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Cooperating Artificial Neural
and Knowledge-Based
Systems in a Truck Fleet
Brake-Balance Application

Michael Lawrence Smith

A proprietary air brake-balance analysis system for trucks gathers five
sets of data relating air pressure, time, braking force, and temperature.
Each test produces a complex, color graph plotted against axes chosen
from pressure, time, and temperature. A human expert can make im-
pressive diagnoses about the brake and air systems after studying these
graphs. | describe five artificial neural networks that are trained to ren-
der a judgment about these graphs and a knowledge-based system that
accepts these judgments and combines them with additional informa-
tion to arrive at a precise problem identification and a procedure to
solve the problem. The brake-balance system is innovative because it
uses a rare approach to a real problem: cooperative problem solving
and diagnostics between a knowledge-based system and a suite of neu-
ral networks. Success rates are 90 percent for the neural nets and 100
percent for the knowledge-based system. The annual savings is at least
$100,000.
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Truck Fleet Brake-Balance Analysis

Since the fuel crisis of the 1970s, the braking force required to stop
and slow trucks has risen dramatically. Fuel economy considerations
have eliminated two mechanisms formerly relied on to assist with the
braking process: air resistance, caused by the boxy shape of older
trucks, and the additional braking force provided by large, powerful
engines. Trucks are now more slippery to the air, decreasing drag, and
the engine size and horsepower have been sized down, reducing en-
gine-braking effectiveness.

Thus, issues of maintenance not only become critical to brake system
integrity but also assume a primary role in reducing operating costs.
Reducing these expenses is especially critical to owners and operators
of large truck fleets, for whom savings in maintenance costs can be
leveraged many times over. The most crucial aspect of maintenance is
brake balancing. A truck with an unbalanced braking system performs
poorly in emergency situations. In addition, when braking systems
don’t do their share of the work in bringing a 40-ton vehicle to a halt,
the components bearing the brunt of this effort wear out sooner.
Sometimes, failed components create a chain reaction affecting many
other components. Not only will these components fail ahead of sched-
ule, but they can mask the true cause of the failure.

The principal task of brake balance is to assure coordinated and con-
trolled braking performance between the tractor and the trailer. An
unbalanced vehicle costs far more to operate and maintain because its
components wear prematurely. Unsafe operation is also likely. Jackknif-
ing and tire blowouts are frequent results of poorly balanced truck
brake systems.

For example, a jackknife situation can occur if the trailer’s brakes
don’t work as hard as the tractor’s brakes, so the trailer actually moves
faster than the tractor when the brakes are applied. The driver’s first
indication of brake imbalance might be the disconcerting sight of the
trailer trying to pass him backwards!

Brake balancing is the art of adjusting the many components of the av-
erage truck air brake system, so work is evenly divided, and compo-
nents operate in a synchronous manner. A partial list of the elements
that are considered during brake balancing is air compressors, brake
size, brake pad friction coefficients, the length of the air lines, the
number and type of hose fittings, and relay valve pressure activation
values (the crack pressures).

A truck is composed of a tractor (where the driver sits) and a trailer.
The tractor has three axles: a steer axle and two drive axles. The trailer
has two axles, known as the front and rear trailer axles. By “truck,” |
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Figure 1. Schematic of a Typical Class 8 Vehicle.
Brake-balance diagnosis revolves around the components identified in the figure.

refer to class 8 vehicles, most commonly known as 18 wheelers. Figure 1
shows a schematic of a typical class 8 vehicle.

The issue of brake balance comes down to ensuring that the tractor
and trailer brake in a safe, coordinated manner. This action can be dif-
ficult to achieve because every independent driver owns his(her) own
tractor but pulls somebody else’s trailer, usually from a truck fleet. It’s
likely that the maintenance procedures, the frequency and quality of
the maintenance performed, and the after-market parts will vary con-
siderably between the driver’s tractor and the fleet’s trailer. This situa-
tion virtually assures brake system imbalance.

During the brake-balance analysis phase, a proprietary brake-balance
analyzer is attached to various tractor-trailer combinations (trucks).
Data are collected according to five different test procedures that si-
multaneously measure relevant parameters concerning the brake and
air systems. The duration of a test varies from 2 seconds to 30 minutes
depending on the test and environmental factors. The data are dis-
played and plotted as a graph, with axes representing time, pressure,
or temperature. For most graphs, six lines are plotted in six colors, one
for each axle and one for the pressure control line. The five tests are
the snub pressure (shown in figure 2), full apply, full release, static
pressure, and temperature.

The expert who performs the tests and offers consistently thorough
and correct analyses of the data must be highly trained and experi-
enced. Unfortunately, the expertise is difficult to teach. Thus, Al tech-
nologies were brought to bear to accomplish two objectives: (1) to au-
tomate the process as much as possible, so less experienced individuals
can perform the tests, and (2) to render timely diagnoses of the col-
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Figure 2. A Typical Graph for Analysis by Eaton’s Brake-Balance System.

lected data in the field. In effect, the goal of the project was to remove
the expert from the task of performing brake-balance analysis of truck
fleets at customer sites by cloning the expert and spreading around
his(her) expertise.

Use of Al Technology

Two Al technologies are used by the brake-balance analyzer system:
knowledge-based systems and artificial neural systems (Anderson and
Rosenfeld 1988; Arbib 1989; McCulloch 1988).

A knowledge-based system was written using Lisp and IntelliCorp’s
Kee software product. It supports two knowledge bases. One knowl-
edge base performs a preprocessing function, and the other is a diag-
nostic system. The knowledge-based system also consists of a model of a
truck, reasoned over by a number of rule classes and metarules (rules
about rules) in an object-oriented environment using multiple inheri-
tance. The knowledge bases and truck model are partially controlled
by, and communicate through, a blackboard architecture (Barr,
Cohen, and Feigenbaum 1981-1982; Erman and Lesser 1975; Erman
et al. 1980; Hayes-Roth 1985; Arbib 1989). Where possible, methods
and demons replace rules to speed execution times. (Methods are com-
piled, inheritable, and, possibly, rulelike procedures that are stored in
frame slots. Demons are autonomous, self-actuating methods.) Figure 3
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Figure 3. A Schematic Diagram of the Basic Structure of the Knowledge-Based
System Portion of the Brake-Balance Analyzer.

shows the basic structure of the knowledge-based system.

About 40 rules and 120 methods are used. The rules are reasoned
over using both forward- and backward-chaining processes. Inheritance
is bi-directional wherever appropriate; that is, values are also inherita-
ble from instance (child) to subclass (parent) to class object. Figure 4
illustrates this concept for the simple case where a slot representing
crack pressure is inherited by subclasses and their respective instances
(child objects). Subsequent measurements by the brake-balance analyz-
er provide each instance with its unique pressure value. To reason
about, say, the trailer’s crack-pressure value, we average the values of its
instances (children) and assign this value to the trailer’s crack-pressure
slot. (We must, of course, inhibit the inheritance of this value back to
its children, or we defeat the purpose of bi-directional inheritance and
create dangerous looping behavior).

In this example, slot values for the front- and rear-axle instances of
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Figure 4. A Sample of the Inheritance Schemes Used in the Brake-Balance
System Is Hlustrated by the Class Axles.

the subclass DRIVE are averaged to give DRIVE a crack-pressure value
of 6. More specifically, the slot CRACK-PRESSURE of the subclass
DRIVE of the subclass TRACTOR of the class AXLES is given a value of
6. This process continues until eventually the class AXLES is itself given
a value. In this case, this value is no longer numeric because a Boolean
value such as LEGAL or ILLEGAL best suits our purposes. An advan-
tage of this bi-directional inheritance scheme is that the variable type
of the object’s slot value can dynamically be changed.

The task of rendering detailed diagnoses based on an analysis of the
graphs is difficult. Field-service personnel were unable to learn the task
within a reasonable time frame. | believe knowledge-based system tech-
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nology cannot efficiently make judgments about the graphic data.
Therefore, an effective system for doing so using neural networks was
developed.

The neural networks were built with the assistance of scientists at
HNC. The development platform consisted of an HNC Anza Plus
board in a PC-AT installed at Eaton Corporation and a similarly
equipped Sun workstation at HNC. Time was too short to allow for
much experimentation, so a simple back-propagation scheme with
feed forward was used to meet the delivery date (Rummelhart, Hinton,
and Williams 1986a, 1986b). The number of input nodes, hidden lay-
ers and hidden units varies between networks. It is not surprising that
graphs turned out to be difficult to learn. What is surprising is that par-
ticular classes of graphs, thought to be easy ones, were, in fact, the
hardest to learn.

Special brake-balance analysis equipment and software are used to
acquire most of the raw data. This equipment and the neural net soft-
ware run on a PC-AT class machine. The knowledge-based system re-
quires an 80386-based machine. New avenues for deployment have
opened and are discussed in Results and Future Work.

The Preprocessing Knowledge Base

The first knowledge base performs a preliminary checking function.
While installing the sensors and microcontrollers used by the brake-
balance computer, the brake-balance technician scrapes mud and rust
from the components to identify their manufacturers and record sizes,
adjustments, and wear and tear. This information is entered into the
preprocessing knowledge base by the technician. The knowledge base
examines the data provided by the human operator from this visual in-
spection of the vehicle systems along with the results produced by the
brake-balance analyzer. The preprocessor ensures that each compo-
nent of the truck (the tractor and trailer) is itself balanced. Testing will
not proceed until incompatibilities are resolved because an attempt to
balance the performance of the tractor and trailer is wasted if either of
them is unbalanced.

Neural Networks

In the second phase of testing, the proprietary brake-balance analyzer
is used to test various tractor-trailer combinations. It simultaneously
measures characteristics of various brake components for each axle.

A suite of five neural networks is used to render expert analysis of
the graphs. Each network classifies one particular type of graph as
good or bad. The verdict reached by each neural net is then fed back
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Figure 5. The Role of the Neural Network Classifiers in
Eaton's Brake-Balance System.

to the expert system. Figure 5 shows the role of neural networks in the
system.

I decided that a 90-percent success rate for each type of graph in the
test suite would yield excellent results because of inherent redundancy
in factors measured by the tests and subsequent cross-checking by the
knowledge-based system. To meet our 15 December 1989 deadline for
successful deployment, little time was spent analyzing the data to de-
cide on an optimal neural network paradigm. It was decided that a sim-
ple back-propagation scheme with feed forward would be used. If time
and results allowed, an alternate algorithm would be tried.

Many of the interesting problems we encountered resulted from the
fact that although we had a five-year history of the expert’s reports, in-
volving dozens of truck fleets and thousands of graphs, to train and test
the networks, we still had relatively small data sets for training and test-
ing neural networks using the back-propagation scheme. This informa-
tion on data set sizes and training is illustrated in figure 6.

An approach to overcoming small sample size was used in the cases
of the apply and release tests. Only 25 and 91 examples of bad graphs
are available, respectively, but a relatively huge number of good exam-
ples exist. This technique, known as oversampling, involves making the
training set larger by duplicating its members. One keeps adding ex-
amples to the training set until training produces compatible accuracy
on both the good and bad graphs. Oversampling did the trick under
circumstances where it seemed impossible to train the apply and re-
lease classifiers. It was fortunate that our samples were typical exam-
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Number of Test and Training Examples Available

Test Good Bad Total
Temperature 42 50 92
Static Pressure 144 131 275
Apply 338 25 363
Release 293 91 384
Snub 92 105 197

Figure 6. The Number of Examples Used to Train and Test Each of the Five
Neural Network Classifiers Was Relatively Small.

Classification Results (%)

Test Linear Heuristic Best Network
Temperature 64 85 91
Static Pressure 72 73 91
Apply 93 (0% onBADS) 90 (28% on BADS) 88
Release 76 (0% onBADS) 82 89
Snub 47 (0% onBADs) 76 92

Figure 7. The Performance of the Neural Networks Compares Favorably with
Two More Traditional Approaches.

ples, or training would have emphasized idiosyncrasies in the data.

To gauge the performance of network classifiers relative to conven-
tional techniques, two sets of baseline classifiers were developed. The
first baseline consisted of a set of linear discriminant classifiers that
were provided with the same input as the network classifier. In general,
these classifiers performed badly, as indicated in figure 7. Note in par-
ticular that they had a hard time in correctly classifying bad graphs. Un-
fortunately, these graphs are the ones we can least afford to misclassify.

The second set of baseline classifiers was derived from heuristics
used by Eaton in evaluating test data. Essentially, the expert’s rules of
thumb were represented by statistical manipulations of the raw data.
The overall performance is better than that of the linear baseline, as
one would expect if heuristics do indeed have value.

The best performance came from the back-propagation networks
(BPNs). BPN is a multilayer mapping network that minimizes the mean
square mapping error between desired output and actual system output.
BPN is typically a three-layer feed-forward neural network. The three lay-
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Neural Network Configuration Data

Test Size of Set Number of Nodes Iterations To
Training  Test In Hidden Layers 1/2 Convergence
Temperature 58 34 3-5 7/ No layer 2 1,000
Static 189 79 11711 10,000
Apply 218 145 10/ No layer 2 10,000
Release 238 157  3-5/ No layer 2 1,000
Snub 129 69 11711 50,000

Figure 8. The Critical Characteristics of the Five Neural Network Classifiers.
Note that the classifiers can have one or two hidden layers.

ers (slabs) are referred to as the input layer, the hidden layer, and the
output layer, each consisting of a number of processing elements.

Figure 8 gives the relevant characteristics of the networks. The re-
sults achieved with these classifiers are attributed to experimentation.
Of course, not all parameters can freely be adjusted. The training set
and test examples must randomly be chosen from the population of
examples to ensure that each is typical of its kind. The total number of
good and bad examples in the test set must exist in fair proportion to
one another too.

Note that two of the networks have two hidden layers. | want to em-
phasize that multiple hidden layers are artifacts borne from the need
to quickly get results. We were able to monitor each network’s training
performance in a convenient graphic format that worked in real
time—an indispensable tool provided by HNC. If results weren’t forth-
coming before our patience wore thin, we found that adding another
hidden layer usually produced quicker results. That is, the real time re-
quired for training to converge was reduced to acceptable levels.
Therefore, the stubborn trainers are readily identified from figure 8.
They use two hidden layers, have more nodes for each hidden layer,
and require more iterations to converge.

The input propagate through the hidden layer, which forms nonlin-
ear combinations of the input values. The output of the hidden layer
are subsequently combined by the single processing element to pro-
duce an output value that is compared against a threshold to provide a
classification into one of two categories. These categories are identified
in our expert’s technical vernacular as good and bad.

In general, the output layer can contain an arbitrary number of pro-
cessing elements, as determined by the dimensionality of the target
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space for the network. The weights of the network cannot directly be
calculated; rather, the weights are adjusted by training the network to
perform the desired classification of the input patterns. In this proce-
dure, the network output and the desired output are computed. The
output error, that is, the difference between desired and output values, is
then propagated backwards through the network, and the weights are
updated according to the generalized delta rule.

The choice of an input representation is a compromise between giv-
ing the network enough information to work with and finding a com-
pact representation of the data. Our approach is to give the network
input that is as close as possible to the raw data but to pare down the
amount of data it sees by considering symmetries, regularities, and ten-
dencies. With this approach, if one of the baseline statistics suggested
by Eaton heuristics is useful, then the network is able to derive it; how-
ever, the network has enough additional information to model regular-
ities in the data that are not predicted by the baseline statistics.

Each set of data (graph examples) was split into two sets, one used
for training and the other used to test the performance of the trained
network on novel examples. Several experiments were performed with
networks of various topologies. The best results were consistently ob-
tained with networks of 1 or 2 hidden layers and 3 to 11 hidden nodes
and with connections from the input neurons to the output neurons
enabled. After training for a few thousand iterations, the networks reli-
ably learned to classify the training set with 100-percent accuracy, indi-
cating that the network memorized the training examples. Figure 8
summarizes this information.

Diagnostic Knowledge Base

The second knowledge base accepts data from the networks and the
preprocessing knowledge base and the truck model to arrive at a pin-
point analysis of the brake system. It produces one or more recommen-
dations for putting it right again.

The knowledge-based system is 100-percent successful at this task,
provided it is given valid classifications of the graphs. It tries to explain
its reasoning as it renders its decisions. An example of an explanation
is, “The mismatched coefficients of the brake pads, combined with the
oversized brakes and generally slow reaction time of the brake system,
will tend to cause the trailer brakes to do more work than the tractor
brakes, creating excessive operating temperatures. In addition to wear-
ing the brake pads prematurely, the brakes will quickly go out of adjust-
ment, exaggerating the problem of a tardy brake system.”
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Figure 9. An Overview of the Brake-Balancing Process, Including Raw Data
Acquisition, Knowledge-Based System Processing, and Classification by Neural
Networks.

Innovative System Qualities

The brake-balance system is innovative in that it uses a rare approach
to a real-world problem by featuring cooperative diagnostics and prob-
lem solving between a knowledge-based system and a suite of neural
networks. Figure 9 illustrates the process, which is described in the fol-
lowing paragraph:

The cooperation proceeds according to these steps: First, observa-
tional data and data from the brake-balance analyzer are manually
input to the knowledge-based system. Observational data include infor-
mation that is stamped into steel underneath the truck, requiring a
flashlight and the removal of sludge to read. Second, preprocessing is
performed by the knowledge-based system. The knowledge-based sys-
tem assures that the tractor and trailer are each balanced. Third, pre-
processing is performed by the neural networks. The classifiers can de-
tect some of the same inconsistencies as the knowledge base. This
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result suggests great potential for an expanded role for neural networks
in the brake analyzer system. The classifiers also locate and identify in-
teresting features and perform some smoothing to the raw data. Fourth,
judgments are rendered by the neural network classifiers. Fifth, these
judgments are passed to the knowledge-based system. Sixth, a reality
check is performed by the knowledge-based system to discover and cor-
rect isolated errors by the neural networks. Seventh, diagnosis and a
recommended solution are given by the knowledge-based system.

Two additional features are worthy of note: After the system was de-
signed, much of the labor to construct the knowledge-based system was
produced by juniors and seniors earning college credit from local uni-
versities while working at Eaton. They were relatively unfamiliar with
programming, let alone Lisp, Keg, or Al. Still, they were useful in build-
ing the system. This ability speaks well for the maturity of the technolo-
gy used in this application.

During the knowledge-based system development phase, several for-
mer brake-balance “experts” came by for demonstrations. Each used
the fledgling system to try out a favorite “chestnut” (real-life experi-
ence). Realizing we were wasting knowledge-acquisition opportunities,
these visits prompted the development of an automatic rule-generation
feature. If the system had no recommendation, they could provide
one, essentially teaching the system a new rule. These rules were
flagged for approval by the expert before inclusion in the permanent
knowledge base.

Criteria or Deployment

The deadline for system delivery was 15 December 1989 and was suc-
cessfully met.

The knowledge-based system is successful only if an accurate diagno-
sis and recommendation is given nearly 100 percent of the time. Two
assumptions are required, however. The data from the brake-balance
analyzer must be accurate, and the classifications of the graphs must be
within the accuracies given below.

Two levels of success were set for the neural net portion of the sys-
tem: The easiest criterion for success required that all five networks op-
erate at 80-percent accuracy. The system is a legitimate success at this
level of performance because of natural relationships between the
graphs. Thus, the knowledge-based system will identify and correct any
single error by one of the neural networks. Therefore, a usable and
correct solution will be reached when isolated errors occur in classify-
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ing the graphs. Further, occasional errors on specific truck rigs are of
no consequence because we are recommending brake-balance proce-
dures for entire truck fleets

The preferred level of success was to reach 90-percent accuracy on
all five of the networks. Current success rates are 88 percent, 89 per-
cent, 91 percent, 91 percent, and 92 percent. This result is an unquali-
fied success. It is important to note that relatively small data sets for
training and testing neural networks using the back-propagation
scheme were available, even though these data sets constituted a five-
year history of the expert’s reports, involving many truck fleets and
thousands of samples.

Nature and Estimate of Payoff

Expenses amounting to $100,000 that were incurred by the expert are
saved annually. Ninety round trip air fares, 90 car rentals, about 225
hotel room rentals, and 675 meals are eliminated. These numbers do
not include the savings of the expert’s labor costs.

Although concrete dollar figures are difficult to come by, the largest
payoff directly relates to attracting additional business for Eaton Cor-
poration. Brake balance is offered as a free service to our customers
who operate large truck fleets. It is assumed that our customers react
positively to this practice and, in return, do more business with us. The
system allows the field support staff to conduct tests and generate solu-
tions immediately. Brake balancing conducted by local engineers yields
the following benefits: First, six times the former number of fleet ap-
praisals can be conducted each year, effectively spreading six times the
good will. Second, brake-balance test results no longer need desk anal-
ysis. Extensive analysis can delay the brake-balance report to the cus-
tomer by one to three months. Speedy analysis increases good will.
Third, the expert is freed from a burden. It is likely the expert will be
promoted to pursue other more challenging and rewarding work,
which is a professional perk. It’s certainly preferable that the expert
not be put out of a job after providing his(her) expertise. Such an ex-
pert is usually more cooperative than one who is losing his(her) job or
is not being promoted. Fourth, as with many diagnostic systems, it has
shown value as a training tool for inexperienced maintenance people.
Fifth, Al technologies are put into the hands of people who sell and
maintain trucks. They are used on a daily basis to perform tasks that
are basic, easily understood, and not secret. The brake-balance applica-
tion is down to earth. The average person can understand it and feel
good about it.



TRuUcK FLEET BRAKE-BALANCING 277

Outline of System Use

The development time and costs were moderate, and deployment went
smoothly. Further deployment, however, requires working out some de-
tails.

Development Time and Costs

The knowledge-based system required two calendar months for knowl-
edge acquisition (including truck brake school), which is four person-
weeks of labor. The design, development, and testing of the system
took an additional six weeks. Total development cost was $30,000. The
work was conducted during the period from October 1988 to February
1989. The neural nets cost approximately $50,000 to develop; this work
occurred from August 1989 to December 1989.

A development copy of Kee existed in the knowledge-based system
laboratory. Each delivery copy put to the field for personal computer
(PC) deployment will cost about $2500. Thus, it would cost $17,500 for
seven systems.

The neural net Anza Plus development board and computer cost
$27,000. Field deployment costs are considerably less. The compiled
software simulation of the networks is less than $1000 for each de-
ployed PC. The total cost for development and deployment is, thus,
$105,500, when software discounts are applied.

Deployment

Although it was completed two calendar months earlier, holidays and
schedule conflicts postponed the deployment of the system until 13
February 1990. The system was delivered to the expert, and the deploy-
ment consisted of a brief training episode followed by two field tests.
The field tests entailed recommendations for two truck fleets; judg-
ments were rendered on 38 graphs.

Issues of Further Deployment

Before deploying the remaining systems, the following items need at-
tention: First, the trucking industry experienced a downturn in the
first quarter of 1990. Fleet testing was curtailed until the situation re-
verses. Thus, additional deployed systems will not be useful until later
in 1990. Second, only one-third of the field stations have adapted to
using the proprietary brake-balance analyzer equipment, delaying de-
ployment opportunities. Third, the cost of delivery for Kee systems is
too high for our customer, in part because 80386-based PCs must be
purchased. Fourth, the customer would like more features to be added
before initiating full-scale deployment.
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Results and Future Work

The knowledge-based system performed flawlessly both on five years of
field data and in two recent field tests. The neural network classifiers
were 90-percent effective on the archived data and perfect on the field
tests. These results are encouraging, especially because the choice of
networks is not yet optimized for the task.

However, the classifiers shouldn’t be doing this well. The expert sus-
pects the field-test success of the classifiers is partially explained by the
fact that the system encountered the most challenging problems dur-
ing its development and that today’s problems are simply less interest-
ing. The brake systems of today’s trucks are in better shape than those
of a couple years ago, and some of the really awful tests that occurred
in the training and test data won’t be seen again. To paraphrase, the
networks were trained and tested against data that are less well be-
haved than anything they will see in the field. (This is a great trick if
you can do it and opens the question of deliberately training networks
on unreasonably difficult examples to ensure greater accuracy in de-
ployed systems that will likely only see better--behaved data.)

The success of the neural net classifiers implies that today’s trucks
are showing better brake-balance characteristics. In fact, customers
now pay more attention to brake systems when specifying trucks for
their fleets. However, antilock brake systems will soon be federally man-
dated, and international diagnostic standards are being formulated. It
is important to preserve today’s knowledge and integrate computers
into the current environment, thus preparing us to address the needs
of the trucking industry for the decade ahead.

I have an alternate explanation for the success of these classifiers:
The technicians running the tests are required to perform certain
skilled manipulations of the brake pedal. | can attest to the fact that a
learning curve exists. It is possible that better-behaved data are pro-
duced because the operators have gained experience performing the
tests with the brake-balance analyzer. This hypothesis will be easy to
verify once rookies begin using the system.

I would like to experiment with other network algorithms to im-
prove the accuracy of the networks. It is possible to expand the diag-
nostic capability beyond merely good and bad. The diagnosis could in-
clude specific information about what features in a graph make it bad
or good and what symptoms one expects to see on the vehicle as a re-
sult.

Integrating the proprietary brake system, the knowledge-based sys-
tem, and the neural networks into one platform will ease field deploy-
ment and make it cost effective. With regard to the high cost of the Kee
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system, it is worth noting that IntelliCorp has made two products based
on the C programming language available that are less expensive than
Kee and have fewer hardware requirements.

I would like to incorporate a truck maintenance expert system that is
driven by voice input and synthesizes speech output. This system would
keep the operator’s hands free for mechanical tasks and eliminate
note-taking activity beneath the truck.

Conclusion

The familiar problem of trying to capture expertise and represent it in
another form does not go away with neural networks. Choosing net-
work topologies and algorithms and resolving training issues require
the same understanding of the domain that a knowledge-based system
does. For hybrid applications, pairing the knowledge engineer from
the knowledge-based system activity with a neural net specialist pro-
duces better results than pairing a neural net specialist with a domain
expert. This fact is an indication that neural net technology is not yet
ready to be placed in the hands of a lay person. However, artificial neu-
ral system and knowledge-based system technologies are complemen-
tary in nature and are mature enough to be deployed together in ap-
plications that are less than exotic. Further, knowledge-based system
tools do not always require highly trained users to be productive and
effective. Finally, back propagation can sometimes be successful in
cases with relatively small sample sizes, especially when the technique
of oversampling can be applied.
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