
The SH-Verification Tool

Peter Ochsenschläger and Jürgen Repp and Roland Rieke
SIT – Institute for Secure Telecooperation,

GMD – German National Research Center for Information Technology,
Rheinstr. 75, D-64295 Darmstadt, Germany

E-Mail: {ochsenschlaeger,repp,rieke}@darmstadt.gmd.de

Abstract

The sh-verification tool supports a verification
method for cooperating systems based on formal
languages. It comprises computing abstractions
of finite-state behaviour representations as well as
automata and temporal logic based verification
approaches. A small but typical example shows the
steps for analysing its dynamic behaviour using the
sh-verification tool.

Keywords: Cooperating Systems; Finite State
Systems, Abstraction; Simple Language Homomor-
phisms; Formal Specification; Verification

Introduction
The sh-verification tool 1 supports the method for ver-
ification of cooperating systems described in (Ochsen-
schläger, Repp, Rieke 1999). The reader is referred to
this paper for notations, definitions and theorems. Fig-
ure 1 shows the structure of the tool. The main com-
ponents of the system are the tools for specification,
the analysis kernel, the tools for abstraction and the
project manager. It is possible to extend the tool by
different application oriented user interfaces. A small
but typical example shows the steps for analysing a
systems behaviour using the sh-verification tool.

Specification
The presented verification method does not depend on
a specific formal specification technique. For practical
use the sh-verification tool has to be combined with
a specification tool generating labeled transition sys-
tems LTS 2. The current implementation uses prod-
uct nets 3 (Burkhardt, Ochsenschläger, Prinoth 1989;

1sh abbreviates simple homomorphism
2The semantics of formal specification techniques for

distributed systems is usually based on LTS.
3a special class of high level petri nets

Copyright c©2000, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Parser

Computation + Analysis

of Reachability Graph

Automata Algorithms

Debugging + Traces

Graph Browser Statistics

Input Initial State

Application oriented

Enduser Interface Complex Evaluation Tools

Model Checking

Compositional Method +

Tools for Abstractions +
Analysis Kernel

Enduser Interface

Tools for System Specification

Preamble Editor

Net Editor APA Editor

Hierarchy Editor

Temporal Logic

Homomorphism Editor

Project Manager

Output Result

Application oriented
Presentation

Editor

Figure 1: Components of the sh-verification tool

Ochsenschläger Prinoth 1995) as specification envi-
ronment. A second specification environment based
on asynchronous product automata (APA), (Ochsen-
schläger et al. 1998) is planned.

To illustrate the usage of the methods described in
(Ochsenschläger, Repp, Rieke 1999) we consider an ex-
ample of a system that consists of a client and a server
as its main components. The client sends requests
REQ to the server, expecting the server to produce
particular results. Nevertheless, for some reasons, the
server may not always respond to a request by sending

From: FLAIRS-00 Proceedings. Copyright © 2000, AAAI (www.aaai.org). All rights reserved.

Figure 2: Client Server Example

a result RES, but may, as well, reject a request REJ
(Figure 4).

Figure 2 shows a product net specification of this ex-
ample. It is a global model for the systems behaviour.
Note that the resource may eventually be locked for-
ever. In Figure 2 we do not use most of product nets’
possible features. Indeed, it is a product net represen-
tation of a Petri net.

Usually complex systems are specified hierarchically.
This is supported by the project manager of the tool.
(In our simple example the specification is flat.)

The LTS in Figure 3, which is the reachability graph
of the product net in Figure 2, is computed by the tool.
This LTS consists of two strongly connected compo-
nents (marked by diffent colors). Usually the LTS of
a specification is too complex for a complete graphical
presentation; there are several features to inspect the
LTS.

Abstraction
In the example the important actions with respect to
the client’s behaviour, are sending a request and re-
ceiving a result or rejection.

We will regard the whole system running properly, if
the client, at no time, is prohibited completely from re-
ceiving a result after having sent a request (correctness
criterion).

For the moment, we regard the server as a black box;
i.e. we neither consider its internal structure nor look

 S_3

 S_4

 S_5

 S_6

S_2 S_6
 start:

 S_2 S_5

 S_2 S_4

 S_2 S_3

 S_1 S_6

 S_1 S_5

 S_1 S_4

 S_1 S_3

RES

T_3

T_3

REJ

T_2

T_2

T_2

T_2

T_3

T_3

T_7

REQ

T_4

REJ

T_7

VANISH

REQ
REQ

REJ

T_7

T_4
VANISH

VANISH

T_4

VANISH

Figure 3: LTS

����� ���	�

�����
����

REQ RES REJ

Figure 4: Client Server Abstract View

at its internal actions. Not caring about particular
actions of a specification when regarding the specifica-
tion’s behaviour is behaviour abstraction. If we define
a suitable abstraction for the client/server system with
respect to our correctness criterion, we only keep ac-
tions REQ, RES, and REJ visible, hiding all other
actions. This is supported by the homomorphism edi-
tor of the tool (Figure 5).

An automaton 4 representing the abstract behaviour
of the specification can be computed by the sh-
verification tool (Figure 6). It obviously satisfies the
required property. The next step is to check whether
the concrete behaviour also satisfies the correctness re-
quirement mentioned above. For that purpose we have
to prove simplicity of the defined homomorphism.

Simplicity of an abstraction can be investigated in-
specting the strongly connected components of the LTS
by a sufficient condition (Ochsenschläger, Repp, Rieke
1999). The component graph in Figure 7 (combined
with the homomorphic images of the arc labels of the

4the minimal automaton

Figure 5: Defining an Abstraction

A-2A-1
start:

(REJ)

(RES)

(REQ)

Figure 6: Minimal Automaton.

corresponding graph components) does not satisfy this
condition, so nothing can be said about simplicity.

(REQ)
(RES)
(REJ)
A-1
start:

(REQ)
(REJ)
A-2

Figure 7: Component Graph

We now try to refine the homomorphism such that
the sufficient condition for simplicity can be proven.
Inspecting the edge between the two nodes of the com-
ponent graph shows that the action V ANISH causes
the transitions between this two components (Fig-
ure 8). The refined homomorphism, which additionally
keeps V ANISH visible, satisfies the sufficient condi-
tion for simplicity. Figure 9 shows the corresponding
automaton. This automaton obviously violates the re-
quired property, so the systems behaviour does not sat-

isfy this property.

(REQ)
(REJ)
A-2

(REQ)
(RES)
(REJ)
A-1
start:

(VANISH)

Figure 8: Component Graph

A-2

A-4

A-3

A-1
start:(REQ)

(REJ)

(REQ)

(VANISH)

(REJ)
(RES)

(VANISH)

Figure 9: Minimal Automaton (with VANISH)

These simplicity investigations, which are supported
by the tool, detect the error in the specification. In
(Ochsenschläger 1992; 1994a) a necessary condition for
simplicity is given. It is based on so called deadlock
languages and shows non-simplicity of our REQ-RES-
REJ-homomorphism (Ochsenschläger et al. 1998).

To handle the well known state space explosion prob-
lem a compositional method (Ochsenschläger 1996) is
implemented in the sh-verification tool. This approach
can also be used iteratively and provides a basis for in-
duction proofs in case of systems with several identical
components (Ochsenschläger 1996). Using our compo-
sitional method a connection establishment and release
protocol has been verified by investigating automata
with about 100 states instead of 100000 states.

Temporal Logic
Our verification approach can also be combined with
temporal logic (Ochsenschläger et al. 1998). In terms
of temporal logic, the automaton of Figure 6 approx-
imately satisfies (Ochsenschläger et al. 1998) the for-
mula G(F(RES)) (G: always-operator, F : eventually-
operator; thus G(F(RES)) means ”infinitely often re-
sult”), but the system in Figure 3 does not. This is in-
deed the case because the abstracting homomorphism
is not simple. Using an appropriate type of model
checking, approximate satisfaction of temporal logic
formulae can be checked by the sh-verification tool.

Our experience in practical examples shows that the
combination of computing a minimal automaton of an
LTS and model checking on this abstraction is signifi-
cantly faster than direct model checking on the LTS.

Figure 10: Temporal Logic Formula Editor

Applications
Practical experiences have been gained with large spec-
ifications:

• ISDN and XTP protocols (Klug 1992; Schremmer
1992; Ochsenschläger Prinoth 1993)

• Smartcard systems (Nebel 1994; Ochsenschläger
1994b)

• Service interactions in intelligent telecommunication
systems (Capellmann et al. 1996b; 1996a).

• The tool has also been applied to the analysis
of cryptographic protocols (Basak 1999; Rudolph
1998). In this context an application oriented user-
interface has been developed for input of crypto-
graphic formulae and presentation of results in this
syntax.

• Currently our interest is focused on the verification
of binding cooperations including electronic money
and contract systems. Recently some examples in
that context have been investigated with our tool
(Fox 1998; Roßmann 1998).

Technical Requirements
The sh-verification tool is implemented in Allegro
Common Lisp. An interpreter-based version of the
software is freely available (currently for Solaris,
Linux and Windows NT) for non commercial purposes
(http://sit.gmd.de/META/projects.html). For inves-
tigation of large systems a compiler-based version of
the tool is needed. For more information please con-
tact the authors.

Conclusions

We have presented the basic functionality of the sh-
verification tool in this article. The tool is equipped
with the main features necessary to verify specifica-
tions of cooperating systems of industrial size. It sup-
ports a verification method based on formal languages
(Ochsenschläger, Repp, Rieke 1999).

There exists a variety of verification tools which
can be found in the literature. Some are based
on model checking, others use proof systems. We
consider COSPAN (Kurshan 1994) to be closest to the
sh-verification tool. COSPAN is automata based and
contains a homomorphism based abstraction concept.
Since the transition labels of automata in COSPAN
are in a Boolean algebra notation, the abstraction
homomorphisms are Boolean algebra homomor-
phisms which correspond to non-erasing alphabetic
language homomorphisms on the automata level.
The sh-verification tool, in addition, offers erasing
homomorphisms as an abstraction concept. COSPAN
also considers only linear satisfaction of properties.
Thus fairness assumptions need to be made explicitly
in this tool. A tool which uses the modal µ-calculus as
a specification language for properties (Stirling 1989)
is the concurrency workbench (Cleaveland, Parrow,
Steffen 1993). In (Hartel et al. 1999) ten tools in this
area including ours are compared.

We consider the main strength of our tool to be
the combination of an inherent fairness assumption
in the satisfaction relation, an abstraction technique
compatible with approximate satisfaction, and a
suitable compositional and partial order method
for the construction of only a partial state space.
The sh-verification tool’s user interface and general
handling has reached a level of maturity that enabled
its successful application in the industrial area.

References

Basak, G. 1999. Sicherheitsanalyse von Authen-
tifizierungsprotokollen – model checking mit dem SH-
Verification tool. Diploma thesis, University of Frank-
furt.

Burkhardt, H. J.; Ochsenschläger, P.; and Prinoth,
R. 1989. Product nets — a formal description tech-
nique for cooperating systems. GMD-Studien 165,
Gesellschaft für Mathematik und Datenverarbeitung
(GMD), Darmstadt.

Capellmann, C.; Demant, R.; Fatahi, F.; Galvez-
Estrada, R.; Nitsche, U.; and Ochsenschläger, P.
1996a. Verification by behavior abstraction: A case
study of service interaction detection in intelligent

telephone networks. In Computer Aided Verification
(CAV) ’96, volume 1102 of Lecture Notes in Com-
puter Science, 466–469.

Capellmann, C.; Demant, R.; Galvez-Estrada, R.;
Nitsche, U.; and Ochsenschläger, P. 1996b. Case
study: Service interaction detection by formal verifi-
cation under behaviour abstraction. In Margaria, T.,
ed., Proceedings of International Workshop on Ad-
vanced Intelligent Networks’96, 71–90.

Cleaveland, R.; Parrow, J.; and Steffen, B. 1993. The
concurrency workbench: A semantics-based tool for
the verification of finite-state systems. In TOPLAS
15, 36–72.

Fox, S. 1998. Sezifikation und Verifikation eines Sep-
aration of Duty-Szenarios als verbindliche Telekoop-
ertation im Sinne des Gleichgewichtsmodells. GMD
Research Series 21, GMD – Forschungszentrum Infor-
mationstechnik, Darmstadt.

Hartel, P.; Butler, M.; Currie, A.; Henderson, P.;
Leuschel, M.; Martin, A.; Smith, A.; Ultes-Nitsche,
U.; and Walters, B. 1999. Questions and answers
about ten formal methods. In Proc. 4th Int. Work-
shop on Formal Methods for Industrial Critical Sys-
tems, volume II, 179–203. Pisa, Italy: ERCIM.

Klug, W. 1992. OSI-Vermittlungsdienst und sein
Verhältnis zum ISDN-D-Kanalprotokoll. Spezifika-
tion und Analyse mit Produktnetzen. Arbeitspa-
piere der GMD 676, Gesellschaft für Mathematik und
Datenverarbeitung (GMD), Darmstadt.

Kurshan, R. P. 1994. Computer-Aided Verification
of Coordinating Processes. Princeton, New Jersey:
Princeton University Press, first edition.

Nebel, M. 1994. Ein Produktnetz zur Verifika-
tion von Smartcard-Anwendungen in der STARCOS-
Umgebung. GMD-Studien 234, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), Darm-
stadt.

Ochsenschläger, P., and Prinoth, R. 1993. For-
male Spezifikation und dynamische Analyse verteil-
ter Systeme mit Produktnetzen. In Informatik ak-
tuell Kommunikation in verteilten Systemen, 456–
470. München: Springer Verlag.

Ochsenschläger, P., and Prinoth, R. 1995. Mod-
ellierung verteilter Systeme – Konzeption, Formale
Spezifikation und Verifikation mit Produktnetzen.
Wiesbaden: Vieweg.

Ochsenschläger, P.; Repp, J.; Rieke, R.; and Nitsche,
U. 1998. The SH-Verification Tool – Abstraction-
Based Verification of Co-operating Systems. Formal
Aspects of Computing 10:381–404.

Ochsenschläger, P.; Repp, J.; and Rieke, R. 1999.
Verification of Cooperating Systems – An Approach
Based on Formal Languages. Submitted to FLAIRS-
2000 Special Track on Validation, Verification & Sys-
tem Certification.

Ochsenschläger, P. 1992. Verifikation kooperieren-
der Systeme mittels schlichter Homomorphismen. Ar-
beitspapiere der GMD 688, Gesellschaft für Mathe-
matik und Datenverarbeitung (GMD), Darmstadt.

Ochsenschläger, P. 1994a. Verification of cooperating
systems by simple homomorphisms using the product
net machine. In Desel, J.; Oberweis, A.; and Reisig,
W., eds., Workshop: Algorithmen und Werkzeuge für
Petrinetze, 48–53. Humboldt Universität Berlin.

Ochsenschläger, P. 1994b. Verifikation von
Smartcard-Anwendungen mit Produktnetzen. In
Struif, B., ed., Tagungsband des 4. GMD-SmartCard
Workshops. GMD Darmstadt.

Ochsenschläger, P. 1996. Kooperationsprodukte for-
maler Sprachen und schlichte Homomorphismen. Ar-
beitspapiere der GMD 1029, GMD – Forschungszen-
trum Informationstechnik, Darmstadt.

Roßmann, J. 1998. Formale Analyse der Business-
Phase des First Virtual Internet Payment Systems
basierend auf Annahmen des Gleichgewichtsmodells.
Diploma thesis, University of Frankfurt.

Rudolph, C. 1998. Analyse krypotgraphischer Pro-
tokolle mittels Produktnetzen basierend auf Model-
lannahmen der BAN-Logik. GMD Research Series
13/1998, GMD – Forschungszentrum Information-
stechnik GmbH.

Schremmer, S. 1992. ISDN-D-Kanalprotokoll der
Schicht 3. Spezifikation und Analyse mit Produktnet-
zen. Arbeitspapiere der GMD 640, Gesellschaft für
Mathematik und Datenverarbeitung (GMD), Darm-
stadt.

Stirling, C. 1989. An introduction to modal and tem-
poral logics for CCS. In Yonezawa, A., and Ito, T.,
eds., Concurrency: Theory, Language, and Architec-
ture, volume 391 of Lecture Notes in Computer Sci-
ence. Springer Verlag.

