
Using Analytic CLP to Model and Analyze Hybrid Systems

Timothy J. Hickey and David K. Wittenberg
Computer Science Department Brandeis University

Waltham, MA 02454

Abstract

We use CLP(F), an Analytic Constraint Logic Programming
(ACLP) language, to model hybrid systems. ACLP languages
combine intervals, constraints, and ODEs (Ordinary Differ-
ential Equations) in a clean and natural way. CLP(F) pro-
vides an implementation of an ACLP language based on in-
terval arithmetic. The semantics of CLP(F) rigorously handle
non-linear ODEs and round-off error. The ODEs describing
a hybrid system need only a minor change of syntax to be-
come a CLP(F) program. This simple transformation from a
physical description of a hybrid system to a program which
can be used to provide a proof of safety properties of the
system bridges the gap between practical tools and formal
models, and allows one to easily prove statements about real-
world systems. The combination of interval arithmetic with
ACLP makes it easy to pose and answer many sorts of queries
about a system. For example, “At what point does the system
change from one state to another?”, or “What control settings
result in a cycle with periodt?”

Introduction
A hybrid system is a system composed of a digital part (typi-
cally a small computer) and an analog part (typically a phys-
ical system with sensors and actuators). All computer con-
trolled or monitored processes in the real world are hybrid
systems. Recent work on hybrid systems includes defining
models (Lynchet al. 1999), (Lynch, Segala, & Vaandrager
2001), (Aluret al. 1995) (Maler, Manna, & Pnueli 1991),
(Gupta, Jagadeesan, & Saraswat 1996) and calculating the
behaviour of the analog parts (Henzingeret al. 2000). The
Intelligent Highway Group at Berkeley has developed the
SHIFT programming language (Deshpande, Göllü, & Se-
menzato) for describing evolving hybrid systems. (Moster-
man 1999) provides a survey of a dozen simulation packages
describing how much support each of them provides for sim-
ulating hybrid systems.

Interval arithmetic (Moore 1966) is an obvious choice for
modeling hybrid systems, as the interface between the ana-
log and the digital part involves imperfect hardware whose
description must include error bars. CLP (Constraint Logic
Programming) was introduced by (Jaffar & Lassez 1987).
(Jaffar & Maher 1994) provide an excellent survey of CLP.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Interval arithmetic fits naturally with CLP, as an interval de-
scribing a real valuex corresponds to two constraints onx,
one for the upper bound, and one for the lower bound. (Ben-
hamou & Older 1997) first combined intervals with CLP.
(Bohlender 1996) provides an excellent survey of the litera-
ture on “Enclosure Methods” or arithmetic constraints.

We use CLP(F) (Hickey 2000), an analytic CLP language
which combines CLP with interval arithmetic. CLP(F) uses
interval arithmetic techniques to rigorously solve constraints
involving both real and function variables, constrained via
arithmetic and functional equations. CLP(F) is related to
QSIM (Kuipers 1993) in that each attempts to find an over
approximation of the possible states of a system of ODEs
(Ordinary Differential Equations), which QSIM calls “qual-
itative behaviours”.

CLP(F) is a particularly good fit for modeling hybrid sys-
tems described by ODEs because it handles round-off errors,
approximation errors, and measurement errors in a consis-
tent natural way. These are the primary sources of computa-
tional difficulties in modeling ODEs. Because interval arith-
metic provides constraints on the range of values that each
variable can take on, it is well suited to proving that certain
values are not reached (ie., safety properties).

(Deville, Janssen, & van Hentenryck 2002) explore a
technique for minimizing the size of intervals resulting from
solving ODEs using constraints and intervals. As they point
out, their techniques would fit well with CLP(F), and might
improve the performance of CLP(F). Some of the “con-
sistency techniques” they propose are already available in
CLP(F) through thesolve clip command.

Advantages Over Previous Models of Hybrid
Systems

There has been much work in using CLP (Constraint Logic
Programming) to analyze various aspects of hybrid sys-
tems (Ciarlini & Fr̈uhwirth 2000), (Urbina 1996), (Podelski
2000), (Gupta, Jagadeesan, & Saraswat 1996) . One prob-
lem with these conventional CLP approaches to modeling
hybrid systems is that they must deal with the ODEs de-
scribing the continuous part of the system using some sort of
approximation, such as discretization into difference equa-
tions or restriction to ODEs that have a closed form solu-
tion. This introduces a “modeling error” so that the systems

are not computationally sound. One must then reason about
the modeling error outside of the CLP program. Many sys-
tems ignore these errors, and leave it up to the user to under-
stand the numerical instabilities. For example, the SHIFT
language (Deshpande, Göllü, & Semenzato) is very expres-
sive, but it solves non-linear ODEs by using a fourth order
Runge-Kutta algorithm without bounding the error term, and
hence is not rigorous. This sort of numerical analysis (Acton
1996) is very tricky. To require users to understand numeri-
cal analysis under pain of getting a wrong answer is to invite
error.

(Hickey 2000) describes CLP(F), an Analytic Constraint
Logic Programming (ACLP) language over the domain of
differentiable functions. In this paper, we show how CLP(F)
allows one to overcome this “modeling error” by allowing
an ODE to be expressed explicitly as a constraint on func-
tion variables. The resulting ACLP program has the property
that the results computed using the CLP(F) system are guar-
anteed to contain all solutions of the ODEs modeled by the
constraints.

One of the major benefits of this approach is that the
problem of analyzing the hybrid system is transformed into
the problem of analyzing the corresponding CLP(F) pro-
gram. In principle, one should be able to apply well under-
stood program analysis techniques (Smith & Hickey 1990)
to CLP(F) and directly infer provable properties of the corre-
sponding hybrid system. In this paper we describe only the
simpler types of analysis that one can do by directly solving
CLP(F) constraints related to the hybrid system. The pri-
mary disadvantage of this approach is that it is very resource
intensive and hence can not currently model systems over a
long modeling period.

To demonstrate the ACLP approach to hybrid system
modeling, we consider the hybrid system of a thermostat
introduced in (Henzinger, Ho, & Wong-Toi 1998). This is
a system consisting of a stirred pot of water with a temper-
ature sensor and a heater in it. When the measured temper-
ature goes above a threshold, the logic circuit shuts off the
heater (after a small delay). Similarly, when the measured
temperature goes below a threshold, the logic circuit turns
on the heater (after a small delay). The safety property in
question is to establish upper and lower bounds for the tem-
perature of the water. The state diagram is given in Figure 2.

Henzingeret al. take a major step towards reliability of
their results by using interval arithmetic in solving the differ-
ential equations which describe the system. We improve on
this by modeling the system declaratively as an ACLP pro-
gram (written in CLP(F) (Hickey 2001)) in which the differ-
ential equations appear directly as constraints in the program
and the system is modeled using intervals for all measure-
ments (to model the inevitable error-bars of instruments) as
well as to provide over-approximations to deal with round-
ing error.

CLP(F)
CLP(F) allows one to constrain functions by functional
equations involving standard arithmetic operations, trigono-
metric functions, and exponential functions. In addition,

one can constrain a function to take certain values at certain
points and to have a range that lies within an interval.

The CLP(F) system solves analytic constraints by soundly
approximating analytic functions by power series. It can
then introduce arithmetic constraints among the Taylor co-
efficients of the functions at the endpoints, at points in the
interval, and over the entire range. Since CLP(F) represents
functions as Taylor series, it can easily calculate derivatives
of functions, and enforce constraints on those derivatives.
The CLP(F) solver can handle very complex non-linear dif-
ferential equations as it is based on a “brute force” reduction
of the analytic constraints into arithmetic constraints which
are solved with a simple interval arithmetic constraint solver.

For example, the following constraint specifies thatF is
a function on[0, 1] such thatF ′ = F andF (0) = 1 and
F (A) = 2 andF (1) = E andF ([0, 1]) ⊂ [−1000, 1000]:

| ?- type([F],function(0,1)),
{[ddt(F,1)=F, eval(F,0)=1,

eval(F,A)=2, eval(F,1)=E,
F in [-1000,1000]]}.

A = 0.6931471... E = 2.7182818...
(760 ms) no

The type predicate is used to declare thatF is an in-
finitely differentiable function on the interval[0, 1]. Thus
F is represented by a list of its Taylor coefficients at 0
(F00, F01, F02, .., F0n) and at 1 (F10, F11, ...) and the ranges
of its derivatives over [0,1] (R0, R1, ...), related by the Tay-
lor formula with remainder. The functionF is then con-
strained to be equal to its first derivative (i.e.Fij =
Fi,j+1, Ri = Ri+1, and to take the value 1 at 0 (F00 =
1) and to take values in[−1000, 1000] for all x ∈ [0, 1]
(i.e. R0 ⊆ [−1000, 1000]). The variablesA and E are
not declared to be functions and hence are real constants
by default. They are constrained so thatF (A) = 2 and
F (1) = E (e.g. F10 = E and for eachn = 1, 2, . . .,
2 = F00 + F01A + F02A

2/2! + . . . + ZnAn/n! for some
Zn ∈ Rn). The constraint solver findsA andE to 7 deci-
mal digits of precision and also finds an interval forF (not
shown here) and specifies intervalsFij for its first 10 deriva-
tives at 0 and 1, and intervalsRj for the range of its first 10
derivatives over[0, 1].

In this paper we use CLP(F) to define higher order con-
straints which specify that two points lie on a trajectory de-
fined by on ODE. In the simplest model of a thermostat
we use the following CLP(F) procedure, whereT0,T1 are
times andA0,A1 are temperatures at those times,A is the
temperature function (soA(T0) = A0) andAlpha,Beta
are the heat loss and the heater element components of the
ODE for A. The parameterI is a bound on the width of
the interval on whichA is defined and is required as CLP(F)
functions must be defined on finite intervals.

ode((T0,A0),[I,[Alpha,Beta]],
A,(T1,A1)) :-

type([A],function(0,I)),
{[ddt(A,1) = Alpha * A + Beta,

eval(A,0)=A0, eval(A,T)=A1,
A in [-1.0E100,1.0E100],
T=T1-T0, T in [0,I]]}.

The CLP(F) system is easily able to use this definition to
compute(T1, A1) from (T0, A0), or, as we will see below,
to use this procedure to find values of the parametersAlpha
andBeta which make the system behave in some desired
fashion.

In this case the ODE isf ′ = af+b, f(0) = a0, f(t) = a1

which can be solved exactly. CLP(F) can handle trigonomet-
ric or exponential functions as well as the linear functions
shown here, but we restrict ourselves to linear functions in
this paper due to space restrictions. Since CLP(F) uses brute
force to model ODEs, it does not perform better on ODEs
which are solvable analytically. See (Hickey & Wittenberg
2003) for examples of CLP(F) working on more complex
functions.

Programs
The program in Figure 1 is one way of implementing a gen-
eral hybrid system simulator in CLP(F). The first parameter
of the evolve procedure is the initial state of the hybrid
system, which consists of a discrete stateS and a continu-
ous stateX. The second parameter is a list of values used to
specify the particular hybrid system. The third parameter is
the final (or ending) state of the hybrid system.

evolve(H,C,H,[]).

evolve((S0,X0),C,(S,X)) :-
statechange((S0,X0),C,S1),
in_trajectory((S1,X0),C,X1),
evolve((S1,X1),C,(S,X)).

Figure 1: A general simulator for hybrid systems

Observe that the procedure is simple. It looks for a state
change from(S0,X0) to stateS1. Such a change may con-
strain the values ofX0 to lie within narrow intervals. Then
it looks for a new trajectory represented by the continuous
variableX1. Typically, the continuous state will be repre-
sented by a pair of dependent variables(T,A) whereA
is the value of some ideal system sensor at timeT . The
in trajectory procedure looks up the ODE, C, that
should hold in this state and applies that ODE to the initial
valuesX0 to get the new valuesX1.

Henzinger’s Model and Analysis
In this section, we present the model of a thermostat with a
delay in switching used by (Henzingeret al. 2000). Hen-
zinger’s model consists of a finite state controller with an
analog input measuring the temperature in the tank. The
controller has a 1-bit output to control a heater in the tank.
The tank always loses heat at a rate directly proportional to
the temperature, and, while the heater is on, is heated at 4 de-
grees/second. Mathematically, after the heater reaches equi-
librium in the on positionA′ = −A + 4 and at equilibrium
in the off positionA′ = −A. The controller switches the
heater off within one second of the temperature going above
a pre-set value, and turns the heater on within one second
of the temperature dropping below another threshold. Note

that this model assumes that the thermometer is perfect, the
heater produces a constant and perfectly known heat out-
put, the element heats and cools instantly and the physics
of the tank are perfectly modeled by the ODE. Given those
assumptions, they then use interval techniques to eliminate
round off errors in proving safety properties.

gfed`abcSwitching
Off

0≤z≤εsw// gfed`abcElement
Cooling

z≈h //

M(t)≤1.8
##G

GGGGGGGGGG

gfed`abcElement
Off

M(t)≤1.8

��

gfed`abcElement
On

M(t)≥2.3

OO

gfed`abcElement
Heating

z≈hoo

M(t)≥2.3

ccGGGGGGGGGGG

gfed`abcSwitching
On

0≤z≤εswoo

Figure 2: State model allowing thermostat to shut off before
element is warm

CLP(F) Model of the Thermostat
In this section we present two models of a thermostat. The
first simple model demonstrates the key ideas. The second
illustrates how one can easily extend the simple model to a
model that more faithfully represents the real hybrid system
by more closely approximating the physics of the system.

The Simple Model

Our first CLP(F) model of a thermostat is shown in Figure
3. To clarify the key concepts, this first model assumes there
are only two states: on and off. When the system state is
on, the ODE governing the temperatureA is A′ = −A + 4.
When the system state is off, the ODE isA′ = −A. The
system switches from on to off when the temperature rises
above 2.3 and it switches from off to on when it drops be-
low 1.8. Thein trajectory procedure models the tra-
jectory by looking up the proper ODE for the current state
and then calling the ODE procedure to constrain the new
state variables(T1,A1) . It also adds the constraint that the
temperature range is contained in[-1000, 2.3] (resp.
[1.8,1000]).

This is not needed for our simple example because the
temperature rises monotonically and then falls monotoni-
cally and then rises again. With more complex models, the
temperature might not behave so nicely so this constraint
states that no point in the trajectory has passed the threshold
for switching. Thestatechange procedure simply indi-
cates the condition that signals a state change and provides
the new state. Theode procedure models the specified ODE
as we have described above. Finally thetest procedure
shows how this program can be used to model the behavior
of the system. It initializes the list describing the system to
be analyzed and then invokes theevolve procedure.

A simple query (“at what times is the temperature 2?”) to
this system and the resulting answer is shown in Figure 4.

evolve((S0,T0,A0),C,(S1,T1,A1)) :-
S0=S1,{[T0=T1,A0=A1]}.

evolve((S0,X0),C,(S,X)) :-
statechange((S0,X0),C,S1),
in_trajectory((S1,X0),C,X1),
evolve((S1,X1),C,(S,X)).

in_trajectory((S0,(T0,A0)),
[I, Min, Max, ODEs],(T1,A1)) :-

member(S0=ODE,ODEs), {T=T1-T0,T=<I},
ode((T0,A0),[T,ODE],A,(T1,A1)),
((S0=on, {[A in [-1000,Max]]});

(S0=off, {[A in [Min,1000]]})).

statechange((S0,(T0,A0)),
[_I, Min, Max, ODEs],S1) :-

((S0=on, {A0= Max}, S1=off);
(S0=off {A0=Min }, S1=on)).

ode((T0,A0),[I,[Alpha,Beta]]
,A,(T1,A1)) :-

type([A],function(0,I)),
{[ddt(A,1) = Alpha * A + Beta,

eval(A,0)=A0, eval(A,T)=A1,
A in [-1.0E100,1.0E100],
T=T1-T0, T in [0,I]]}.

test(S,X) :-
C=[2.0, 1.8, 2.3,
[on=[-1,4],off=[-1,0]]],
in_trajectory((on,(0,2)),C,X0),
evolve((on,X0),C,(S,X)).

Figure 3: Simplest CLP(F) model of a thermostat

One subtle point about this model is that the CLP(F)
solver will only work effectively if a finite step size is
given explicitly (this is theI parameter appearing in the
in trajectory andode procedures. If the step size is
too large, then the CLP(F) solver will return very wide, un-
helpful intervals for all variables.

One approach to handling this is to introduce pseudo
states(on,n), (off,n) , wheren is an integer repre-
senting the number of full steps that have been taken on the
current trajectory in the current state. The continuous part
can be modeled as(t,a,z) wheret is the total elapsed
time,a is the temperature at timet, andz is the time relative
to the current step. Such an extension of the current tech-
nique is straightforward and we do not show it here due to
space limitations.

| ?- test(S,(T,A)),{A=2}.
A = 2, S = on, T = 0 ?
A = 2, S = off, T = 0.3022808718... ? ;
A = 2, S = on, T = 0.5029515673... ?

Figure 4: Query to Simple Model - When is Temp = 2?

evolve((S,T,A,Z),_,(S1,T1,A1,Z1)) :-
S=S1,{[T=T1,A=A1,Z=Z1]}.

evolve((S0,X0),C,(S,X)) :-
statechange((S0,X0),C,S1),
in_trajectory((S1,X0),C,X1),
evolve((S1,X1),C,(S,X)).

in_trajectory((S0,(T0,A0,_Z0)),
[Step, Min, Max, Delay, Stime, ODEs],

(T1,A1,Z1)) :-
member(S0=ODE,ODEs),
{Z1=T, T=T1-T0, T=<Step},
ode((T0,A0),[T,ODE],A,(T1,A1)),
((S0=on, {[A in [-1000,Max]]});

(S0=sw0, {[T=<Delay]});
(S0=cooling, {[T<Stime,

A in [Min,1000]]});
(S0=off, {[A in [Min,1000]]});
(S0=sw1, {[T=<Delay]});
(S0=heating, {[T<Stime,

A in [-1000,Max]]})).

statechange((S0,(_T0,A0,T)),
[_S, Min, Max, Delay,Stime,_O],S1) :-
((S0=on, {A0=Max}, S1 = sw0);

(S0=sw0, {T=Delay}, S1=cooling);
(S0=cooling,{T=Stime}, S1=off);
(S0=cooling,{A0=Min}, S1=sw1);
(S0=off, {A0=Min }, S1=sw1);
(S0=sw1, {T=Delay}, S1=heating);
(S0=heating,{T=Stime}, S1= on);
(S0=heating,{A0=Max}, S1= sw0)).

ode((T0,A0),
[I,[Alpha,Beta,Gamma,Delta]],

A,(T1,A1)) :-
type([A,B],function(0,I)),

{[ddt(A,1) = Alpha*A +Beta +Gamma*B,
ddt(B,1) = Delta*B,
eval(A,0)=A0, eval(A,T)=A1,
eval(B,0)=1,
A in [-1.0E100,1.0E100],
B in [-1.0E100,1.0E100],
T=T1-T0, T in [0,I]

]}.

test(S,X,D) :-
C=[2.0, 1.8, 2.3, 0.05, 0.1,

[on=[-1,4, 0,1],off=[-1,0,0,1],
sw0=[-1,4, 0,1],sw1=[-1,0,0,1],

heating=[-1,4,-4,D],
cooling=[-1,0, 4,D]]],

in_trajectory((on,(0,2,0)),C,X0),
evolve((on,X0),C,(S,X)).

Figure 5: More Complete Model of Thermostat

A More Realistic Model
In the example shown in Figure 5, we re-
fine the previous model by using six states
on,sw0,cooling,off,sw1,heating correspond-
ing to the states in Henzinger’s model. The model also
represents the continuous state as a tripleT,A, Z where
T is the total elapsed time,A is the temperature at time
T , and Z is the time since the system entered the cur-
rent state. TheZ parameter is needed to implement the
“switching” specification which states that the system waits
some amount of time after the threshold is passed before
switching on/off the heating element. Likewise, the time in
which the system is heating/cooling before it “jumps” to
the maximum/minimum value is given by a time unit. This
represents a discontinuity in the model since the heating
temperature is assumed to immediately rise to the maximum
at the end of the element-heating period.

Thesw0,sw1 states represent times when the system is
waiting before switching the heating element on or off. The
heating,cooling states represent times when the ele-
ment is warming up or cooling down. Theon,off states
represent times when the element is fully on or off. Observe
that the ODEs for each state are specified in the variableC
of the test procedure. Also, observe that the switching con-
ditions are given declaratively in thestatechange proce-
dure. Finally, note that the system is assumed to be modeled
by the following more complex non-linear family of ODEs,
where the parameters (α, β, γ, δ) vary from state to state:

∀t ∈ [0, I] A′(t) = αA(t) + β + γB(t)
∀t ∈ [0, I] B′(t) = δB(t)

T = T1− T0, 0 ≤ T ≤ I

A(0) = A0, A(T) = A1, B(0) = 1
A([0, I]), B([0, I]) ⊂ [−10100, 10100]

The variableB represents the heat transfer from the heating
element and the rate at which it heats and cools depends on
its temperature and on the parameterδ.

The following code shows a more interesting example in
which the model is used to find all values of the ODE param-
eterδ in the range[−10,−5] for which the system evolves
to the state withS=off andA = 2 in exactly 0.5 seconds.

| ?- {D in [-10,-5],T=1/2,A=2}, S=off,
test(S,(T,A,Z),D),narrow_all(10000000).

A = 2
D = -8.3533433047...e+00
S = off
T = 0.5
Z = 1.87481070502225...e-01 ?
(10820 ms) yes

Conclusions
Strengths of CLP(F)
A novel aspect of the ACLP approach to hybrid system anal-
ysis is that it establishes a close correspondence between the
semantics of a particular class of constraint programs and the

behavior of hybrid systems providing several advantages:
The simple mapping means that one needn’t worry about
the “translation” from ODEs to CLP(F). Interval techniques
guarantee that calculated safety properties are correct, and
protect against round-off errors, while also providing a natu-
ral technique to handle error bars on physical measurements.
While other hybrid system models can be extended to han-
dle error bars in measurements, CLP(F) handles them nat-
urally with no extra effort either in specifying them or in
the calculation. A further advantage is that CLP(F) handles
non-linear ODEs directly and soundly. CLP(F) also allows
one to incrementally refine a model as one learns more about
the physics of a system. At areas near a transition, one need
not understand the details of the transition, but can simply
bound the behaviour in that area, and get sound results. As
one learns more about the physics, one can refine the model.

In addition CLP(F) is a very expressive language. It is
easy to state problems involving finding values of the con-
trol parameters which result in specified behavior. Simi-
larly, finding the time of state transitions is a simple matter
of describing the transition as a constraint. Once the prob-
lem is stated, the underlying Prolog interpreter automatically
solves it. Other ODE approaches often require an explicit
binary search to find such times.

Limitations and Future Work
Currently there are several limitations on using CLP(F) to
model hybrid systems. Each of them is an obvious possi-
bility for future work: It would be helpful to develop more
efficient interpreters for CLP(F) to handle very large com-
plex systems. So far we have put almost no work into the
efficiency of CLP(F), so there is a great deal of room for
improvement here. We would like to extend this work to hy-
brid systems where the sensors are governed by PDEs rather
than ODEs. Further efficiency improvements would come
from developing primitive implementations of theode pro-
cedures so that one does not need to use the full power of
ACLP (and its accompanying inefficiencies).

We would like to develop more realistic models of hybrid
systems using this approach.

CLP is not complete. If the search is bounded (e.g. there
is a limit on the time parameter), then the entire search space
will be traversed via backtracking and the incompleteness of
Prolog is not an issue. The incompleteness of the CLP solver
is however an issue whose consequence is that we do not
know for certain whether any particular answer constraint
actually contains a solution.

There is room for improvement in the heuristics of the
underlying constraint solver. Since the CLP system guaran-
tees soundness, extra attempts to narrow cannot introduce
errors, but they do take time. Better heuristics could im-
prove performance, both by reducing the running time and
by narrowing the resulting intervals.

This paper has demonstrated that Analytic Constraint
Logic Programming provides a promising approach to mod-
eling hybrid systems by providing a program whose seman-
tics precisely match the behavior of the hybrid system. Fur-
ther research is needed to see if such an approach can be
scaled up to real-life systems.

References
Acton, F. S. 1996.Real computing made real: Preventing
Errors in Scientific and Engineering calculations. Prince-
ton, New Jersey: Princeton University Press.

Adams, E., and Kulisch, U., eds. 1993.Scientific Comput-
ing with Automatic Result Verification. Academic Press.

Alur, R.; Courcoubetis, C.; Halbwachs, N.; Henzinger,
T. A.; Ho, P.-H.; Nicollin, X.; Olivero, A.; Sifakis, J.; and
Yovine, S. 1995. The algorithmic analysis of hybrid sys-
tems.Theoretical Computer Science138:3–34.

Benhamou, F., and Older, W. J. 1997. Applying interval
arithmetic to real, integer, and boolean constraints.Journal
of Logic Programming32(1):1–24.

Bohlender, G. 1996. Literature on enclosure meth-
ods and related topics. Technical report, Institut für
Angewandte Matematik, Universität Karlsruhe, Postfach
6980, D-76128 Karlsruhe, Germany. http://www.uni-
karlsruhe.de/∼Gerd.Bohlender/litlist.html an earlier ver-
sion appeared in (Adams & Kulisch 1993).

Ciarlini, A. E., and Fr̈uhwirth, T. 2000. Automatic deriva-
tion of meaningful experiments for hybrid systems. In
ACM SIGSIM Conference on AI, Simulation and Planning
(AIS ’2000).

Deshpande, A.; G̈ollü, A.; and Semenzato, L. The
SHIFT Programming Language and Run-time System for
Dynamic Networks of Hybrid Automata. Department
of Electrical Engineering and Computer Sciences; Uni-
versity of California at Berkeley, Berkeley, CA 94720.
http://www.path.berkeley.edu/shift/doc/ieeshift.ps.gz.

Deville, Y.; Janssen, M.; and van Hentenryck, P. 2002.
Consistency techniques in ordinary differential equations.
Constraints7(3):289–315.

Gupta, V.; Jagadeesan, R.; and Saraswat, V. 1996.Hybrid
cc , hybrid automata and program verification. In Alur, R.;
Henzinger, T. A.; and Sontag, E. D., eds.,Hybrid Systems
III: Verification and Control, volume 1066 ofLNCS, 52–
63. Springer Verlag.

Henzinger, T. A.; Horowitz, B.; Majumdar, R.; and Wong-
Toi, H. 2000. Beyond HYTECH: Hybrid systems ana-
lyis using interval numerical methods. In Lynch, N., and
Krogh, B. H., eds.,Hybrid Systems: Computation and
Control (HSCC 2000), volume 1790 ofLNCS, 130–144.
Springer Verlag.

Henzinger, T. A.; Ho, P.-H.; and Wong-Toi, H. 1998. Algo-
rithmic analysis of nonlinear hybrid systems.IEEE Trans-
actions on Automatic Control43:540–554.

Hickey, T. J., and Wittenberg, D. K. 2003. Rigor-
ous modeling of hybrid systems using interval arithmetic
constraints. Technical Report CS-03-241, Brandeis Uni-
versity. http://www.cs.brandeis.edu/∼dkw/papers/cs03-
241.pdf, accepted to HSCC 04.

Hickey, T. J. 2000. Analytic constraint solving and interval
arithmetic. InPOPL’00 ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, 338–351.
published as vol. 27 of SIGPLAN notices.

Hickey, T. J. 2001. Metalevel interval arithmetic and
verifiable constraint solving. Journal of Functional
and Logic Programming2001(7). http://danae.uni-
muenster.de/lehre/kuchen/JFLP/articles/2001/S01-
02/JFLP-A01-07.pdf.
Jaffar, J., and Lassez, J. 1987. Constraint logic program-
ming. In Proceedings 14th ACM Symposium on the Prin-
ciples of Programming Languages, 111–119.
Jaffar, J., and Maher, M. J. 1994. Constraint logic pro-
gramming: A survey. Journal of Logic Programming
19/20:503–581.
Kuipers, B. J. 1993. Qualitative simulation: Then and now.
Artificial Intelligence59:133–140.
Lynch, N.; Segala, R.; Vaandrager, F. W.; and Weinberg, H.
1999. Hybrid I/O automata. Technical Report CSI-R9907,
Computing Science Institue Nijmegen; Faculty of Mathe-
matics and Informatics; Catholic University of Nijmegen,
Toernooivveld 1; 6525 ED Nijmegen; The Netherlands.
Lynch, N.; Segala, R.; and Vaandrager, F. 2001. Hy-
brid I/O automata revisited. In Benedetto, M. D. D., and
Sangiovanni-Vincentelli, A., eds.,Hybrid Systems: Com-
munication and Control, volume 2034 ofLNCS, 403–417.
Springer Verlag.
Maler, O.; Manna, Z.; and Pnueli, A. 1991. From timed to
hybrid systems. In de Bakker, J.; Huizing, C.; de Roever,
W.; and Rozenberg, G., eds.,Real-Time: Theory in Prac-
tice, volume 600 ofLNCS, 447–484. Mook, The Nether-
lands: Rex Workshop.
Moore, R. E. 1966.Interval Analysis. Prentice-Hall.
Mosterman, P. J. 1999. An overview of hybrid simulation
phenomena and their support by simulation packages. In
Vaandrager, F. W., and van Schuppen, J. H., eds.,Hybrid
Systems: Computation and Control, volume 1569 ofLNCS,
165–177. Springer Verlag.
Podelski, A. 2000. Model checking as constraint solving.
In Palsberg, J., ed.,Proceedings of SAS’2000: Static Anal-
ysis Symposium.
Smith, D. A., and Hickey, T. J. 1990. Partial evaluation
of a CLP language. In Debray, S., and Hermenegildo, M.,
eds.,Proceedings of the 1990 North American Conference
in Logic Programming, 119–138.
Urbina, L. 1996. Analysis of hybrid systems in CLP(R). In
Freuder, E. C., ed.,Principles and Practice of Constraint
Programming – CP96, volume 1118 ofLNCS, 451–467.
Springer Verlag.

