Reasoning about Beliefs, Observability, and
I nformation Exchange in Teamwor k

ThomasR. | oerger
Department of Computer Science
Texas A&M University
College Station, TX 77843
ioerger@cs.tamu.edu

Abstract

Communication is an important aspect of team-
work, both in human teams and in multi-agent
teams. One of the most vital roles for commu-
nication is for information exchange, such as for
performing team situation assessment. In previous
work, we have shown how agents can automati-
cally generate messages for proactive information
exchange by inferring relevance based on analysis
of requirements of tasks other team members are
involved in. However, for the sake of efficiency,
it is important to restrict message passing to cases
where one agent is reasonably sure another agent
does not already believe the information about to
be sent. This requires being able to infer and track
the belief states of other members on the team. One
way this can be done is by reasoning about com-
monly observable information in the environment.
In this paper we introduce a formal framework for
reasoning about observability, along with practical
algorithms for updating beliefs about other agents’
beliefs. We demonstrate the utility of this approach
to intelligently filtering communication in a syn-
thetic task domain.

1 Introduction

Communication is a key component of effective teamwork,
both in human teams and agent-based teams in multi-agent
systems [Tambe, 1997]. One important role for communica-
tion in human teamwork is that it can be used to request or
offer information or help. Another important role for com-
munication in many human teams, especially those involv-
ing tactical decision-making is to build and maintain situa-
tion awareness, such as by assimilating information from dis-
parate sources to abstract, classify, and understand what is go-
ing on (i.e. information fusion). Examples of this have been
observed in teams from sports to business to fire fighting to
military tactical operations centers.

Communication is also critical to synthetic teams in multi-
agent systems. Communication can be used for task distribu-
tion and resource allocation (e.g. via contract nets), planning,
information gathering, load balancing, synchronization, coor-
dination, role selection, and joint decision-making (e.g. con-

sensus formation, voting). Communication for negotiation
and market-based methods such as auctions are also used in
many MAS systems, but not so much in domains with well-
structured teams.

Another role for communication in teams is for informa-
tion sharing, or proactive information exchange. In proactive
information exchange, information flows in the opposite di-
rection, compared to information gathering; that is, agents
with useful information autonomously forward it to others on
the team. This type of information sharing can greatly im-
prove the efficiency of the team’s operations. For example, if
some new piece of critical information becomes known to one
of the agents (such as a new target on the scope of a radar op-
erator on a battleship), or a tank getting low on fuel or ammo
just as it is about to head over a hill into battle, it would be
prudent to alert the rest of the team. In fact, this may be an as-
signed role, to watch for information of a particular type and
inform the team when it changes. This is especially useful for
information that changes infrequently, with regard to the pol-
icy of whether the needing agent should Ask or the providing
agent should T'ell*; it is more efficient for providing agents
to “push” this information only when it changes in these rare
situations. However, proactive information exchange can also
happen in an unplanned way, where agents, if they are intel-
ligent enough, can infer what new information they observe
that might be useful to others, based on knowledge of their
current activities. This makes the team smarter than just a
collection of individuals (i.e. the “team mind” - acting as if
the sensors were centralized, rather than distributed), though
it requires each member to know something about the roles
and goals of other team members.

In a multi-agent teamwork simulation environment, the
generation of proactive information exchanges can be based
on the following principle: the relevance of information to
a teammate can be inferred by reasoning about the goals of
the other agents, based on their rolein theteam plan. Specifi-
cally, the pre-conditions of those goals constitute the informa-
tion relevant to the other agent, since that agent would need to
know that information in order to execute the operators. This
has also been recognized by [Grosz and Kraus, 1999], who

1Tell and AskIf are standard KQML performatives [Finin etal.,
1997]; the equivalent message types in the FIPA ACL would be
Inform and Querylf, respectively, see www. f i pa. or g

discuss the need to communicate in order to keep mutual be-
liefs about goal achievement and capability up-to-date while
executing shared plans.

However, determination of relevance is only half of the cri-
terion for proactive information exchange. The other neces-
sary component is need. Agents should only send each other
information when they are reasonably sure the other agents do
not already know it. Obviously, it is inefficient to keep telling
an agent something repetitively just because it is relevant to
them; once is enough, then we know that they know it. But
there are more complex cases, such as when we realize the
other agents can infer it from other information they have. A
preliminary formal definition for the criterion for when agent
A should send agent B information I proactively is:

Conditionsfor Proactivelnformation Exchange:
A should Send message | to B when:

Bel(A, I) A Bel(A, ~Bel(B, I))
ABel(A, Goal(B, G))
A[(=Bel(B,I) — O-Done(B, G))]
A[Bel(B,I) — —-O0-Done(B, G)]

where O is the temporal operator meaning “always.”

A concrete example of such a piece of relevant informa-
tion would the pre-condition of an action that could achieve
G. For example, if X is an action, and I € PreCond(X)
and G € PostCond(X), then I is a prime candidate for in-
formation exchange, because agent B would have to know I
before being able to execute X to accomplish G; not knowing
I would prevent B from ever acting and hence achieving his
goal.

This formal criterion can be used as a filter to cut down on
the redundant messages, which can be especially important
in mixed human-agent teams to keep from overwhelming the
human with high volume of either irrelevant or superfluous
message traffic from the agent team members.

One important method for inferring what other agents be-
lieve is by reasoning about observability in the environment
[Isozaki and Katsuno, 1996]. There are many cases in which
agents see what each other see (more generally, sense), and
from this make inferences about what they believe, which
can be used to eliminate the need for certain communications
(proactive information exchanges). For example, consider the
following example of a team-plan for two agents to capture a
burgler. First, agent A will throw open the door and turn on
the light, and then agent B will jump on the burgler. Due
to the sequential nature of this plan, some synchronization is
needed. When agent A sees that the light is on, he will in-
fer that this is now relevant to agent B, who needs the light
in the next step of the plan in order to jump on the burgler.
But, despite the relevance, agent A should not bother telling
agent B that the light is on, as it should be obvious that agent
B knows this since he can see the light too. There are many
other cases in teamwork simulations where similar situations
of mutual observability occur (often but not always involving
co-location). In such cases, communication can be obviated
through common signals in the environment.

2 Representing Observability

In a teamwork modeling language, we want to be able to de-
scribe conditions of observability for the various team mem-
bers. We view observability as a 3-way relation among: an
agent «, a fact ¢, and a condition v specifying a context,
which we write as a modal operator: Obs(«, ¢,). The intu-
itive meaning of Obs(a, ¢, 1) is that agent o would be able
to observe ¢ whenever it was in a situation satisfying ¢. In
general, ¢ could be an arbitrary sentence in first-order logic
(making Obs modal), though only literals (positive or nega-
tive) are handled in our implementation. v acts as a context,
since agents might only be able to observe certain informa-
tion under a particular set of circumstances. For example, we
might want to say that a scout can see whether there is any
enemy on a distant hill provided: a) it has binoculars, b) it is
in range, and c) it is daytime. In principle, these could also
be captured as antecedents in a rule: ¢ — Obs(a, ¢). In
practice, it should be noted that ¢ and v often take « as a pa-
rameter, such as that an agent can see whether something it is
holding is broken, Obs(a, broken(X), holding(a, X)).

As suggested by the example above, our intended inter-
pretation of Obs is unusual in that we take Obs(«, ¢,) to
mean not that o knows ¢ specifically, but that o would know
whether ¢ were true. This is an essential difference. The se-
mantics of the former interpretation can be captured in VSK
logic [Wooldridge, 2000] as the S operator, which can be
used to indicate facts or expressions which, when true in the
real world, can be sensed by an agent. For example, one
might want to say that, if the light is on, the agent will sense
it: So(lightOn). In many applications, agents will believe
what they sense, s0 S(¢) — K (¢) is often taken as an axiom,
where K is the modal operator for knowledge (true belief).

However, we argue that this form of observability is in fact
too strong for some applications. It is often convenient to rea-
son about whether an agent believes a fact ¢ without actually
committing to specific knowledge of the current truth-value
of ¢. For example, if agent A watches agent B go into a room,
agent A will believe that agent B knows whether the light is
on in the room, even though agent A might not know himself.
This is especially useful in many real-world teamwork appli-
cations. For example, in order to figure out which teammate
to ask for information, team members need to reason about
who knows whether a given fact is true. In some cases, one
particular team member might be assigned the responsibility
of monitoring information using special sensors or a vantage
point. The others need to know that he has information (e.g.
whether the fuel in the tank is getting low) without having
to know ahead of time the status of that information, i.e. the
answer (true or false).

In order to give a semantics to our new observability ex-
pression, however, we still base it on VSK logic [Wooldridge,
2000]. VSK is a modal logic with operators for visibility (1),
sensability (S), and knowledge (K). These modal operators
can be applied to sentences. For example, V' (¢) means that
the information ¢ is accessible in the environment, that is,
it is possible in principle for agents to distinguish between
states in which ¢ is true or false (though whether they do so
depends on their sensors; this is not the usual notion of “vis-

ibility” — more like “knowability”). In contrast, S(¢$) means
that they actually perceive ¢ to be true, and K (¢) means that
they currently believe it (correctly).

The semantics of VSK logic is based on Kripke-style pos-
sible worlds. A space of Kripke structures (“worlds™) is de-
fined, each of which encodes the instantaneous state of the
environment plus the internal states local to each agent. Then
several equivalence relations are used to capture the mean-
ings of the modal operators. For example, there is a relation
~,, that determines, for each world, what other worlds are in-
distinguishable (1), and similarly for S and K. The content
of what an agent knows is determined by these equivalence
relations. For example, an agent is said to believe ¢ if ¢ is
satisfied by all the worlds reachable via ~, from the current
world. If there were a world within the same class of this
partition in which —¢ were true, this would represent uncer-
tainty/ambiguity, and the agent would not be said to believe
¢ since it considers —¢ to be possible. Wooldridge goes on
to prove some properties about the inter-relations among V,
S, and K in this system, and also offers a proof theory with a
guarantee of completeness.

Our observability expression can be modeled based on
VSK logic. It is similar to the S operator, though we do
not want to say Obs(a,) = S.(¢) directly, since this is
too strong. Instead of saying that the agent can sense that
¢ is true, we want to say that the agent can sense whether
¢ is true. Therefore, we map our observability expression
Obs(a, ¢) into the following:

Obs(a, §,9p) = 1h — [(¢ — Sa(9)) A (md — Sa(—9))]

Hence, according to this definition, the agent will also be able
to sense whether ¢ is false too.

We also allow perceptions to influence agents’ beliefs,
which is ultimately what affects their behavior. Wooldridge
et al. suggest that S(¢) — K (¢) is an axiom trusting agents
could typically adopt. This might or might not be a valid
assumption, depending on the presence of illusions, sensors
faults, etc. in the domain. We feel such a simplification is
adequate for our applications of interest, at least for the self
agent (one can often do no better than believing one’s own
perceptions, unless using more sophisticated Bayesian tech-
niques...). However, we do need to be able to represent states
of belief for other agents that might differ from our view of
reality. For example, we might want to represent that an-
other agent believes a light is off even when we believe it is
on. Therefore, we adopt the assumption that agents believe
what they see (sense): S(¢) — B(¢), noting that B has
the standard epistemic interpretation of a belief state with-
out the requirement of being consistent with the true world,
i.e. B(¢) /4 ¢, as would be for the K operator. Thus if an
agent can sense whether something is true or false, then it will
believe whether it is true or false.

3 Modeing Belief States

In this section, we present a practical algorithm for agents to
update their beliefs about each other in a dynamic environ-
ment that takes into account observability, as well as other
types of inference. The main insight is that, when one agent

A believes that another agent B has entered a state satisfy-
ing the context conditions for some observability expression,
A can believe that B believes whether the corresponding fact
is true; furthermore, if A himself believes the fact to be true
or false, then he may transfer this to his belief about B’s be-
lief. However, belief maintenance among multiple agents in
a dynamic environment also interacts with a number of other
types of reasoning, especially about the pre-conditions and
effects of actions. In addition, default reasoning and persis-
tence (memory) plays a significant role in reasoning about the
beliefs of other agents.

As an overview of our approach, we are going to start
by defining a belief database, D (facts that represent beliefs
about other agents’ beliefs). Then we are going to define an
update process that constructs a new set of beliefs D+ for
a successor state, given D?. The inputs to the update process
will include information the agent has received about current
perceptions and events that have just occurred. Furthermore,
we will define special types of domain rules, J, that encode
various belief justifications for guiding the update process.
Thus the agent will operate on a classic sense-decide-act loop.
At the start of each cycle 4, it will have a set of beliefs D?. It
will then get sense information on its current situation, call
it P for perceptions (including actions and messages). Then
it will invoke the update procedure to generate a new set of
beliefs for the next time step: D™t = Update(D?, P, J). Fi-
nally, it will use its updated model of others’ beliefs to make
decisions, such as whether it is worthwhile to send new infor-
mation to a teammate.

3.1 Belief Database

The belief database is a list of tuples that each agent main-
tains that represent its beliefs about the beliefs of other agents.
Each tuple is of the form: (agent, fact, valuation). There-
fore, a belief database is:

D ::= {{agent, fact, valuation)}

The agents come from a finite set of names of agents A
involved in the simulation, and the facts are drawn from a
finite set F' of facts (propositions). For uniformity, we in-
clude the agent’s own beliefs in the belief database as well
(e.g. agent = self).

Typical valuations for propositions would be true and false.
In addition, it is important to be able to represent the fact that
another agent’s belief is unknown, as this will commonly be
the case. We represent this explicitly, rather than by absence
of information, to avoid any ambiguity between false and un-
known. Finally, because of our interpretation of observability,
there might be cases where we want to represent that another
agent knows whether a given fact is true or false, without be-
ing specific as to which. Therefore, we add the valuation type
whether:

valuation € {true, false, unknown,whether}

Clearly, their are constraints that inter-relate these valua-
tions. If we use v(a, ¢) to be a valuation function that re-
turns the truth value for a given agent o and fact ¢ listed in
a belief database, then v(a, ¢) = whether can be treated
as shorthand for v(«, ¢) = true V false, or equivalently,
v(a, ¢) # unknown.

3.2 Perceptions and Actions

It is assumed that an agent will receive a list of perceptions
P at each time step. The perceptions will be central to belief
updates. By assumption, an agent only has direct access to its
own perceptions.

An agent might also come to be aware of actions or events
that occurred, which is important for updating beliefs (or at
least one’s own beliefs about the state of the world). We view
actions as standard STRIPS operators, i.e. as discrete-state
transitions with pre- and post-conditions (can be modeled by
Situation Calculus). However, we do not assume that every
agent has knowledge of every action; some actions might be
private or remote. Therefore, we only update our model of
another agent’s beliefs when we have evidence that they are
aware of the action.

3.3 Knowledge Base - Belief Justifications

There are a variety of justifications that can be used to update
beliefs about other agents’ beliefs (as well as one’s own be-
liefs). These can be encoded as a set of domain rules. The
types of rules include:

e direct-observation: (sense ¢) A — 0 - if self senses ¢
and conditions v hold, then self should believe ¢

e observability: (obs « ¢) - if conditions ¢ hold, then
agent « will observe (sense) whether ¢ is true or not;
note, the truth of ¢ should be evaluated with respect to
self’s beliefs, which are its own best estimate of the true
state of the world

o effects of action: (effect ¢ x 6) - if pre-conditions ¢
hold, then after the event x happens, 6 will hold; any
agent aware of the action will believe the consequences;
note that « implicitly refers to beliefs in previous state,
D%, while 0 refers to D1,

o inferences: (infer ¢ 1) - any agent that believes ¢ will
infer ¢

e persistence: (persist ¢) - if ¢ was true previously,
agents believe it tends to stay true; if it was false, agents
believe it tends to stay false

e assumptions: (default ¢) - given no other evidence, as-

sume that other agents believe ¢ (as opposed to v(¢) =
unknown)

These justifications have different strengths, and it is nec-
essary to take these relative strengths into account when re-
solving conflicts. There are many situations where conflict-
ing conclusions can drawn from multiple rules. For example,
consider reasoning about an agent who (we believe) previ-
ously believed that the light was on in a room, and then walks
into the room and finds the light to be off. At that moment, we
have two rules firing that suggest something about the agent’s
state of belief: one rule suggests that the agent believes the
light is off (by persistence), and another suggests the agent
believes the light is on (by observation). Clearly in this case,
direct observations by other agents should override their be-
liefs based on persistence, and this tells us the right conclu-
sion on which to rely.

More generally, the various justification types can be
placed in a preference ordering according to strength, and
conflicts regarding beliefs about other agents’ beliefs can of-
ten be seen to occur between justifications at different levels
in this hierarchy.

type priority
direct-obs (self)
obs (others)
action effects
inferences
persistence
defaults

(N W| | Ol O

The rationale for this particular preference ordering, which
is based on analysis of typical domains we are interested in, is
as follows. First, direct observation overrides all other justifi-
cations, since we assume perceptions cannot be denied. Sim-
ilarly, observations by other agents override whatever else we
might infer they believe. The consequences of actions over-
ride inferences because actions often reveal information we
did not know. For example, if we thought (inferred) a car was
out of gas (e.g. gauge on empty), but we find out someone
started it, it must have had gas (assuming we cannot deny the
action). Inferences must clearly be given priority over per-
sistence and default assumptions, in order to maintain consis-
tency. In our system, inferences are conjunctive rules that en-
code constraints of the domain that must hold among various
antecedents and consequents, which can provide indirect evi-
dence that the state of something changed and could override
the assumption that it did not. Finally, default assumptions
have the lowest priority of all and should only be believed
if no other information is available about another agent’s be-
liefs. We note that in other domains, different assumptions
might apply. For example, if sensors are faulty, then infer-
ences might be more trustworty. However, the preference or-
dering among the justification types can easily be adapted by
re-assigning priority levels.

3.4 Belief Update Algorithm

At this point, we have a database of prior beliefs, D?, a set of
perceptions (and possibly knowledge of a recent action), and
a set of rules in the format given above. Now we need to give
the algorithm for constructing the new (updated) database of
beliefs: D+ = Update(D?, P, J). Our original idea was to
update the beliefs of self first, and then use these beliefs to
help update beliefs about other agents” beliefs (e.g. to eval-
uate observability conditions). The beliefs of a given agent
would be updated by applying the rules in .J in their order of
precedence, i.e. perceptions first, then effects of actions, in-
ferences, and so on, down to defaults (last). The second from
last step would be to copy over the valuation of persistent
facts from the previous database, if they have not otherwise
been determined. However, because of the many interactions
and dependencies among the beliefs, the order of these up-
dates must be controlled more carefully.

Therefore, we treat this more rigorously as a prioritized
logic program [Sakama and Inoue, 2000; Brewka and Eiter,
2000], also called an ordered default theory [Grosof, 1995].
We convert each of the belief justifications into a Horn clause,

and label it with a priority level (integer) given in the table
above. The semantics of a prioritized logic program is based
on a preference ordering over models, where the most pre-
ferred models are those in which truth value of each propo-
sition is supported by the strongest rule (with highest prior-
ity) in the knowledge base whose antecedents are satisfied.
In general, there can be multiple, equally-preferred models
(extensions) with inconsistent consequences (divergent con-
clusions can be drawn, depending on the order in which the
rules are applied).

In our initial implementation, we assume that the set
of rules (belief justifications) contains no circularities, and
hence there is a single stable model. In this case, the de-
pendencies among propositions? can be topologically sorted.
That is, by placing a directed arc from the consequent of a
rule to each of its antecedents, the propositions form a di-
rected acyclic graph (DAG), which can be put into linear or-
der with all edges going in the same direction. Then the truth-
values are computed incrementally for each proposition in
the sorted order, Q:..Q.,. By construction, the truth-value of
the ith proposition @; depends at most on the truth-values of
Q1..Q;—1, which have already been determined. Determin-
ing the truth-value of a given proposition is done by evaluat-
ing all the rules that are relevant (i.e. those with proposition
Q; as the consequent) and taking the result of the strongest
rule (based on justification type) whose antecedents are satis-
fied. Note that some rules might also rely on prior beliefs in
D or perceptions in P as antecedents, which do not have to be
placed in the DAG. For any beliefs with truth value marked as
whether at the end of the process, we check whether a spe-
cific truth value is believed by self, and if so, we automati-
cally promote the other agent’s belief to the more determinate
value (true or false).

Bel i ef Updat eAl g(D, P, J)
for each rule C<-Al..An in J,
create edges (C A)
topologically sort to get QlL..(Mn
for each Q
get all rules RL..Rmin J with head Q
evaluate truth of antecedents based
on D, P, and QL.. Q-1
|l et Rk be strongest rule (by just.
whose antecedents are satisfied
set truth value of Q based on Rk
if v(agt,fact)=whether & v(self,fact)=T
or F, then set v(agt,fact)=v(self,fact)
if v(agt,fact) is un-
def, set v(agt, fact)=unk

type)

3.5 Integrating Belief Reasoning with Proactive
Information Exchange

This belief maintenance algorithm can be used to support
more efficient proactive information exchange within team-
work. Reasoning about beliefs of others can be used to fil-
ter out redundant information that one agent can infer an-
other agent already knows, e.g. based on observability. We
call this enhanced algorithm PIEX for “Proactive Information

2predicates believed by different agents are treated as distinct,
but negative and positive literals are merged in the graph.

EXchange.” PIEX requires some knowledge of others’ goals
(which are used to determine relevance), though the tracking
of goals may be either fine-grained, where each agent contin-
ually broadcasts information on its status, or more coarse-
grained, where agents only have approximate information
about where each other is in their respective (potentially par-
allel) parts of the plan, based on generic knowledge of their
responsibilities or infrequent synchronization. Note that a
proactive message is sent only if it can be inferred that the
other agent either does not know (believe) the answer, or be-
lieves it incorrectly; if the answer is believed correctly, or if
the first agent believes that the second agent knows (believes)
whether the information is true, then the message is not sent.

PI EX al gorithm
D <- BeliefUpdateAl g(D, P, J)

for each agent A and current goal G of A
for each pre-cond C of G
if Cis positive literal, let v=false
else if Cis negative lit., let v=true

if <A C v> or <A C unknown>is in D
Tell (A C, V)
update(D , <A, C v>)

4 Experiments

In order to explore the utility of proactive information ex-
change and the effects of reasoning about observability, we
designed a simple synthetic task environment for a pair of co-
operating agents. The environment is a simulation based on
a variant of the Wumpus World, introduced by Russell and
Norvig (1995), which we call Wumpus Roundup. In Wumpus
Roundup, two agents work together as a team to capture the
wumpus. They do this by putting themselves in juxtaposition
to the wumpus and then each simultanesously throwing a rope
(lasso) on him. However, initially the locations of the ropes
and of the wumpus are unknown to the agents. Therefore, the
team plan starts with a search for these items.

The physical environment in which this activity takes place
consists of a single room with no walls (see Figure 1), divided
up into a 10x10 grid (coordinate system). Agents can take one
step in any direction at a time, and they know the coordinates
of their starting position (the corner of the cave), but they are
responsible for keeping track of where they are as they move
and where they have been. There are two ropes, one for each
agent. They are distinct: agent 1 must obtain rope A and
agent 2 must obtain rope B. The initial locations of the ropes
and the wumpus in the cave are set randomly. Importantly, in
this scenario, the wumpus does not move.

Visual perception is controlled by a sight-radius parameter
r; agents can see things up to a distance of r grid cells away
from their current coordinate. By setting » to be small, the
agents become myopic and must physically visit more grid
cells to find things in the cave; by setting r to be larger, they
can spot things from a distance, making their job easier.

Some examples of domain knowledge (encoded as justifi-
cations®) that the agents can use to reason about each other’s
beliefs include: 1) agents’ beliefs in the location of the wum-
pus tends to persist, 2) an agent will know the location of

3The actual syntax of rules is not shown due to space constraints.

Figure 1: The environment for the Wumpus Roundup world.
Agl and Ag2 are agents; RpA and RpB and ropes, which
must be found; W is the wumpus, to be found and lassoed.
Dotted circles indicate visibility radius.

Table 1: Results of Wumpus Roundup experiment with sight-
radius r of agents set to 3 or 5, each averaged over 10 random
scenarios. PIEX="proactive information exchange.”

without | with PIEX | with PIEX
PIEX | butnomsg | and belief
filtering reasoning
r=3
moves 85.3 59.8 59.8
msgs sent 0 3.6 15
supressed 0 0 2.1
r=>5
moves 58.9 45.2 45.2
msgs sent 0 3.8 1.6
supressed 0 0 2.2

something if it can see it, and 3) an agent will observe an ob-
ject if it is in visual range (inferred by a rule based on the
sight radius).

In the initial experiment we ran, we set the sight-radius to
r = 3. We then generated 10 random scenarios (with dif-
ferent locations for ropes and wumpus) and ran the simula-
tion, both with and without proactive information exchange
(PIEX). The results are shown in Table 1. The number of
‘moves’ is the total number of individual steps taken by the
agents, summed over both of them. Clearly, the team is more
efficient when using proactive information exchange; they
capture the wumpus in almost 32% fewer moves (the result
is statistically significant by paired T-test at the p < 0.05
level). In this case, they can help each other out by sending
a message whenever they discover the location of something
that the other agent is looking for. For example, if agent-1
finds rope-B, it tells agent-2 (who is looking for it), and this
allows agent-2 to interrupt his search-sweep and go directly
to the right coordinates. Each agent also tells the other when
it discovers the location of the wumpus; two agents searching
together is faster than each alone.

With proactive information exchange, there are a total of
3.6 opportunities per run where an agent discovers informa-
tion potentially useful to the other agent (each eventually sees
the other’s rope and the wumpus). By maintaining a model of
the others’ beliefs, the agents can make judicious decisions
about whether or not to actually send information based on
whether they believe the other agent already knows this in-
formation. The 3rd column shows the results with proactive
information exchange, but where redundant messages are fil-

tered out by using belief reasoning. Over half of the messages
are filtered (2.1 out of 3.6). Yet the performance is the same:
59.8 total moves to capture the wumpus. Similar results were
achieved with the visibility radius set to » = 5.

5 Discussion and Conclusion

The experiments reported in this paper demonstrate that: a)
proactive information exchange can improve team perfor-
mance in some multi-agent simulations, and b) a large por-
tion of the message traffic can be reduced by intelligently
reasoning about beliefs of other agents without introducing
a significant drop in performance. A key to tracking other
agents’ beliefs in a multi-agent system is reasoning about ob-
servability. However, this must also be properly integrated
with a variety of other justifications for beliefs, such as infer-
ences, persistence, and effects of actions. These justifications
have different priorities since some are stronger than and can
override others. Therefore, we model the semantics of the
knowledge representation as a prioritized logic program, and
we give a practical algorithm for deriving strongest conclu-
sions about other agents’ beliefs (provided there are no circu-
lar dependencies among the propositions).

6 Acknowledgements

This work was supported in part by MURI grant F49620-00-
1-3236 from DoD and AFOSR.

References

[Brewka and Eiter, 2000] Brewka, G. and Eiter, T. (2000). Prior-
itizing default logic. In Intellectics and Computational Logic -
Papers in Honor of Wolfgang Bibel. Kluwer.

[Finin et al., 1997] Finin, T., Labrou, Y., and Mayfield, J. (1997).
KQML as an agent communication language. In Bradshaw, J.,
editor, Software Agents, pages 291-316. MIT Press.

[Grosof, 1995] Grosof, B. (1995). Transforming prioritized de-
faults and specificity into parallel defaults. In Proc. 11th Con-
ference on Uncertainty in Artificial Intelligence, pages 217-228.

[Grosz and Kraus, 1999] Grosz, B. and Kraus, S. (1999). The evo-
lution of shared plans. In Wooldridge, M. and Rao, A., editors,
Foudations of Rational Agency, pages 227-262. Kluwer.

[1sozaki and Katsuno, 1996] lsozaki, H. and Katsuno, H. (1996). A

semantic characterization of an algorithm for estimating others’
beliefs from observation. In Proc. AAAI, pages 543-549.

[Sakama and Inoue, 2000] Sakama, C. and Inoue, K. (2000). Prior-
itized logic programming and application to commonsense rea-
soning. Artificial Intelligence, 123:185-222.

[Tambe, 1997] Tambe, M. (1997). Towards flexible teamwork.
Journal of Artificial Intelligence Research, 7:83-124.

[Wooldridge, 2000] Wooldridge, M. (2000). Reasoning about visi-

bility, perception and knowledge. In Jennings, N. and Lesprance,
Y., editors, Intelligent Agents VI, ATAL’99. Springer Verlag.

