plans in-
volve the coordination of large numbers of activities and re-
sources, subject to complex temporal synchronization con-
straints. CODA’s event monitoring for the Temporal Plan
Editor covers most of the available editing operations, in-
cluding creation, modification and deletion of objects, mod-
ification of object attributes, temporal shifting of activities,
and resource assignment.

Background Theory The background theory extends the
inferential capabilities of the matching process by allowing
definition of PARs in a high-level language whose expres-
sivity extends beyond the basic plan query language. As
such, the background theory enables a greater separation be-
tween observable plan modifications and the vocabulary for
expressing PARs.

The background theory encompasses three types of in-
formation. The first specializes the CODA plan ontology
with domain-specific information. For example, each do-
main would have its own specialization of the plan ontol-
ogy class Event, which could be organized into a hierarchi-
cal structure of subclasses (e.g., Weather-Event, Equipment-
Event) and instances (e.g., Hurricane). The second type
consists of the domain objects, such as locations and re-
sources, which are also structured in hierarchical fashion.
Our CODA system stores these two types of background
information within the Ocelot frame representation system
(Karp, Chaudhri, & Paley 1999). The third type extends
the underlying plan language with functions and relations
defined over plan and domain objects. For example, our
SOF application of CODA includes functions for computing
distance and compass bearing between geographical points,
and capacity analysis functions.

To appreciate the value of the background theory, con-
sider the class of plan changes corresponding to The addi-
tion of insertion points within two miles of an existing inser-
tion point. Our representation of plans supports the creation
and manipulation of specific types of insertion points (e.g.,
Helicopter-Landing-Zones, Drop-Points) with
a range of attributes that includes geographical location. The
background theory in this case provides the ability to refer
to a collection of instances (i.e., the elements of the type
Insertion-Point), as well as to measure geographic
distance between objects. The above plan change would
be cumbersome to describe without these predefined back-
ground concepts.

Plan Awareness Requirements
We define two types of plan awareness requirement: plan-
state and transition. Plan-state PARs describe conditions of
a plan; in contrast, transition PARs describe changes to a
plan.

Plan-State PARs
A plan-state PAR describes conditions of a plan and is mod-
eled in terms of a well-formed formula in the plan query
language. For example, a plan-state PAR for

There is an arrival to FSB Gold scheduled for after 8 AM

would be represented by the following formula in the plan
query language1:

(EXISTS (?X ?Y)
(AND (MOVE ?X)(FSB ?Y)

(= (NAME ?Y) GOLD))
(= (DESTINATION ?X) ?Y)
(> (ARRIVAL-TIME ?X) 800))

1Symbols preceded by ? (e.g., ?x) denote variables.
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Matching of a plan-state PAR occurs when a modification
yields a plan that satisfies the associated plan query.

Plan Transition PARs
In its most general form, a plan transition PAR describes two
plan states P and P′, and changes that transform the former
into the latter. Transition PARs are grounded in the modi-
fication of individual or groups of objects. For this reason,
transition PARs are defined in terms of an object schema or
a set specification.

An object schema denotes a plan object with designated
characteristics. Object schemas are specified using the syn-
tax (ANY ?x φ[?x]) where φ is an arbitrary formula in the
plan query language. A set specification, given by the syn-
tax (SET ?x φ[?x]), designates a collection of objects with
specified characteristics. We use the symbol σ to denote ob-
ject schemas and the symbol Φ to denote set specifications.

We distinguish several categories of transition PAR, based
on the nature of the underlying plan changes. These cate-
gories correspond to the creation, deletion or modification
of plan objects, the refinement or generalization of plan ob-
ject attributes, changes to specific attributes of a plan object,
and changes to a collection of plan objects.

Instance Creation Instance Creation PARs declare inter-
est in the addition of an object to a plan that satisfies stated
conditions. An Instance Creation PAR is defined by an ob-
ject schema σ that describes characteristics of the plan object
to be created. For example, interest in

Addition of decision points related to weather calls

would be represented by an Instance Creation PAR with ob-
ject schema

(ANY ?X (AND (DECISION-POINT ?X)
(= (TYPE ?X) Weather-Call)))

Instance Deletion Instance Deletion PARs declare inter-
est in the removal of an object from a plan that satisfies
stated conditions. An Instance Deletion PAR is defined by
an object schema that describes characteristics of the plan
object to be deleted. For example, interest in

Elimination of a landing zone south of the embassy

would be represented by an Instance Deletion PAR with ob-
ject schema

(ANY ?x (AND (LANDING-ZONE ?x)
(= South

(DIR (POSN ?x)(POSN Embassy)))))

Instance Modification This class of PARs declares inter-
est in the modification of an object that satisfies stated condi-
tions. An Instance Modification PAR is defined by an object
schema that describes the plan objects to be modified. As
an example, interest in

Changes to 4th-platoon movements

would be represented by an Instance Modification PAR with
object schema

(ANY ?X (AND (MOVE ?X)
(= 4th-platoon (OPERAND ?X))))

Attribute Refinement Attribute Refinement PARs de-
clare interest in the assignment of values to unbound at-
tributes of plan objects. They are defined as a pair 〈σ,A〉
where σ describes a class of plan objects, and A the attribute
to be bound.

Attribute Decommitment Similar to Attribute Refine-
ment PARs, Attribute Decommitment PARs declare interest
in decommitment from assigned attribute values. They are
defined as a pair 〈σ,A〉 where σ describes a class of plan
objects, and A the attribute to be decommitted.

Attribute Modification This class of PARs specializes In-
stance Modification PARs to changes to a specific attribute
of a plan object. PARs of this type are defined as a triple
〈σ,A,δ〉, where σ describes a class of plan objects, A the at-
tribute of interest, and δ an optional change predicate that
imposes constraints on the nature of the change. The change
predicate can restrict the new value (e.g., (= ?NEW 5)) or
the relationship between the old and new values (e.g., (> (-
?NEW ?OLD) 3)). For example, interest in

Delays of > 1 hour in expected time to secure the Church

would be captured by an Attribute Modification PAR
〈σ,A,δ〉 with the components

σ (ANY ?X (AND (EFFECT ?X)
(= (TYPE ?X) Secure)
(= (OPERAND ?X) Church)))

A TIME
δ (> (- ?NEW ?OLD) 1)

Aggregate Modification This class of PARs can be used
to declare interest in changes to an intensionally defined col-
lection of objects. The change may be to membership in the
collection, or to some aggregation value defined over the
collection. For example, an aggregation could be defined
in terms of the movements that involve a particular type of
personnel, with the aggregation value defined as the sum of
resources employed by those movements.

An Aggregate Modification PAR is defined as a 4-tuple
〈Φ,A,π,δ〉, where Φ describes a set of plan objects, A the
attribute to change, and δ a change predicate. The aggre-
gation function π reduces a set of values to a single value;
common aggregation functions include MIN, MAX, SUM,
COUNT, and AVERAGE. As an example, the change

Decrease of more than 2 in the number of UH-60s used

would be represented by an aggregate modification PAR
〈Φ,A,π,δ〉 defined as follows:

Φ (setof ?X (AND (MOVE ?X)
(= UH-60 (ASSETTYPE ?X))))

A ASSETCOUNT
π SUM
δ (>= (- ?NEW ?OLD) 2)
The change predicate, attribute specification, and aggre-

gation functions within Aggregate Modification PARs are
each optional. Omission of the change predicate indicates
that any change is acceptable. Omission of the attribute in-
dicates that the aggregation function should be applied di-
rectly to the objects in the set designated by Φ. Omission
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of the aggregation function indicates interest in the compo-
sition of the set of objects (or their attribute A); this last case
corresponds to a ‘modify set’ semantics.

Match Semantics
We use the notation 〈E,P,P′〉 to denote a set of plan edit
operations E = {e1, . . . em} that maps plan P into a revised
plan P′. The notation Holds(φ) indicates that the plan-state
formula φ is a logical consequence of the background theory,
while Holds(φ,P) indicates that φ is a logical consequence
of plan P conjoined with the background theory. Finally,
k ∈ P (k �∈ P) indicates that the plan object k is defined (is
not defined) within plan P.

First, we define the concept of domain for an object
schema and a set specification.

Definition 1 (Domain: Object Schema, Set Specification)
The domain of an object schema σ = (ANY ?x φ[?x]) or set
specification Φ = (SETOF ?x φ[?x]) for a plan P, denoted
by Domain(σ,P) and Domain(Φ,P), respectively, consists
of the set of plan objects {k1 . . . kn} within P for which
Holds(φ[ki],P).

Definitions 2 and 3 capture the semantics for PAR matching.

Definition 2 (Match of Plan State PAR) A plan state PAR
〈φ〉 matches 〈E,P,P′〉 iff Holds(φ,P′).

Definition 3 (Match of Transition PAR) A transition PAR
matches 〈E,P,P′〉 under the following conditions:

Instance Creation 〈σ〉: There exists a plan object k such
that k �∈ P but k ∈ Domain(σ,P′).

Instance Deletion 〈σ〉: There exists a plan object k such
that k ∈ Domain(σ,P) but k �∈ P′.

Instance Modification 〈σ〉: There exists a plan object k
and attribute A of k such that

• k ∈ Domain(σ,P), k ∈ P′

• Holds(ATTR(k,A) = v,P)
• Holds(ATTR(k,A) = v′,P′)
• Holds(v �= v′)

Attribute Refinement 〈σ,A〉: There exists a plan object k
such that

• k ∈ Domain(σ,P), k ∈ P′

• Holds(ATTR(k,A) = v′,P′)
• there is no v for which Holds(ATTR(k,A) = v,P)

Attribute Decommitment 〈σ,A〉: There exists a plan ob-
ject k such that
• k ∈ Domain(σ,P), k ∈ P′

• Holds(ATTR(k,A) = v,P)
• there is no v′ for which Holds(ATTR(k,A) = v′,P′)

Attribute Modification 〈σ,A,δ〉: There exists a plan ob-
ject k such that
• k ∈ Domain(σ,P), k ∈ P′

• Holds(ATTR(k,A) = v,P)
• Holds(ATTR(k,A) = v′,P′)
• Holds(v �= v′)
• if δ �= /0 then Holds(δ[v,v′])

Aggregate Modification 〈Φ,A,π,δ〉: Define π∗ to be the
identify function when π = /0 and π otherwise. Let D =
Domain(Φ,P) and D′ = Domain(Φ,P′). For v and v′ de-
fined by

v =
{

π∗({AT T R(x,A) | x ∈ D}) if A �= /0
π∗(D) if A = /0

v′ =
{

π∗({AT T R(x′,A) | x′ ∈ D′}) if A �= /0
π∗(D′) if A = /0

it is the case that

• Holds(v �= v′)
• if δ �= /0 then Holds(δ[v,v′])

The semantics for matching an Instance Creation PAR
embody a strict interpretation of creation that requires the
generation of a new object within the domain of the PAR’s
object schema σ. A more liberal interpretation would match
a plan transition whose changes move an existing object
from outside to inside the domain of σ. For example, chang-
ing the type of a decision-point from equipment-check
to weather-call could be interpreted as matching an In-
stance Creation PAR with object schema

(ANY ?X (AND (DECISION-POINT ?X)
(= (TYPE ?X) weather-call)))

Similarly for Instance Deletion PARs, one might consider
matches to include transitions where an object was modified
so that it no longer satisfies the conditions of σ.

We opted for the stricter interpretation of change for two
reasons. First, it matches more closely intuitions for cre-
ation and deletion. Second, changes that correspond to the
more liberal interpretation can be expressed as Aggregate
Modification PARs. For example, the more liberal inter-
pretation of an Instance Creation PAR with object schema
σ = (ANY ?x φ[?x]) can be expressed by the Aggregate Mod-
ification PAR

〈(SETOF ?x φ[?x]), /0,SUM,(> ?NEW ?OLD)〉

which captures the notion of an increase in the number of
objects that satisfy φ[?x].

Matching Algorithms
The matching of a plan state PAR reduces to the perfor-
mance of a plan query. Matching of transition PARs is some-
what more complex.

The transition PARs that focus on instances and attributes
(namely, Instance Creation/Deletion/Modification and
Attribute Refinement/Decommitment/Modification PARs)
have a decomposable nature. Testing for matches to these
PARs reduces to checking for changes to plan objects
within individual plans. As such, these PARs can simply be
broadcast to the distributed CODA modules, with matching
performed locally and results returned independently to the
CODA module that registered the PAR.

Aggregate Modification PARs are not decomposable in
this manner because they embody an implicit quantification
over the union of the local plans under development. Testing
of these PARs requires reasoning about changes across all

AIPS 2002    67  



subplans. To illustrate, consider the PAR that represents the
change

Decrease of more than 2 in the number of UH-60s used

If three individual planners each decrease their usage of UH-
60s by one, their collective change results in a match to the
PAR. Detecting a match of this type involves reasoning at
an aggregate level about changes that have been made by
the team of distributed planners.

Fortunately, the matching of Aggregate Modification
PARs can be reduced to a combination of local matching and
plan querying. For a given Aggregate Modification PAR

γ = 〈(SETOF ?x φ[?x]),A,π,δ〉

define the following derived PARs:

• Attribute Modification PAR γAM = 〈(ANY ?x φ[?x]),A, /0〉
• Instance Creation PAR γIC = 〈(ANY ?x φ[?x])〉
• Instance Deletion PAR γID = 〈(ANY ?x φ[?x])〉
A match to any of the derived PARs in Γ = {γAM , γIC, γID}
constitutes a necessary but not sufficient condition for match
of γ: for γ to match, there must either be a change to one of
the objects in the set (captured by γAM), or to membership in
the set (captured by the combination of γIC and γID).

Upon notification of a match to a PAR in Γ, the CODA
module that registered γ can confirm a match for γ by aggre-
gating the results from a set of distributed queries to each
CODA module Li. These queries consist of

ObjectsLi
= Query[(SETOF ?x φ[?x])]

ValuesLi
= { Query[AT T R(?x,A)] | ?x ∈ ObjectsLi

}

for each local planner Li. Determination of a match then
involves evaluating the change predicate δ on the result re-
turned by the application of the aggregation function to the
union of these values, that is:

δ(π(∪Li
ValuesLi

)) .

CODA System
Figure 3 shows the interface for the CODA system (on the
left) beside that of the SOFTools Temporal Plan Editor (on
the right). Within the graphical plan representation of the
Temporal Plan Editor, labeled horizontal lines correspond to
places (e.g., a staging base or the Hospital), arrows corre-
spond to actions, and diamonds denote key effects (e.g., the
securing of a building or the attainment of a position).

The interface in the figure corresponds to a state in which
a human is developing the maneuver portion of a plan to
rescue hostages from a town held by enemy forces. Work-
ing from the top downward, the plan consists of two assault
teams flying by helicopter from a warship to the Gold and
Silver staging bases just outside the town. The assault teams
then move by foot to the town and secure the buildings in
which the hostages are being held (the Church, Hospital, and
Town-Hall). The hostages are collected and taken to a third

staging base (Bronze) from which they are flown to safety in
a transport aircraft.

Another human planner, whose interface is not depicted,
is developing the fire-support portion of the same plan. The
bottom half of CODA’s interface displays the PARs regis-
tered by these two planners. The window labeled Own PARs
indicates that the maneuver planner is interested in any delay
of more than 15 minutes to the planned time of fire-support
assets arriving on station. The window labeled Others’ PARs
shows the fire-support planner’s interest in changes to the
planned locations of helicopter landing zones (HLZs). The
Matches window informs the maneuver planner that the fire-
support planner has changed his plan in such a way as to de-
lay the time at which a fire-support asset will be on station.

Matching Modes
The CODA system supports two modes for registering
PARs, based on the frequency with which users are notified
of matches.

PARs registered in immediate mode are checked after ev-
ery plan edit operation (i.e., E = {e} in Definition 3), thus
providing planners with real-time notification of relevant
plan changes. Immediate notification would be suitable for
the endstages of planning (when plans are mostly stable and
changes are significant), or during execution.

For earlier stages of plan development, frequent and wide-
ranging changes to plans would be expected; real-time no-
tification of matches during early plan development would
be counterproductive. For PARs registered in on-demand
mode, matching information is provided only in response
to an explicit user request. Such requests produce sum-
maries of matches for the current plan relative to a desig-
nated ‘checkpoint’ plan. On-demand matching can support
coordination of distributed planners earlier in the planning
process by enabling a given planner to periodically check
for changes by other planners that could impact his own ef-
forts.

PAR Definition and Registration
Within the CODA system, PARs can be registered and un-
registered dynamically throughout a planning session. This
flexibility is important because the informational needs of
planners will necessarily evolve in response to changes in
guidance, the dynamics of the environment, and the unfold-
ing of the planning process itself. For example, a planner
may wish to be notified in the event that spare capacity is
available to transport certain extra cargo that would be re-
quired for one option under consideration; if he decides to
adopt a different strategy that does not require the cargo,
then he would unregister interest in available capacity.

PARs could originate from a variety of sources. Within
CODA currently, PARs are either (a) selected from prede-
fined libraries, or (b) created by individual planners on an
as-needed basis.

PAR Libraries Libraries group PARs for standard types
of related plan change that would generally be of interest
to planners within a given domain. For example, a team
responsible for medical needs during an evacuation would
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Figure 3: Interfaces for CODA (left) and the Temporal Plan Editor (right)

always be interested in changes to the size of the force and
the expected number of evacuees. PARs for these types of
change can be stored in a library specialized to the needs
of medical planners. During a particular planning session, a
planner would draw on libraries of predefined PARs to form
the basis of his registered interests, augmenting them as nec-
essary with authored PARs tied to the situation at hand and
the current plan.

PAR Authoring CODA includes an interactive PAR au-
thoring tool designed to help users quickly define PARs not
contained within predefined libraries. This tool was de-
veloped using Adaptive Forms (Frank & Szekely 1998), a
grammar-based framework that supports the specification of
structured data through a form-filling interface that adapts in
response to user inputs. With this tool, users create PARs by
filling in forms with an English-like syntax; as users incre-
mentally specify PARs, remaining options change in accord
with the constraints of the underlying grammar. An internal
compiler transforms these high-level specifications into the
formal PAR structures required by CODA’s matcher.

In designing a specification tool of this type, the com-
peting requirements of expressivity and ease of use must be
balanced. Sufficient expressivity is required to ensure cover-
age of relevant cases; however, support for full expressivity
can lead to complex and unintuitive interfaces. To address
this issue, CODA’s PAR authoring tool provides two sets of
forms. First, a set of general forms provides the full ex-
pressive power of the PAR language, including the ability
to construct arbitrary expressions in first-order logic. While
powerful, these forms require more effort to complete; in

addition, people unaccustomed to formal languages require
training to use them effectively.

For this reason, the tool also includes specializations of
the general forms that capture common idioms within the
SOF planning domain. These specialized forms build in val-
ues that users would have to specify in the general case, thus
simplifying and shortening the specification process. Param-
eters within the forms enable customization to a given plan-
ning session. SOF planners, for example, are generally inter-
ested in delays to activities. The SOF application of CODA
includes (among others) the following parameterized PAR
idiom:

Delays to any actions of greater than < duration >
Delays to action < action-id >

The first form supports declaration of interest in delays to
actions that exceed a duration to be supplied by the user.
The second form supports declaration of interest in delays
to a user-specified action within a plan. Users can create
PARs based on these specialized forms simply by supplying
the designated parameters.

The idiomatic forms serve as the primary mechanism for
authoring PARs within the CODA system, with the general-
purpose forms reserved for defining PARs that lie beyond
the scope of the predefined idioms.

Related Work
Distributed AI
Several AI planning systems have been built that provide
coordination mechanisms to share information among dis-
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tributed planners. In contrast to CODA, these systems link
automated planners that construct plans with comprehen-
sive causal structures. Analysis of plan dependencies within
these structures forms the basis for determining the informa-
tion to share among planners.

The COLLAGE planner (Lansky 1998) supports the con-
ceptual partitioning of a planning problem into collections of
regions, each of which constitutes a planning problem in its
own right. Constraint propagation rules are used to maintain
consistency among regions.

In the DSIPE distributed planning framework (Wolverton
& desJardins 1998), each planner publishes a list of pred-
icates that are relevant to its planning needs. Relevance is
determined automatically through a reachability analysis of
goals and operators. As planning proceeds, a planner de-
termines whether a given planning decision establishes ef-
fects that unify with published relevant predicates from other
planners, and notifies them as appropriate.

DSIPE’s approach can be viewed as a counterpart to the
CODA framework in which PARs are generated automat-
ically. Because this automation relies on a complete and
comprehensive set of planning operators, its applicability to
plan authoring systems (where such information will not be
available) is limited. Furthermore, the PAR representation
provides a richer language for describing plan changes, go-
ing well beyond the simple effects-oriented approach within
DSIPE.

Active Databases
Active databases augment traditional database technology
with a set of rules that trigger activities in response to
database modifications (Widom & Ceri 1996). Rules have
the form 〈E,C,A〉 where E is an event that triggers invoca-
tion of the rule, C is a condition to be satisfied, and A is an
action to be performed when C is met.

Although parallels can be drawn between PARs and active
database rules, several characteristics distinguish our work.
First, our approach involves monitoring changes to plans,
which have richer structure than do relational or object-
oriented databases. Second, we emphasize user-friendly
languages and tools for declaring PARs, while the active
database community has focused on automated synthesis of
rules to support tasks such as the enforcement of integrity
constraints. Finally, active database work does not consider
the incorporation of background theories into the matching
process.

Concurrent Design
The concurrent design community has developed techniques
for detecting and resolving conflicts that arise during large-
scale distributed design tasks (Klein 1993; Petri 1993). The
general approach involves the documentation of design ra-
tionale – an explicit representation of design decisions and
their interdependencies. As changes are made, the captured
rationale supports automatic identification of decisions that
might be impacted and should be reconsidered. The design
rationale must be specified by users, thus imposing a sub-
stantial documentation burden during the design process. In
contrast, our approach avoids such onerous documentation

requirements but leaves the task of ascertaining the ramifi-
cations of PAR matches to the user.

Conclusions
There has been a recent trend within the field of AI plan-
ning to increase relevance by focusing on more realistic
and challenging problems drawn from real-world applica-
tions. Deeper exploration of several motivating domains
(e.g., military operations planning, workflow management,
space mission science planning) has revealed the impracti-
cality of fully automated systems for many of these planning
tasks. In particular, formulation of the knowledge bases re-
quired to support generation of high-quality plans in these
domains lies well beyond the reach of current and forsee-
able modeling capabilities. Instead, the experience, com-
mon sense, and intuitions of the human decision-maker are
essential for effective planning in these domains. For this
reason, many researchers within the AI planning commu-
nity have begun developing plan authoring tools designed to
assist a human decision-maker in constructing high-quality
plans rather than to replace him.

The CODA framework provides a practical solution to the
problem of coordinating the activities of distributed human
planners engaged with such plan authoring tools. By hav-
ing human planners explicitly declare those aspects of the
overall planning process that interest them, CODA enables
timely and focused distribution of information that can ex-
pedite and improve the quality of coordinated problem solv-
ing. The use of a rich, AI-based representation for describ-
ing plans, planning changes, and background theories pro-
vides the key to this technology.

CODA is a general-purpose coordination framework that
can be linked to a variety of plan authoring tools. However,
its development has been strongly influenced by the real-
world challenges of SOF mission planning. Several domain
experts provided guidance in the formulation of CODA to
ensure that it meets the expressivity and usability needs of
potential users. In addition to our current layering of the
CODA system on top of the Temporal Plan Editor, we are
looking to link CODA to additional types of plan authoring
systems, such as an asset allocator and a map-based planner.
Linkage of these tools through CODA will enable a rich and
heterogeneous distributed plan authoring environment that
provides greatly improved coordination over current prac-
tice.
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