
Nurse Scheduling using Constraint Logic Programming

Slim Abdennadher
Computer Science Institute, University of Munich

Oettingenstr. 67, 80538 Munich, Germany
Slim.Abdennadher@informatik.uni-muenchen.de

Hans Schlenker
Technical University of Berlin

Franklinstr. 28/29, 10587 Berlin, Germany
hans@cs.tu-berlin.de

Abstract

The nurse scheduling problem consists of assigning
working shifts to each nurse on each day of a certain
period of time. A typical problem comprises 600 to
800 assignments that have to take into account sev-
eral requirements such as minimal allocation of a sta-
tion, legal regulations and wishes of the personnel. This
planning is a di�cult and time-consuming expert task
and is still done manually. INTERDIP1 is an advanced
industrial prototype that supports semi-automatic cre-
ation of such rosters. Using the arti�cial intelligence ap-
proach, constraint reasoning and constraint program-
ming, INTERDIP creates a roster interactively within
some minutes instead of by hand some hours. Addi-
tionally, it mostly produces better results. INTERDIP
was developed in collaboration with Siemens Nixdorf.
It was presented at the Systems'98 Computer exhibi-
tion in Munich and several companies have inquired to
market our system.

Introduction

Many real-life problems lead to combinatorial search,
computationally a very intensive task. Unfortunately,
no general method exists for solving this kind of prob-
lems e�ciently. The automatic generation of duty ros-
ters for hospital wards falls under this class of problems.
Since the manually generated solution of the nurse

scheduling problem usually requires several hours of
work, a lot of research has been done to reduce the
amount of time needed in the roster development. The
most popular technique is based on mathematical pro-
gramming (War76). The main disadvantage of this ap-
proach is the di�culty of incorporating application-
speci�c constraints into the problem formulation. Other
methods include goal programming (AR81) and heuris-
tic models (SWB79).
Recently, Constraint Logic Programming (JM94;

FA97; MS98) (CLP) has become a promising approach
for solving scheduling problems. CLP combines the ad-
vantages of two declarative paradigms: logic program-

1INTERDIP is an acronym for the German \Interaktiver
Dienstplaner".
Copyright c 1999, American Association for Arti�cial In-
telligence (www.aaai.org). All rights reserved.

ming and constraint solving. In logic programming,
problems are stated in a declarative way using rules
to de�ne relations (predicates). Problems are solved us-
ing chronological backtrack search to explore choices. In
constraint solving, e�cient special-purpose algorithms
are employed to solve sub-problems involving distin-
guished relations referred to as constraints, which can
be considered as pieces of partial information. The
nurse scheduling problem can be elegantly formalized
as a constraint satisfaction problem (Mac92) and im-
plemented by means of specialized constraint solving
techniques that are available in CLP languages.

In this paper, the generation of duty rosters for hospi-
tals is tackled using the CLP framework. The System is
called INTERDIP and has been successfully tested on a
real ward at the \Klinikum Innenstadt" hospital in Mu-
nich (AS97). INTERDIP has been implemented in col-
laboration with Siemens-Nixdorf-Informationssysteme
AG using IF/Prolog (Sie96b) which includes a con-
straint package (Sie96a) based on CHIP (DVS+88).
This package includes, among others linear equations,
constraints over �nite domains and boolean constraints.

The nurse scheduling problem consists in assigning a
working shift to each nurse on each day of a planning
period (usually one month), whereby several require-
ments must be considered, such as minimal allocation
of a ward, legal regulations and wishes of the personnel.
Usually not all speci�ed requirements can be ful�lled.
The nurse scheduling problem can be modelled as a par-
tial constraint satisfaction problem (FW92). It requires
the processing of hard and soft constraints to cope with.
Hard constraints are conditions that must be satis�ed,
soft constraints may be violated, but should be satis�ed
as far as possible.

Several approaches have been proposed to deal with
soft constraints: Hierarchical constraint logic program-
ming (HCLP) (BFW92) supports a hierarchical orga-
niziaton of constraints, where a constraint on some level
is more important than any set of constraints from lower
levels. To avoid the so called inter-hierarchy comparison
in HCLP, the soft constraints are encoded in a hierar-
chical constraint satisfaction problem (HCSP) (Mey97).
The Conplan/SIEDAplan (Mey97) considers the repre-
sentation of nurse scheduling as a HCSP, where legal

From: IAAI-99 Proceedings. Copyright © 1999, AAAI (www.aaai.org). All rights reserved. 



regulations are hard constraints and wishes of nurses
usually have the lowest priority level. The result is also
not necessarily of a reasonable quality in respect to the
nurse's wishes.
However, in practice nurses' wishes should be consid-

ered in order to support the working climate. Further-
more, some wishes of nurses are sometimes more im-
portant than some legal regulations. To deal with these
requirements, INTERDIP provides a solution technique
based on a variant of branch-and-bound search instead
of chronological backtracking. This approach starts
with a solution and requires the next solution to be
better. Quality is measured by a suitable cost function.
The cost function depends on the set of satis�ed soft
constraints.
To improve on the theoretical complexity of the prob-

lem, our system is based on an imitation of the hu-
man way of solving the problem: A roster is generated
with INTERDIP through several phases. Additionally,
several days in the roster are assigned simultaneously
through user de�ned patterns. A pattern describes a
preferred sequence of working days.
With INTERDIP, a user who is to some extent fa-

miliar with nurse scheduling can interactively generate
a roster within minutes.
The paper is organized as follows. The next section

introduces the nurse scheduling problem. Then we show
how the problem can be modelled as a partial constraint
satisfaction problem. In Section 4 and Section 5 we de-
scribe the implementation and the user interface. Fi-
nally, we conclude with an evaluation of our tool. Por-
tions of this paper were taken from (AS99).

Description of the problem

In a hospital, a new duty roster must be generated for
each ward monthly. A hospital ward is an organizational
unit that has to ful�l some concrete tasks, and has both
rooms and personnel, the nurses, at its disposal. Usu-
ally, the wards of a hospital are completely distinct:
each has its own rooms and its own personnel. There-
fore all rosters of a hospital can be scheduled separately.
We consider in the following the scheduling problem for
one ward.
A roster of one month is an assignment of the per-

sonnel of the ward to the shifts for all the days of the
month. A shift is a working unit: in a common working
model, each day has the units morning shift (e.g. 06:00
to 15:00), evening shift (14:00 to 23:00), and night shift
(22:00 to 07:00) and possibly others. To each shift of
every day, personnel has to be assigned.
For the generation of a roster, di�erent kinds of con-

straints must be taken into account:

� Legal regulations, e.g. the maximum working time of
a person per day or week, or time o� in lieu, or ma-
ternity leave. In Germany for example the statutory
monthly core working hours for a hospital with a
37.5 hour week is about 160 hours depending on the
month. So, with an average shift length of 8 hours,

each nurse has to work on average 20 shifts. Another
law says that between two (working-) shifts, each
nurse has to have a break of at least 11 hours (\11
hours rule"). If a nurse works one day in the night
shift, she must therefore not be assigned the morning
or evening shift the next day. Also a morning shift
must not follow an evening shift.

� Organizational rules are those that apply speci�cally
to one particular hospital, a part of a hospital or even
only one ward. They are given by the respective man-
agement. Those are mainly the number and kind of
the shifts and { within statutory limits { the mini-
mum personnel allocation of each ward. In the follow-
ing we consider a model with three shifts: morning,
evening and night shift. To morning shift and evening
shift at least three nurses must be assigned, and the
night shift requires at least two nurses.

� Personnel data de�ne the individual frame for each
person. These are mainly the contractually estab-
lished monthly core working time, pending vacation
and accrued hours of overtime. If, for example, a
nurse has 16 hours overtime, she might be scheduled
two shifts less than average.

� Finally, wishes are requirements given by the person-
nel. These are mostly wishes to have some days o�,
for example at weekends, holidays, birthdays, or for
a vacation period.

Often, there is no duty roster that ful�lls all the
constraints. Therefore we distinguish two kinds of con-
straints. Hard constraints must always be satis�ed, soft
constraints may be violated. Roughly speaking, legal
regulations, organizational rules and personnel data de-
termine hard constraints, wishes may be hard or soft
constraints. So for example the vacation scheduling
might be done for a longer term (some months) apart
from the actual roster planning. Then a wish for one day
of vacation would be a hard constraint, because it was
planned externally. Other wishes are mostly soft con-
straints. Often the nurses have the opportunity to clas-
sify their wishes into some \priority levels". If possible,
the wishes in one of those levels will then be regarded
as hard constraints.
A roster is correct, i� all hard constraints hold. The

quality of a roster results from the number of the ful-
�lled soft constraints and their priorities.

Modeling the problem as PCSP

Constraint Satisfaction Problems (CSPs) have been a
subject of research in arti�cial intelligence for many
years. A CSP is a pair (V;C), where V is a �nite
set of variables, each associated with a �nite domain,
and C is a �nite set of constraints. A solution of a
CSP maps each variable to a value of its domain such
that all the constraints are satis�ed. A partial con-
straint satisfaction problem (PCSP) (FW92) is a triple
(V;C; !), where (V;C) is a CSP and ! maps constraints



to weights. A constraint's weight expresses the impor-
tance of its ful�llment, allowing to distinguish hard con-
straints, which must not be violated, from soft con-
straints, which should not be violated, but may be
violated in case this is unavoidable. Hard constraints
have an in�nite weight. The �nite weights of soft con-
straints allow for the speci�cation of priorities among
constraints. A solution of a PCSP maps each variable
to a value of its domain such that all hard constraints
are satis�ed and the total weight of the violated soft
constraints is minimal.
In the representation of nurse scheduling as a PCSP,

there is a constraint variable for each nurse on each
day. The domains of the variables consist of possi-
ble shifts (also comprising vacations, recuperation of
a worked public holiday, special leaves, maternity pro-
tection, unpaid leave etc.), so they usually consist of
10 values. (HW96) proposed a reduction of variable do-
mains, based on elimination of interchangeable values
introduced by Freuder (Fre91). The values of the above
mentioned free shifts, e.g. vacations, can be reduced to
only one value and each variable takes its values now in
f0; 1; 2; 3g. For a nurse i and a day j a variable Vij may
have one of the following values:

� Vij = 0: The nurse i is o�-duty the day j.

� Vij = 1: The nurse i is assigned to the \morning"
shift on the day j.

� Vij = 2: The nurse i is assigned to the \evening" shift
on the day j.

� Vij = 3: The nurse i is assigned to the \night" shift
on the day j.

Reducing the variable domains from 10 values to 4
considerably improves the e�ciency of the solution re-
search. Figure 1 shows a complete schedule for 10 nurses
and 14 days. Each row comprises the shifts of a certain
nurse. The columns contain the shifts performed on a
certain day. So, each square of the chart speci�es for
each nurse the working days and shifts, and days o�.
E.g. on the 4th day the second nurse Hilde is scheduled
in shift 1, i.e. morning shift.
Now we describe how to express the most important

requirements of our application in terms of IF/Prolog-
Constraints (Sie96b). In the following, we use a Prolog-
like notation with meta-variables. We denote the total
number of nurses to be scheduled by s, the total num-
ber of days by t and a variable by Vij, where i denotes
the number of the nurse or the row in the roster, re-
spectively, and j denotes the number of the day, i.e.
the column in the roster. With this notation, we can
write down all the variables of this modeling in a list:
[V11,V12,...,Vst].
One requirement for a correct roster is the minimum

personal allocation, i.e. the minimal number of nurses,
the ward must be allocated each shift. Actually, the
allocation is limited downward and upward. Let Min1
be the lower and Max1 be the upper allocation limit for
the morning shift and Min2, Max2, Min3 and Max3 the

Figure 1: A nurse schedule for 10 nurses over a period
of 14 days

lower and upper limits for the evening and night shifts,
respectively. Therefore a correct roster must not have
less than Min1 and more than Max1 times the '1' in
each column and not less than Min2 and not more than
Max2 the '2' and so on. So we have to state for each
j (1 � j � t) and each k (k 2 f1; 2; 3g) the following
constraint:

cardinality(Mink,Maxk,[V1j=k,V2j=k,...,Vsj=k])

where cardinality(Lower,Upper,Condition) is
satis�ed if at least Lower and at most Upper conditions
in the list Condition are satis�ed.
Another requirement a schedule has to ful�l is the

compliance of the monthly core working hours of each
nurse. This means that there is a lower bound and an
upper bound of shifts, each nurse is to be assigned in the
schedule period. This is the number of all the morning,
evening and night shifts. This can be expressed sim-
pler by the number of free shifts. Let for each nurse i
(1 � i � s) the lower bound for the working shifts be
given by Mini and the upper bound by Maxi. Then we
can formulate the working hours requirement using the
cardinality constraint:

cardinality(t-Maxi,t-Mini,[Vi1=0,...,Vit=0])

The \11 hours rule" implies that a nurse must not
work a morning shift (the day) after an evening shift
and may work (the day) after a night shift only a night
shift. We can express the \11 hours rule" by the follow-
ing expression: If Vij is assigned a speci�c value, the
assignment of Vi(j +1) must ful�ll a certain condition.
This can be expressed directly by the domain if con-
straint. We state for each i (1 � i � s) and for each j
(1 � j < t):

domain if(Vij = 2, Vi(j + 1) n= 1) and
domain if(Vij = 3, Vi(j + 1) in [0,3]).



The constraint domain if(Condition, ThenGoal)
is used to call a goal conditionally. If the arithmetic con-
straint Condition is satis�ed, ThenGoal is called. If the
arithmetic constraint is not satis�able, true is called.
The execution of the domain if constraint is delayed
as long as the satis�ability of Condition has not been
determined.

Free shifts, provided they can be considered hard
wishes, lead to immediate variable assignments. A wish
(e.g. vacation) of nurse i at day j can then be stated
as: Vij = 0.

Soft wishes, like all other soft conditions, can not
be stated directly as (IF/Prolog-)constraints, since our
constraint solver can only handle hard constraints. We
only can use them for optimizing correct rosters. This
will be explained in Section .

Planning in INTERDIP

The modeling just described, while being simple and
straightforward, is unfortunately very costly: The
search space is huge, i.e. 4600 for 20 nurses and a pe-
riod of one month. Therefore we developed a method to
prune the search tree which was inspired by the usual
manual planning.

Planning by hand

Because of the huge search space a roster is usually
generated by hand in two phases. In the �rst phase we
have all liberties for assigning the cells of the roster.
Therefore here we do the most complicated assignment
(which is tied to most of the conditions): the allocation
of the free days or shifts. Those are bound to a lot of
constraints: they determine how many shifts a nurse has
to work during the scheduled period, how many nurses
over all shifts the ward is assigned each day, and not
least most of the wishes are to be considered here: the
wishes for free shifts (e.g. vacations). Closely connected
with the free shifts are the night shifts: the \11 hour
rule" enforces for the assignment of shifts to a nurse,
that after a night shift there may follow only a night
shift or a free shift (free day).

Therefore, when manually scheduling, the free and
the night shifts are allocated in the �rst phase. In the
second phase, the morning and the evening shifts are
distributed among the not yet allocated cells of the ros-
ter.

The obvious advantage of the scheduling in two
phases over the scheduling in one phase is the reduction
of complexity: in each phase there have to be considered
fewer constraints and, above all, fewer assignments2.

2The assignment of the �rst phase is normally not
changed within the second unless it is then impossible to
get a solution and a change in the free and night shifts will
probably enable one. The extent of those changes can be
neglected: we never observed more than 10 changes.

Phasewise plan generation

In 1993, (van93) presented a partial automatic solution
to the nurse scheduling problem that used two very dif-
ferent phases. It exibly generated good rosters but did
not handle night shifts. INTERDIP uses more than two
phases which are performed in the same manner by one
constraint solver.
We wanted to reduce the search space even further

than (van93) did. The idea is to furthermore decompose
the problem. We use three phases instead of two:

1st Phase Distribution of the free shifts.

2nd Phase Distribution of the night shifts.

3rd Phase Distribution of the morning and the
evening shifts.

With this modeling, in each phase for every cell of
the roster, only the minimal decision between two pos-
sibilities has to be made. This reduces the search space.
We will see how we obtain a complete roster after the
three phases.
In each phase, every variable is assigned a value out

of the boolean domain f0; 1g. Depending on the phase,
the values 0 and 1 have di�erent meanings. If a variable
in the �rst phase is assigned the value one, this means
that the roster gets a free shift in the appropriate cell.
The cells whose variables are bound to 0 remain unde-
cided. The second phase only treats the undecided cells:
if a variable gets the value 1, the cell is assigned a night
shift. The rest remains undecided. In the third phase
each still not decided cell is �lled with either morn-
ing or evening shift, depending on whether the variable
was assigned a 1 or a 0, respectively (see Figure 2, the
meaning of the bold numbers is just as in Figure 1.). A
complete roster results from all three phases.

Phase 1 Phase 2 Phase 3

00

1 1
3 1

2

0
1

0

Figure 2: Allocation of the cells in three phases.

Assignment patterns

Because of the incomplete constraint propagation meth-
ods used for scheduling problems, the application pro-
grammer often has to explicitly use a labeling phase in
which a backtracking search blindly tries di�erent val-
ues for the variables. Since labeling is expensive, the
programmer needs to employ techniques for reducing
the search space. There is a variety of techniques to
do this. For our application we add domain informa-
tion about presumably good solutions by introducing
patterns. A pattern describes a preferred sequence of



working days. Coherent cells of the roster are allocated
along user de�ned patterns.
As shown above, the variables are declared in each

phase to range over the values 0 and 1 and the appro-
priate shifts are registered into the roster. Patterns are
then meaningful combinations of roster entries, whereby
a combination stands for successive days. A large num-
ber of these patterns is known. For example, we consider
meaningful the combination of �ve days work and two
days free. The appropriate pattern for the �rst phase,
in which the working days are determined, is then: (?,
?, ?, ?, ?, 0, 0). If we assume that it is better to work
on three successive days in the same shift than in dif-
ferent ones, we formulate for the second phase and thus
for the night shifts: (3,3,3). Each phase has its own set
of patterns. The patterns of a phase have an order in
which they are selected: �rst, the ones which result in
a good solution, since the nurses are accustomed to this
pattern, and at the end trivial patterns which are nec-
essary to generate solutions, if they exist. For �lling the
roster, the given patterns are translated into appropri-
ate variable assignments which are then tried in each
row from left to right.
The patterns can be considered as requirements of

minor priority (soft constraints) as well as probable
parts of solutions. Schedules that comply with the given
patterns are explored �rst. Applying this specialized la-
beling method reorganizes the search space.
Additionally, each pattern is assigned a cost value so

that for example a nurse whose wishes could not be
fully ful�lled, more likely gets \better" work patterns
assigned.

Optimal rosters

A roster that satis�es all hard constraints is considered
feasible but this does not necessarily mean that it is
su�ciently good to be used by a hospital ward.
The concept of an optimal roster is hard to de�ne.

Generally, roster quality is a subjective matter and its
de�nition changes from problem to problem. We apply
the usual measure which is common to all applications
in the �eld of scheduling. It is given in terms of the
number and the priority of soft constraints that are vi-
olated.
A popular approach consists in using a branch and

bound search instead of chronological backtracking.
Branch and bound starts out from a solution and re-
quires the next solution to be better. Quality is mea-
sured by a suitable cost function. The cost function de-
pends on the set of satis�ed soft constraints. With this
approach, however, soft constraints are only part of the
cost function but play no role in selecting variables and
values. In our multiphase method, branch and bound
search is performed three times to improve the roster
generated so far.
Costs arise separately for each nurse and the algo-

rithm tries to minimize the maximum of these. This
means that we have a separate cost function for each

of the nurses and the maximum value of all the func-
tions is minimized. So, INTERDIP tries to achieve that
no nurse gets a much worse allocation (e.g. no wishes
satis�ed) than the others.

Using the system interactively
For a nurse scheduling system to be complete, a exible
user interface should be provided, so that the speci�c
requirements of the problem can be stated easily. IN-
TERDIP provides such an interface.
The INTERDIP user interface has been developed us-

ing the Tcl/Tk extension of IF/Prolog. Figure 1 shows
a snapshot of the top-level graphical user interface to
our nurse scheduling program with a generated roster.
The interface allows the user to de�ne the system pa-

rameters as preferred. All parameters like minimal and
maximal allocation of the ward for each phase, wishes
or patterns can be given graphically or in a spreadsheet.
The wishes are given in three categories: imperative,

important and less important wishes. We call them red,
black and white wishes, respectively. This naming goes
back to how the wishes were actually formulated in
the hospital where we tested INTERDIP: They were
�lled into a plan using red and black pencils. The white
wishes are to some extent standard wishes, like not to
work on weekends. Red wishes (like vacation) are later
treated as hard constraints and all the others as soft
constraints. A single wish always relates to exactly one
nurse and one day.
Usually the generation of a roster runs as follows.

After the user has speci�ed all the conditions he will
trigger the phases. A phase starts with generating the
constraints and testing their consistency. Then, accord-
ing to the above method, an optimal solution is com-
puted. After a phase is �nished, the next one is started
initialized with the best result of the preceding phase,
and so on. This is the automatic generation.
It may happen that there exists not even one roster

that complies with all the given hard constraints. Then
the problem is called over-constrained. INTERDIP may
detect this while generating the IF/Prolog constraints
and then gives the user hints which of the conditions led
to the inconsistency. However, there are kinds of contra-
dictions that are not automatically detected. Therefore
we built a debugger into INTERDIP.
Being an interactive tool, INTERDIP lets the user

take part in the generation in di�erent ways. Firstly the
user usually has some freedom in specifying the problem
conditions. He can directly inuence the planning by
giving some red wishes which directly lead to variable
bindings. But the user can also interfere with a concrete
process of allocation: He can use the debugger to break
the computation manually or to set breakpoints. At the
breakpoint (a cell of the roster), he is given all the pos-
sible patterns out of which he can choose one. The com-
putation then continues with the selected allocation. In
the single-step-mode the computation is stopped after
each single allocation. Additionally the user can undo
allocations already made.



With the debugger, the user can manually allocate
parts of the roster in order to improve automatically
presented solutions on the one hand and, in case the
generator did not �nd a solution at all, enable one on
the other hand.
In addition, the user can manually alter a completely

generated roster and let it check by INTERDIP. The
system then tries to state all the constraints for the
given variable assignments, and if one fails, it gives the
user hints about the contradictions.

Conclusion
In this paper, the nurse scheduling problem is discussed
and a speci�c system, INTERDIP, is presented, that as-
sists a human planner in scheduling the nurse working
shifts for a hospital ward. We think that our approach
can be applied to many applications in the �eld of per-
sonnel assignment. It is quite obvious that the current
implementation might even be used \as is" for every
duty rota problem and therefore solves this whole prob-
lem class.
It was possible to build this planning system for nurse

scheduling within a few man months using a given com-
mercial constraint solver, IF/Prolog from Siemens Nix-
dorf. The CLP code is just about 4000 lines with more
than half of it for user interface. INTERDIP illustrates
the important potentials of constraint logic program-
ming for the implementation of real-life applications.
INTERDIP was presented at the Systems'98 Com-

puter exhibition in Munich and several companies are
interested to market it. INTERDIP is currently tested
at the \Klinikum Innenstadt" hospital in Munich. Typ-
ically, for 20 nurses and a period of one month, IN-
TERDIP generates a satisfying (not optimal) schedule
within a few minutes. The schedules generated by IN-
TERDIP are comparable to those manually generated
by a well experienced head nurse, sometimes even bet-
ter than those. Of course this can not be guaranteed
for every possible problem instance since, in general,
the scheduling problem is NP-complete.

References
J. L. Arthur and A. Ravindran. A multiple objective
nurse scheduling model. In AIIE Transactions, vol-
ume 13, 1981.

S. Abdennadher and H. Schlenker. INTERDIP
{ Ein Interaktiver Constraint-basierter Dienstplaner
f�ur Krankenstationen. In F. Bry, B. Freitag, and
D. Seipel, editors, 12th Workshop on Logic Program-
ming WLP'97, September 1997.

S. Abdennadher and H. Schlenker. INTERDIP { an
interactive constraint based nurse. In Proceedings of
the First International Conference and Exhibition on
the Practical Application of Constraint Technologies
and Logic Programming, 1999.

A. Borning, B. N. Freeman-Benson, and M. Wilson.
Constraint hierarchies. Lisp and Symbolic Computa-
tion, 5(3):223{270, 1992.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Ag-
goun, T. Graf, and F. Berthier. The Constraint Logic
Programming Language CHIP. Technical Report TR-
LP-37, ECRC, Munich, 1988.

T. Fr�uhwirth and S. Abdennadher. Constraint-
Programmierung: Grundlagen und Anwendungen.
Springer-Verlag, September 1997.

E. C. Freuder. Eliminating interchangeable values in
constraint satisfaction problems. In AAAI-91 { Pro-
ceedings of the 9th national conference on arti�cial in-
telligence, pages 227{233, 1991.

E. C. Freuder and R. J. Wallace. Partial constraint sat-
isfaction. Arti�cial Intelligence, 58(1-3):21{70, 1992.

K. Heus and G. Weil. Constraint programming a nurse
scheduling application. In Proceedings of the Second
International Conference on the Practical Application
of Constraint Technology, pages 115{127, 1996.

J. Ja�ar and M. J. Maher. Constraint logic pro-
gramming: A survey. Journal of Logic Programming,
20:503{581, 1994.

A. Mackworth. Constraint satisfaction. In Stuart C.
Shapiro, editor, Encyclopedia of Arti�cial Intelligence.
Wiley, 1992. Volume 1, second edition.

H. Meyer auf'm Hofe. ConPlan/SIEDAplan: Person-
nel assignment as a problem of hierarchical constraint
satisfaction. In Proceedings of the Third International
Conference on the Practical Application of Constraint
Technology, 1997.

K. Marriott and P. Stuckey. Programming with Con-
straints: An Introduction. The MIT Press, 1998.

Siemens Nixdorf Informationssysteme AG. IF/Prolog
Constraint Problem Solver, 1996.

Siemens Nixdorf Informationssysteme AG. IF/Prolog
Users Guide, 1996.

L. D. Smith, A. Wiggins, and D. Bird. Post-
implementation experience with computer-assisted
nurse scheduling in a large hospital. In Information
Systems and Operational Research, volume 17, 1979.

B. van den Bosch. Implementation of a CLP library
and an application in nurse scheduling. Master's the-
sis, Katholieke Universiteit Leuven, Belgium, 1993.

D. M. Warner. Scheduling nursing personnel according
to nursing preference: A mathematical programming
approach. In Operations Research, volume 24, 1976.


