
Comet: 
odel-Based Reasoning to Accounting Systems 

Robert Nado, Melanie Chams, Jeff Delisio, and Walter Hamscher 

Price Waterhouse Technology Centre 
68 Willow Road 

Menlo Park, CA 94025-3669 
{nado chams delisio hamscher)@tc.pw.com 

Abstract 
An important problem faced by auditors is gauging 
how much reliance can be placed on the accounting 
systems that process millions of transactions to 
produce the numbers summarized in a company’s 
financial statements. Accounting systems contain 
internal controls, procedures designed to detect and 
correct errors and irregularities that may occur in the 
processing of transactions. In a complex accounting 
system, it can be an extremely difficult task for the 
auditor to anticipate the possible errors that can occur 
and to evaluate the effectiveness of the controls at 
detecting them. An accurate analysis must take into 
account the unique features of each company’s 
business processes. To cope with this complexity and 
variability, the Comet system applies a model-based 
reasoning approach to the analysis of accounting 
systems and their controls. An auditor uses Comet to 
create a hierarchical flowchart model that describes 
the intended processing of business transactions by an 
accounting system and the operation of its controls. 
Comet uses the constructed model to automatically 
analyze the effectiveness of th< controls in detecting 
potential errors. Price Waterhouse auditors have used 
Comet on a variety of real audits in several countries 
around the world. 

Auditors have the task of determining whether the financial 
statements of a company are a fair presentation of the 
company’s financial position. An important problem faced 
by auditors is gauging how much reliance can be placed on 
the accounting systems that produce the numbers 
summarized in the financial statements. Accounting 
systems contain internal controls, procedures designed to 
detect and correct errors and irregularities that may occur 
in the processing of transactions. In a complex accounting 
system, it can be an extremely difficult task for the auditor 
to anticipate the possible errors that can occur, to 
determine their downstream effects in the accounting 
system, and to evaluate the effectiveness of the controls at 
detecting them. An accurate analysis must take into 
account the unique features of each company’s business 
processes. To cope with this complexity and variability, 

1482 IAAI-96 

the Comet system applies a model-based reasoning 
approach (cf. Hamscher et al., 1992) to the analysis of 
accounting systems and their controls. 

Comet supports the creation of hierarchical flowcharts 
that ultimately describe the processing of business 
transactions in terms of a set of primitive activities for 
operating on records and a set of controls for detecting and 
correcting errors that may occur in the processing. Using 
knowledge of the basic ways in which the primitive 
activities can fail, Comet finds potential failures that can 
occur in the accounting system and uses the structure of 
the flowchart to analyze the impact of those failures on the 
validity of the accounts. Comet then matches each 
potential failure to the set of controls capable of detecting 
it and evaluates the effectiveness of the controls in 
reducing the risk that the potential failure will go 
undetected. Finally, Comet ranks the controls with respect 
to their relative contribution to reducing the risk of 
undetected failures and selects a subset of key controls 
whose proper operation should be tested. 

In the United States, the SEC requires a yearly 
independent audit of the financial statements of public 
companies. Other countries have similar requirements. An 
accounting firm that is engaged to perform an audit of a 
public company has the task of issuing an opinion on 
whether the financial statements are a fair characterization 
of the financial position of the company and follow 
generally accepted accounting principles. The numbers 
that appear in the financial statements are typically the 
accumulated results of thousands, even millions, of 
detailed financial transactions in which the company has 
participated over the previous year. 

There are two main approaches that can be taken to 
assessing the accuracy of financial statements. The 
substantive approach attempts to obtain evidence of the 
validity of financial statements by examining records of 
detailed transactions and applying analytical methods to 
gauge the reasonableness of the reported numbers. By 
contrast, the systems-reliant approach focuses not on 

From: IAAI-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



verifying the numbers themselves but on assessing the 
adequacy of the accounting systems that produced the 
numbers. In taking a systems-reliant approach, an auditor 
looks at the internal controls that are in place in the 
accounting systems and evaluates their effectiveness in 
detecting and correcting errors that may occur in 
processing transactions. 

For example, a company’s “purchases and payables” 
system handles transactions involving the purchase of 
goods from suppliers. Such a system is designed to receive 
and record purchase orders, transmit them to suppliers, 
ensure that goods are received, payables recorded, and the 
supplier eventually paid for goods received. In auditing 
such a system, it is important to focus not so much on the 
computer system itself but on the business processes which 
it supports. A business process usually contains both 
manual and computerized steps and is partially performed 
by parties outside the company. 

There are many things that can go wrong in a purchases 
and payables system. For example: 
e An invoice may be received from a supplier for goods 

which were never ordered or received. 
e The quantity or price of goods listed on the invoice 

may be incorrect, either due to an error at the supplier 
or because of an operator error in entering the invoice 
into the computer system. 

e A fictional invoice may be entered into the system as 
part of an attempt to defraud. 

In order to detect and correct such problems, a purchases 
I and payables system should contain a number of internal 

controls. For example: 
0 Invoices that have been entered on to the computer 

system should be matched to corresponding purchase 
orders and records of goods received, with quantities 
and prices agreed. Although the matching process can 
be computerized, any discrepancies will generally 
need to be manually investigated and resolved. 

0 Access to the computer system for data entry should 
be restricted to authorized personnel by means of an 
appropriate security system. 

e Data entry of an invoice should not be performed by 
the same person who later authorizes or reviews the 
invoice. 

In practice, any given audit will combine elements of 
both the substantive and system-reliant approaches with 
the relative emphasis dependent on the particular 
characteristics of the business and its components. With 
large companies that have complex, computerized 
accounting systems processing vast numbers of 
transactions, the systems-reliant approach is becoming 
increasingly important, both to obtain adequate audit 
evidence and to reduce the cost of the audit. A specialized 
category of auditor, called a CIS (Computerized 

Information Systems) auditor’, brings to bear skills in both 
accounting and systems analysis to carry out a systems- 
reliant audit approach. 

In order to take a systems-reliant approach, a @IS 
auditor must obtain and document an understanding of 
how an accounting system processes business transactions 
and of the internal controls that are in place. In preparing 
this “model”, the auditor may make use of available 
systems documentation from the client. However, systems 
documentation generally is not prepared from an audit 
point of view. It may explain how the system works in 
great detail, but generally does not contain adequate 
information on controls, does not have a business process 
focus, and omits the manual components of the business 
process. The auditor must supplement information 
obtained from documentation with observation of the 
system in operation and interviews with key personnel. 

In determining the effectiveness of controls, it is 
important to distinguish the role of a control in the design 
of an accounting system from how well it is performed in 
practice. By analyzing the processes and data flows of an 
accounting system, an auditor attempts to determine those 
controls that play key roles in the prevention and detection 
of errors that may affect the validity of the financial 
statements. In order to obtain sufficient comfort that the 
system is actually operating as designed, the key controls 
need to be tested to ensure that they are being properly 
performed. 

For complex accounting systems, a thorough and 
accurate controls evaluation is almost impossible to 
perform efficiently without some form of computer-based 
support. There are many different possible sources of 
error, some of which may be overlooked. It is extremely 
difficult to manually trace the effects of possible errors 
through the transaction processing to determine whether 
they are significant to the audit. There may be redundancy 
in the coverage of errors by controls, but detailed analysis 
is required to determine this with confidence. Because 
systems evolve rapidly, it is costly to determine the impact 
of system changes on controls effectiveness. Most 
importantly, human fallibility in the face of complex 
systems can lead to costly consequences. 

Prior to Comet, CIS auditors have used a combination of 
flowcharting software and controls checklist software in 
their evaluation of controls. Commercial flowcharting 
software can be used to document major activities carried 
out in an accounting system but the result is not in a form 
that allows automated analysis. Checklist software is 
populated with libraries of controls that could be expected 
to be found in a client’s system to address the major areas 
of risk. Although different libraries of controls can be 

1. Variously called an EDP (Electrow Data Processmg) auditor, or an 

ISRM (Information Systems Risk Management) auditor 

Case Studies 1483 



developed for the major components of generic accounting 
systems as well as for different accounting software 
packages, it is difficult to tailor checklist software to 
reflect the varying characteristics of different industry 
sectors and the idiosyncratic aspects of a particular client’s 
implementation. Furthermore, controls checklist software 
takes no advantage of the information captured in 
flowchart documentation. 

The development of Comet was motivated by the 
intuition that an accounting system can be hierarchically 
decomposed into a structure that bottoms out in instances 
of a small set of primitive types of actions for processing 
records and for implementing internal control. Provided 
that the behavior of the primitive activity and control types 
can be suitably characterized, a model-based approach can 
be taken to the analysis of failures and their detection by 
internal controls. As a consequence, the auditor can 
concentrate on developing an accurate model of the 
accounting system under review, with Comet automating 
the more burdensome aspects of controls evaluation. 

Application Description 

Although model-based reasoning has been previously 
applied to financial domains, the models have generally 
consisted of equations and constraints representing the 
relationships between financial and microeconomic 

quantities [Bouwman, 1983, Hart et al., 1986, Bridgeland, 
1990, Hamscher, 19941. Comet is novel in its application 
of a model-based approach to analyzing systems for 
processing financial records. 

Basic Modeling Concepts 
Accounting systems process records of business 
transactions through activities that create, use, alter. and 
store those records. Comet represents the processing 
performed by an accounting system as a hierarchically 
structured flowchart graph. The two most important kinds 
of nodes in a Comet flowchart are collection nodes and 
activity nodes. Collection nodes represent repositories of 
records, which may be in either paper or electronic form. 
Activities are represented hierarchically, starting with 
nodes representing activities at a high-level of abstraction 
and progressively decomposing them until nodes 
representing primitive activities are obtained. 

Figure 1 shows the top-level flowchart of PURCHASE, 
a model of a simple Purchases and Payables accounting 
system. The top-level flowchart is intended to give a high- 
level overview of the system, indicating the major 
activities performed by the system, the relevant general 
ledger accounts, and important collections of records that 
are accessed and updated by the processing of a 
transaction. Activity nodes are distinguished by having a 
rectangular icon in their lower-left comer. Collection 

Figure I: A Top-Level Flowchart 

1484 IAAI-96 



Figure 2: Expansion of the Payment Activity 

nodes have a trapezoidal icon for paper records and a 
cylindrical icon for electronic records. Nodes representing 
general ledger accounts contain a “boxed T” icon. There 
are two kinds of arcs connecting nodes in the flowchart. 
The solid arcs represent data flow relationships between 
activities and collections. The dashed arcs represent 
precedence relationships between activities; the activity at 
the tail of a dashed arc must be completed before the 
activity at the head of the arc can proceed. 

The Order Processing activity prepares a Purchase 
order, which is sent off to a Supplier to be filled and also 
recorded in the Orders DB. When the Supplier fills the 
order it sends a goods received note (GRN) and an invoice 
along with the goods. The Goods receiving activity records 
the GRN in the GRN DB and tries to match it up with a 
corresponding record in the Orders DB. The Purchase 
invoice activity records the invoice from the Supplier in 
the lnvozces DB and compares it with the corresponding 
record on the Orders DB. If a matching order can be 
found, the Purchase invoice activity posts a credit to the 
Creditors account and a debit tc the Expenses account. 
The Payment activity periodically extracts invoices that 
are due for payment, prepares checks for payment to 

suppliers, debits the Creditors account, and credits the 
Cash account. 

Since the top-level flowchart of PURCHASE gives a 
high-level overview of the system, it contains no primitive 
activities or controls. Each of the top-level activity nodes 
has a decomposition into a sub-flowchart that gives more 
detail about how that activity is performed. Figure 2 shows 
the flowchart for the decomposition of the Payment 
activity; it may be reached by double-clicking on the 
Payment node in the top-level flowchart. The nodes in 
Figure 2 that have dashed light-gray borders are called 
reference nodes; they refer to collections whose primary 
depiction is elsewhere in the flowchart. When an activity 
node is decomposed, each collection node to which it is 
directly connected has a reference node automatically 
created in the sub-flowchart. The reference nodes allow the 
input and output collections of the top-level activity to be 
referenced by the activities in the sub-flowchart. 

Comet contains a predefined vocabulary of activity and 
control types, called verbs, that are used as a focal point 
for organizing the knowledge that Comet contains about 
accounting systems and their controls. Some verbs, such as 
transfer, copy, create, merge, jnd, compute, and copy- 
field, represent typical operations on records that are 

Case Studies 1485 



I- Creator of Itwolces DE should precede Extract Invoices for payment 

L Creator of GRN should precede @ata input 
Purchase invoice processing 

Figure 3: Example Review Dialog Box 

treated as primitive by Comet. Other verbs, such as 
maintain-standing-data and data-entry, represent 
processing patterns that are common enough that Comet 
provides automatic decompositions for nodes using those 
verbs. For describing internal controls, Comet provides a 
set of control verbs, including authorize, compare-agree, 
grant-access, reconcile, and review. The verb associated 
with an activity or control node is indicated in the display 
of that node using a one or two letter code inside the icon 
in the lower-left comer. 

Figure 2 contains four primitive activity nodes with the 
verbs extract (EX), copy (CO). debit (DR) and credit 
(CR). Figure 2 also contains foul control nodes (the nodes 
with the circle icon) using two different control verbs, 
authorize (AU) and review (R). In addition to nodes 
representing collections, activities, and controls, Figure 2 
contains three smaller, rectangular nodes, called selectors. 
Selector nodes are used to indicate the fields of records 
that are accessed or modified by activities. For example, 
the selector node between the Debit Creditors activity and 
the Creditors account indicates that the debits involve a 
field called Value. 

Model-building Support 
The analysis performed by Comet depends for its validity 
on the accuracy of the models that it operates on. Auditors 
attempt to verify the accuracy of a model by walking 
through the transaction processing steps specified in the 
model, checking for matching steps performed in the 
modeled system. Ideally, the walkthrough is performed by 
a person not involved in the mods1 preparation. Although 
Comet cannot ensure that the models constructed by users 
are, in fact, accurate representations of the modeled 
accounting systems, Comet incorporates a number of tools 
to aid in the construction of models that are at least 
internally consistent and that contain enough detail to 
support Comet’s analysis. 

Each type of node has an associated set of declarative 
constraints on the ways that a node of that type may be 
correctly connected by arcs to neighboring nodes. For 
example, a Credit activity node must have exactly one 
input collection and at least one output collection. Every 
output collection must be an account. Finally, there must 
be selector nodes intervening between the Credit node and 
each of its output accounts giving the fields that are posted 
to the accounts. As the user edits a model. Comet 
monitors the constraints on each node and draws a red flag 
on those nodes whose constraints are not satisfied. For any 
node with a red flag. the user may obtain an explanation of 
the unsatisfied constraints. 

Comet contains a number of review commands for 
examining the completeness and consistency of a model: 

0 Finding all nodes with violated syntactic constraints 
0 Finding all unexpanded generic activity nodes 
e Finding control nodes that have been incompletely 

described 
0 Finding inconsistencies between the fields read from a 

collection node and the fields written to it 
0 Finding activity nodes that access records fi-om a 

collection node without having a preceding activity 
node that creates records on the collection 

0 Finding inconsistencies between the inputs and 
outputs specified for an activity node and for its sub- 
flowchart 

The results of the review commands are presented in the 
form of dialog boxes that allow convenient navigation to 
the points where problems occur in the model (cf. Figure 
3). 

eneration and Propagation 
Comet categorizes the errors and irregularities that can 
occur in an accounting system into three broad categories 
of failure corresponding to the focus on the processing of 

1486 IAAI-96 



Figure 4: Failure Coverage Risks 

records. A missing failure occurs when an activity that 
should have produced a record as output fails to do so. A 
spurious failure occurs when an activity produces an 
unauthorized or duplicate record as output. Finally, an 
incorrect failure occurs when an activity produces an 
incorrect value for a field in a record. An incorrect failure 
is associated with the name of the affected field. Each 
primitive activity type has associated with it the categories 
of failure to which it may give rise. 

The first stage of Comet’s analysis of a model generates 
the set of potential failures corresponding to each of the 
primitive activities in the model. Comet then determines 
which of the potential failures have audit significance. A 
failure has audit significance if its downstream effects in 
the flowchart model could cause any of several types of 
disagreement between the transactions that actually 
occurred and the way that they are recorded in the 
accounts. Comet works backwards in the flowchart from 
the account collections using a few fixed simple rules for 
the different primitive activity types to determine how 
failure effects on an output collection may be produced 
from failure effects on input collections. The result of this 
stage is to determine for each potential failure the impact 
that it may have, if any, on the validity of each account 
collection. 

When constructed at a level of detail appropriate to the 
control evaluation task, a Comet model typically contains 
on the order of hundreds of primitive activities. Since 

each of these can fail only in a small number of ways, it is 
a tractable task to enumerate the set of potential failures 
and to determine their effects on the validity of accounts. 

Control Evaluation 
In order to evaluate the controls documented for an 
accounting system, Comet assesses for each potential 
failure with audit significance the likelihood that, if it 
occurs, it will not be detected by any control in the system. 
We call this likelihood, for a given failure, its failure 
coverage risk. To determine whether the potential failures 
are adequately covered by detecting controls, a CIS auditor 
using the system is required to associate with each account 
an allowable risk level. The allowable risk is the highest 
level of risk the auditor is willing to accept that any failure 
that occurs and is relevant to the account is not detected by 
any control. 

Figure 4 shows a table generated by Comet of those 
potential failures generated for the PURCHASE model that 
have audit significance and the failure coverage risks that 
have been determined for them. Certain controls in a 
Comet model may be designated as proposed; proposed 
controls are used to explore the effects of recommending 
to the client that additional controls be added to the 
accounting system to address control weaknesses. The 
failures table in Figure 4 contains two columns listing 
failure coverage risks in percentage terms. The first 

Case Studies 1487 



column (Prop) gives the failure coverage risk taking into 
account both proposed controls and controls that are 
actually present in the modeled system; the second column 
(Act) takes into account only controls that are actually 
present. If a failure coverage risk is above the allowable 
risk level for one of the accounts that the failure affects, 
that failure coverage risk is highlighted by enclosing it in 
brackets. A failure with a bracketed failure coverage risk 
indicates a potential control weakness in the accounting 
system that the CIS auditor should carefully examine. 

In determining the failure coverage risk for a failure, 
Comet first determines the set of controls in the flowchart 
model that are relevant to the detection of the failure and 
then assesses, for each relevant control, the likelihood that 
the control will fail to detect the failure, called the control 
detection risk. The failure coverage risk for a failure is 
determined by multiplying together the control detection 
risk for each control that could detect the failure. The risks 
are multiplied together because we assume that the 
controls operate independently, and for a failure not to be 
detected, all of the potentially detecting controls would 
have to miss it. 

In assessing the control detection risk for a given control 
and potential failure, Comet takes into account three 
different factors -- control strength, control defeat, and 
control attenuation: 

Control strength is an assessment of the intrinsic 
effectiveness of the control, based on its type and how 
well it is performed. In Comet, the control strength is 
initially determined from the answers supplied by the 
modeler to a generic series of questions about how the 
control is performed. The control strength may be 
later adjusted as a result of testing the control. 

Control defeat is an assessment of the degree to which 
a control is rendered ineffective by problems with the 
maintenance of reference data upon which it depends. 
For example, a control cannot be relied upon if the 
maintenance process for a database of information that 
it employs has potential failures that are not 
sufficiently mitigated by controls. 

Control attenuation is a measure of the degree to 
which the effectiveness of a control is reduced by the 
distance in the flowchart between the control and the 
primitive activity whose failure it may detect. Control 
attenuation varies with the type of control and the 
types of the activities along the path from the control 
to the failing activity. 

Key Controls Selection 
A set of key controls is a subset of controls in the model 
that is sufficient to adequately mitigate the risk of all those 
potential failures that both have audit significance and are 
adequately mitigated by the full set of controls. Since 
placing reliance on a set of controls requires that the 
controls be tested for proper operation, testing costs can be 

reduced by choosing a minimal set of key controls. 
Unfortunately, the problem of finding a minimal set of key 
controls is a computationally intractable minimal set 
covering problem. Comet uses a greedy algorithm that 
works well in practice, but does not guarantee a minimal 
set. 

In selecting a set of key controls for testing, Comet uses 
a relative measure of the importance of a control in 
reducing the failure coverage risk of potential failures; this 
measure is called control contribution. The control 
contribution for a control is relative to a set of failures, F, 
to be covered, and a set of controls, C, to be compared. At 
each point in the selection process, the set F consists of 
those potential failures whose risk is sufficiently mitigated 
(with respect to allowable risks) by the complete set of 
controls in the model, but not yet by those controls already 
selected for testing. The set C consists of those controls 
not yet selected for testing. If there are any failures in F 
that have unique detectors in C with a control detection 
risk that is less than 1, all these unique detectors are added 
to the set of key controls. Otherwise, the next control 
selected for addition to the key controls is that control with 
the highest control contribution relative to F and C. The 
algorithm terminates when the set F is empty or there are 
no controls in C with non-zero control contributions. 

Performance 
Comet has been successfully used by Price Waterhouse 
CIS auditors to construct and analyze models of complex 
client accounting systems. A representative example is a 
stock trading room system whose Comet model has a total 
of 934 nodes, including 2 17 primitive activities, 104 
composite activities, 118 collections, and 139 controls. 
Comet’s analysis produced 709 potential failures, of which 
338 were found to have an impact on the validity of 
accounts and 68 were potential defeators of controls. Of 
these relevant failures, all but 17 were found to be 
adequately covered by the controls in the system. Comet 
found 60 controls to be key and therefore candidates for 
inclusion in a plan for testing controls. The total time 
required for the analysis was under 30 seconds on a 66Mz 
Pentium PC. 

Application Use an 

A Beta release of Comet has been used on a pilot basis by 
Price Waterhouse CIS auditors on a variety of real audits 
in several countries around the world, including Australia, 
Argentina, Brazil, India, Malaysia, Mexico, the U.S., the 
U.K., and much of Western Europe. The pilot audits have 
involved clients from a representative cross-section of 
different industries, including banking, insurance, oil and 
gas, manufacturing, and entertainment. The official 1 .O 
version of Comet was released this April. 

1488 MI-96 



The CIS audit partners and managers who have 
supervised the pilot audits believe, based on their 
experience, that use of Comet will lead to a significant 
improvement in auditor productivity. It is difficult at this 
point to reasonably estimate the size of the gain as a 
number of factors must be taken into account: 

0 The nature of the work performed changes with use of 
Comet. Business processes and their controls are 
documented to a greater level of detail and more 
rigorously than they would have been previously. This 
increases the documentation cost but the analysis 
performed by Comet allows the auditor to spend much 
less time anticipating possible errors and thinking 
about the controls available to detect and correct 
them. The increased detail and rigor of the models in 
conjunction with the analysis performed by Comet 
allows a greater reliance to be placed on controls with 
a comparable level of auditor effort. 

0 There is a nontrivial learning curve that applies to 
efficient use of Comet to model and analyze systems. 
Experience on the pilot audits suggests that it takes a 
typical user three to four jobs before they become 
truly proficient in the use of Comet. Part of what a 
user needs to learn through evperience is the choice of 
an appropriate level of detail at which to model a 
system. Enough detail needs to be added to allow a 
useful Comet analysis to be performed; too much 
detail adds to the modeling cost without an additional 
payoff from the analysis. 

e The cost of using Comet to model a system and its 
controls can be more effectively amortized over 
several years than previous methods of documenting 
the system. Comet is most appropriately used in a 
“year of change”, either when a new or substantially 
updated system has been installed by the client or with 
a new client. In subsequent years, when minor system 
updates occur, the Comet model can be quickly 
updated and the impact of the changes on controls’ 
effectiveness analyzed. This justifies somewhat 
greater initial modeling effort in the year of change as 
the work that needs to be performed in subsequent 
years is reduced. 

0 Use of Comet can reduce the cost of testing. Because 
of the difficulty of manually performing a thorough 
and precise evaluation of controls, there is a 
temptation to perform more detailed testing of 
transaction records than v * uld be required if the 
controls work could be done ; tore efficiently. Comet’s 
ability to automatically gen :rate lists of key controls 
also leads to more focused controls testing, as each 
control to be tested has been determined to make an 
important contribution to mitigating the risk of 
possible failures in the systent. 

e Comet’s rigorous analysis can uncover both control 
weaknesses and control redundancies, leading to 
recommendations to the client that are a key value- 
added function of the audit. 

Application evelopment and Deployment 

In 1991, the Savile project was begun at the Price 
Waterhouse Technology Centre to examine the potential of 
applying a model-based approach to evaluating accounting 
systems and their internal controls. An initial prototype, 
also called Savile, was developed in Lucid Common Lisp 
running on a UNIX workstation to establish proof of 
concept. The record processing performed by an 
accounting system was described using an imperative 
programming language called SPLAT. Expressions in the 
SPLAT language were transformed into a causal network 
to support the evaluation of controls (Hamscher, 1992). 

The CIS audit community within Price Waterhouse 
responded enthusiastically to the Savile prototype and 
resources were authorized to implement the Savile 
approach on the standard platform found in Price 
Waterhouse practice offices -- IBM PC clones running 
Microsoft Windows. In late 1992, work began on 
developing a more graphical form of representation for 
Savile models that would both support a highly interactive 
flowcharting system and support the analysis of failures 
and evaluation of controls. Franz Inc’s Allegro Common 
Lisp for Windows was chosen as the implementation 
language to support rapid application development in the 
Windows environment. 

Since early 1993, an average of three full-time 
programmers have worked on the development of Comet. 
In addition, the involvement of CIS auditors was critical to 
developing a system that matched the requirements of the 
CIS audit task. A senior CIS manager was assigned to the 
Price Waterhouse Technology Centre for two months in 
1994, two months in 1995, and one month in 1996 to work 
intensively with the Comet developers to refine the system 
design. 

CIS audit staff have developed a training course in the 
effective use of Comet in response to increasing worldwide 
demand. To date, approximately 20% of the total number 
of CIS auditors in Price Waterhouse firms worldwide have 
taken the course. In the European firm, all CIS auditors 
with more than one year of experience are being trained in 
the use of Comet and it is the recommended tool for use 
with relatively complex client systems. 

Maintenance 

As a model-based application, Comet does not contain a 
large knowledge base encoding expert experience in the 
domain of CIS audit. This eliminates the often difficult 

Case Studies 1489 



issues surrounding knowledge base update and 
maintenance. Rather, the behavior of Comet’s analysis 
engine is a product of the properties of a small set of 
primitive activity and control types and the structure of the 
particular accounting system model being analyzed. The 
set of primitive activity and control types has been 
remarkably stable over the course of Comet’s development 
and has been found adequate to model a large variety of 
different client systems encountered during the pilot audits. 

After the official release of Comet, responsibility for 
evolutionary development will transfer from the R&D 
group in the Price Waterhouse Technology Centre to a 
Price Waterhouse organization responsible for supporting 
audit-related software. 

Conclusion 

Most applications of model-based reasoning have been to 
engineering domains. Comet applies model-based 
reasoning techniques to a new task domain, the analysis of 
the effectiveness of controls in accounting systems. 
Because of the complexity and variability to be found in 
realistic accounting systems, CIS auditors have difficulty 
evaluating controls to the level of detail required to place a 
high degree of reliance on systems when performing an 
audit of a company’s financial statements. Comet allows a 
CIS auditor to focus on building a model that accurately 
describes the accounting system, then makes use of that 
model to automate the analysis of the adequacy of the 
controls for detecting potential errors in the system. 
Demand from the Price Waterhouse CIS audit community 
for deployment of Comet has been high because it is an 
effective tool in support of delivering high-quality audits to 
clients. 

Acknowledgments 

We would like to acknowledge the contributions of two 
Price Waterhouse CIS auditors who have been 
instrumental in the development and deployment of 
Comet. Pat Russell gave us early guidance on the issues of 
importance to CIS audit and has been a tireless champion 
of Comet within the firm. Robert Halliday worked 
intensively with us on key design issues and has been our 
day-to-day liaison with the CIS audit practice, giving us 
numerous suggestions on how to make Comet more useful 
to the CIS auditor. 

References 

Bouwman, M. J. 1983. Human diagnostic reasoning by 
computer: An illustration from financial analysis. 
Management Science, 29(6):653-672. 

Bridgeland, D. M. 1990. Three qualitative simulation 
extensions for supporting economics models. In 
Proceedings of the Sixth Conference on Artificial 
Intelligence Applications, 266-273. Los Alamitos, Calif.: 
IEEE Computer Society Press. 

Hamscher, W. C. 1992. Modeling Accounting Systems to 
Support Multiple Tasks: A Progress Report. In 
Proceedings of the Tenth National Conference on 
Artificial Intelligence, 5 19-524. Menlo Park, Calif.: AAAI 
Press/ The MIT Press. 

Hamscher, W. C., Console, L., and de Kleer, J. eds. 1992. 
Readings in Model-based Diagnosis. San Francisco, 
Calif.: Morgan Kaufmann. 

Hamscher, W. C. 1994. Explaining Financial Results. 
International Journal of Accounting, Finance, and 
Management, 3(l): l-19. 

Hart, P. E.; Barzilay, A.; and Duda, R. 0. 1986. 
Qualitative reasoning for financial assessments: A 
prospectus. AI Magazine, 7( 1):62-68. 

1490 IAAI-96 


