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Abstract

Planning in nondeterministic domains with temporally ex-
tended goals under partial observability is one of the most
challenging problems in planning. Subsets of this problem
have been already addressed in the literature. For instance,
planning for extended goals has been developed under the
simplifying hypothesis of full observability. And the problem
of a partial observability has been tackled in the case of sim-
ple reachability goals. The general combination of extended
goals and partial observability is, to the best of our knowl-
edge, still an open problem, whose solution turns out to be by
no means trivial.
In this paper we do not solve the problem in its generality,
but we perform a significant step in this direction by pro-
viding a solid basis for tackling it. Our first contribution is
the definition of a general framework that encompasses both
partial observability and temporally extended goals, and that
allows for describing complex, realistic domains and signif-
icant goals over them. A second contribution is the defini-
tion of the K-CTL goal language, that extends CTL (a clas-
sical language for expressing temporal requirements) with a
knowledge operator that allows to reason about the informa-
tion that can be acquired at run-time. This is necessary to
deal with partially observable domains, where only limited
run-time “knowledge” about the domain state is available. A
general mechanism for plan validation with K-CTL goals is
also defined. This mechanism is based on a monitor, that
plays the role of evaluating the truth of knowledge predicates.

Introduction
Planning in nondeterministic domains has been devoted in-
creasing interest, and different research lines have been
developed. On one side, planning algorithms for tack-
ling temporally extended goals have been proposed in (Ka-
banza, Barbeau, & St-Denis 1997; Pistore & Traverso 2001;
Dal Lago, Pistore, & Traverso 2002), motivated by the fact
that many real-life problems require temporal operators for
expressing complex goals. This research line is carried
out under the assumption that the planning domain is fully
observable. On the other side, in (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Bonet & Geffner 2000;
Rintanen 1999) the hypothesis of full observability is re-
laxed in order to deal with realistic situations, where the plan

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

executor cannot access the whole status of the domain. The
key difficulty is in dealing with the uncertainty arising from
the inability to determine precisely at run-time what is the
current status of the domain. These approaches are however
limited to the case of simple reachability goals.

Tackling the problem of planning for temporally extended
goals under the assumption of partial observability is not
trivial. The goal of this paper is to settle a general frame-
work that encompasses all the aspects that are relevant to
deal with real-world domains and problems which feature
partial observability and extended goals. This framework
gives a precise definition of the problem, and will be a basis
for solving it in its full complexity.

The framework we propose is based on the Planning as
Model Checking paradigm. We give a general notion of
planning domain, in terms of finite state machine, where ac-
tions can be nondeterministic, and different forms of sens-
ing can be captured. We define a general notion of plan,
that is also seen as a finite state machine, with internal con-
trol points that allow to encode sequential, conditional, and
iterative behaviors. The conditional behavior is based on
sensed information, i.e., information that becomes available
during plan execution. By connecting a plan and a domain,
we obtain a closed system, that induces a (possibly infinite)
computation tree, representing all the possible executions.
Temporally extended goals are defined as CTL formulas. In
this framework, the standard machinery of model checking
for CTL temporal logic defines when a plan satisfies a tem-
porally extended goal under partial observability. As a side
result, this shows that a standard model checking tool can
be applied as a black box to the validation of complex plans
even in the presence of limited observability.

Unfortunately, CTL is not adequate to express goals in
presence of partial observability. Even in the simple case of
conformant planning, i.e., when a reachability goal has to be
achieved with no information available at run-time, CTL is
not expressive enough. This is due to the fact that the basic
propositions in CTL only refer to the status of the world, but
do not take into account the aspects related to “knowledge”,
i.e., what is known at run-time. In fact, conformant planning
is the problem of finding a plan after which we know that
a certain condition is achieved. In order to overcome this
limitation, we define the K-CTL goal language, obtained by
extending CTL with a knowledge operator, that allows to
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express knowledge atoms, i.e., what is known at a certain
point in the execution. Then, we provide a first practical
solution to the problem of checking if a plan satisfies a K-
CTL goal. This is done by associating a given K-CTL goal
with a suitable monitor, i.e., an observer system that is able
to recognize the truth of knowledge atoms. Standard model
checking techniques can be then applied to the domain-plan
system enriched with the monitor.

The work presented in this paper focuses on setting the
framework and defining plan validation procedures, and
does not tackle the problem of plan synthesis. Still, the basic
concepts presented in this paper formally distinguish what
is known at planning time versus what is known at run time,
and provide a solid basis for tackling the problem of plan
synthesis for extended goals under partial observability.

The paper is structured as follows. First we provide a
formal framework for partially observable, nondeterminis-
tic domains, and for plans over them. Then we incremen-
tally define CTL goals and K-CTL goals; for each of those
classes of goals, we describe a plan validation procedure.
We wrap up with some concluding remarks and future and
related work.

The framework
In our framework, a domain is a model of a generic system,
such as a power plant or an aircraft, with its own dynamics,
The plan can control the evolutions of the domain by trig-
gering actions. We assume that, at execution time, the state
of the domain is only partially visible to the plan; the part
of a domain state that is visible is called the observation of
the state. In essence, planning is building a suitable plan that
can guide the evolutions of the domain in order to achieve
the specified goals.

Planning domains

A planning domain is defined in terms of its states, of the
actions it accepts, and of the possible observations that the
domain can exhibit. Some of the states are marked as valid
initial states for the domain. A transition function describes
how (the execution of) an action leads from one state to pos-
sibly many different states. Finally, an observation function
defines what observations are associated to each state of the
domain.

Definition 1 (planning domain) A nondeterministic plan-
ning domain with partial observability is a tuple D =
〈S,A,U , I, T ,X〉, where:

• S is the set of states.

• A is the set of actions.

• U is the set of observations.

• I ⊆ S is the set of initial states; we require I 6= ∅.

• T : S × A → 2S is the transition function; it associates
to each current state s ∈ S and to each action a ∈ A the
set T (s, a) ⊆ S of next states.

• X : S → 2U is the observation function; it associates to
each state s the set of possible observations X (s) ⊆ U .

state

action

observation

DOMAIN

Χ

Τ

Figure 1: The model of the domain.

We say that action a is executable in state s if T (s, a) 6= ∅.
We require that in each state s ∈ S there is some executable
action, that is some a ∈ A such that T (s, a) 6= ∅. We also
require that some observation is associated to each state s ∈
S, that is, X (s) 6= ∅.

A picture of the model of the domain corresponding to this
definition is given in Figure 1. Technically, a domain is de-
scribed as a nondeterministic Moore machine, whose out-
puts (i.e., the observations) depend only on the current state
of the machine, not on the input action. Uncertainty is al-
lowed in the initial state and in the outcome of action exe-
cution. Also, the observation associated to a given state is
not unique. This allows modeling noisy sensing and lack of
information.

Notice that the definition provides a general notion of do-
main, abstracting away from the language that is used to de-
scribe it. For instance, a planning domain is usually defined
in terms of a set of fluents (or state variables), and each state
corresponds to an assignment to the fluents. Similarly, the
possible observations of the domain, that are primitive en-
tities in the definition, can be presented by means of a set
of observation variables, as in (Bertoli et al. 2001): each
observation variable can be seen as an input port in the plan,
while an observation is defined as a valuation to all the ob-
servation variables. The definition of planning domain does
not allow for a direct representation of action-dependent ob-
servations, that is, observations that depend on the last ex-
ecuted action. However, these observations can be easily
modeled by representing explicitly in the state of the domain
(the relevant information on) the last executed action.

In the following example, that will be used throughout
the paper, we will outline the different aspects of the defined
framework.

Example 2 Consider the domain represented in Figure 2.
It consists of a ring of N rooms. Each room contains a
light that can be on or off, and a button that, when pressed,
switches the status of the light. A robot may move between
adjacent rooms (actions go-right and go-left) and switch
the lights (action switch-light). Uncertainty in the domain
is due to an unknown initial room and initial status of the
lights. Moreover, the lights in the rooms not occupied by the
robot may be nondeterministically switched on without the
direct intervention of the robot (if a light is already on, in-
stead, it can be turned off only by the robot). The domain is
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Figure 2: A simple domain.

only partially observable: the rooms are indistinguishable,
and, in order to know the status of the light in the current
room, the robot must perform a sense action.

A state of the domain is defined in terms of the following
fluents:

• fluent room, that ranges from 1 to N , describes in which
room the robot is currently in;

• boolean fluents light-on[i], for i ∈ {1, . . . , N}, describe
whether the light in room i is on;

• boolean fluent sensed, describes whether last action was
a sense action.

Any state with fluent sensed false is a possible initial state.
The actions are go-left, go-right, switch-light, sense,

and wait. Action wait corresponds to the robot doing noth-
ing during a transition (the state of the domain may change
only due to the lights that may be turned on without the in-
tervention of the robot). The effects of the other actions have
been already described.

The observation is defined in terms of observation vari-
able light. If fluent sensed is true, then observation vari-
able light is true if and only if the light is on in the current
room. If fluent sensed is false (no sensing has been done in
the last action), then observation light may be nondetermin-
istically true or false.

The mechanism of observations allowed by the model
presented in Definition 1 is very general. It can model no
observability and full observability as special cases. No ob-
servability (conformant planning) is represented by defining
U = {•} and X (s) = {•} for each s ∈ S. That is, obser-
vation • is associated to all states, thus conveying no infor-
mation. Full observability is represented by defining U = S
and X (s) = {s}. That is, the observation carries all the
information contained in the state of the domain.

Plans
Now we present a general definition of plans, that encode
sequential, conditional and iterative behaviors, and are ex-
pressive enough for dealing with partial observability and
with extended goals. In particular, we need plans where the

PLAN

action

observation

context

α

ε

Figure 3: The model of the plan.

selection of the action to be executed depends on the ob-
servations, and on an “internal state” of the executor, that
can take into account, e.g., the knowledge gathered during
the previous execution steps. A plan is defined in terms of
an action function that, given an observation and a context
encoding the internal state of the executor, specifies the ac-
tion to be executed, and in terms of a context function that
evolves the context.

Definition 3 (plan) A plan for planning domain D =
〈S,A,U , I, T ,X〉 is a tuple Π = 〈Σ, σ0, α, ε〉, where:

• Σ is the set of plan contexts.
• σ0 ∈ Σ is the initial context.
• α : Σ × U ⇀ A is the action function; it associates to a

plan context c and an observation o an action a = α(c, o)
to be executed.

• ε : Σ × U ⇀ Σ is the context evolutions function; it
associates to a plan context c and an observation o a new
plan context c′ = ε(c, o).

A picture of the model of plans is given in Figure 3. Techni-
cally, a plan is described as a Mealy machine, whose outputs
(the action) depends in general on the inputs (the current ob-
servation). Functions α and ε are deterministic (we do not
consider nondeterministic plans), and can be partial, since a
plan may be undefined on the context-observation pairs that
are never reached during execution.

Example 4 We consider two plans for the domain of Fig-
ure 2. According to plan Π1, the robot moves cyclically
trough the rooms, and turns off the lights whenever they are
on. The plan is cyclic, that is, it never ends. The plan has
three contexts E, S, and L, corresponding to the robot hav-
ing just entered a room (E), the robot having sensed the
light (S), and the robot being about to leave the room after
switching the light (L) . The initial context is E. Functions
α and ε for Π1 are defined by the following table:

c o α(c, o) ε(c, o)
E any sense S
S light = > switch-light L
S light = ⊥ go-right E
L any go-right E

In plan Π2, the robot traverses all the rooms and turns
on the lights; the robot stops once all the rooms have been
visited. The plan has contexts of the form (E, i), (S, i), and
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(L, i), where i represents the number of rooms to be visited.
The initial context is (E,N−1), where N is the number of
rooms. Functions α and ε for Π2 are defined by the following
table:

c o α(c, o) ε(c, o)
(E, i) any sense (S, i)
(S, i) light = ⊥ switch-light (L, i)
(S, 0) light = > wait (L, 0)

(S, i+1) light = > go-right (E, i)
(L, 0) any wait (L, 0)

(L, i+1) any go-right (E, i)

Plan execution
Now we discuss plan execution, that is, the effects of run-
ning a plan on the corresponding planning domain. Since
both the plan and the domain are finite state machines, we
can use the standard techniques for synchronous composi-
tions defined in model checking. That is, we can describe
the execution of a plan over a domain in terms of transitions
between configurations that describe the state of the domain
and of the plan. This idea is formalized in the following
definition.

Definition 5 (configuration) A configuration for domain
D = 〈S,A,U , I, T ,X〉 and plan Π = 〈Σ, σ0, α, ε〉 is a
tuple (s, o, c, a) such that:

• s ∈ S,
• o ∈ X (s),
• c ∈ Σ, and
• a = α(c, o).

Configuration (s, o, c, a) may evolve into configuration
(s′, o′, c′, a′), written (s, o, c, a) → (s′, o′, c′, a′), if s′ ∈
T (s, a), o′ ∈ X (s′), c′ = ε(c, o), and a′ = α(c′, o′). Con-
figuration (s, o, c, a) is initial if s ∈ I and c = σ0. The
reachable configurations for domain D and plan Π are de-
fined by the following inductive rules:

• if (s, o, c, a) is initial, then it is reachable;
• if (s, o, c, a) is reachable and (s, o, c, a) → (s′, o′, c′, a′),

then (s′, o′, c′, a′) is also reachable.

Notice that we include the observations and the actions in
the configurations. In this way, not only the current states
of the two finite states machines, but also the information
exchanged by these machines are explicitly represented. In
the case of the observations, this explicit representation is
necessary in order to take into account that more than one
observation may correspond to the same state.

We are interested in plans that define an action to be ex-
ecuted for each reachable configuration. These plans are
called executable.

Definition 6 (executable plan) Plan Π is executable on do-
main D if:

1. if s ∈ I and o ∈ X (s) then α(σ0, o) is defined;

and if for all the reachable configurations (s, o, c, a):

2. T (s, a) 6= ∅;
3. ε(c, o) is defined;

PLAN

context

state

DOMAIN
observation action

α

ε

Τ

Χ

Figure 4: Plan execution.

4. if s′ ∈ T (s, a), o′ ∈ X (s′), and c′ = ε(c, o), then
α(c′, o′) is defined.

Condition 1 guarantees that the plan defines an action for all
the initial states (and observations) of the domain. The other
conditions guarantee that, during plan execution, a configu-
ration is never reached where the execution cannot proceed.
More precisely, condition 2 guarantees that the action se-
lected by the plan is executable on the current state. Con-
dition 3 guarantees that the plan defines a next context for
each reachable configuration. Condition 4 is similar to con-
dition 1 and guarantees that the plan defines an action for all
the states and observations of the domain that can be reached
from the current configuration.

The executions of a plan on a domain correspond to the
synchronous executions of the two machines corresponding
to the domain and the plan, as shown in Figure 4. At each
time step, the flow of execution proceeds as follows. The
execution starts from a configuration that defines the cur-
rent domain state, observation, context, and action. The new
state of the domain is determined by function T from the
current state and action. The new observation is then deter-
mined by applying nondeterministic function X to the new
state. Based on the current context and observation, the plan
determines the next context applying function ε. And, fi-
nally, the plan determines the new action to be executed by
applying function α to the new context and observation. At
the end of the cycle, the newly computed values for the do-
main state, the observation, the context, and the action define
the value of the new configuration.

An execution of the plan is basically a sequence of sub-
sequent configurations. Due to the nondeterminism in the
domain, we may have an infinite number of different exe-
cutions of a plan. We provide a finite presentation of these
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executions with an execution structure, i.e, a Kripke Struc-
ture (Emerson 1990) whose set of states is the set of reach-
able configurations of the plan, and whose transition relation
corresponds to the transitions between configurations.

Definition 7 (execution structure) The execution structure
corresponding to domain D and plan Π is the Kripke struc-
ture K = 〈Q,Q0, R〉, where:

• Q is the set of reachable configurations;
• Q0 = {(s, o, σ0, a) ∈ Q : s ∈ I ∧ o ∈ X (s) ∧ a =

α(σ0, o)} are the initial configurations;

• R =
{(

(s, o, c, a), (s′, o′, c′, a′)
)

∈ Q×Q : (s, o, c, a) →

(s′, o′, c′, a′)
}

.

Temporally extended goals: CTL
Extended goals are expressed with temporal logic formulas.
In most of the works on planning with extended goals (see,
e.g., (Kabanza, Barbeau, & St-Denis 1997; de Giacomo &
Vardi 1999; Bacchus & Kabanza 2000)), Linear Time Logic
(LTL) is used as goal language. LTL provides temporal op-
erators that allow one to define complex conditions on the
sequences of states that are possible outcomes of plan execu-
tion. Following (Pistore & Traverso 2001), we use Compu-
tational Tree Logic (CTL) instead. CTL provides the same
temporal operators of LTL, but extends them with univer-
sal and existential path quantifiers that provide the ability to
take into account the non-determinism of the domain.

We assume that a set B of basic propositions is defined
on domain D. Moreover, we assume that for each b ∈ B
and s ∈ S, predicate s |=0 b holds if and only if basic
proposition b is true on state s. In the case of the domain
of Figure 2, possible basic propositions are light-on[i], that
is true in those states where the light is on in room i, or
room = i, that is true if the robot is in room i.

Definition 8 (CTL) The goal language CTL is defined by
the following grammar, where b is a basic proposition:

g ::= p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)

p ::= b | ¬p | p ∧ p

CTL combines temporal operators and path quantifiers. “X”,
“U”, and “W” are the “next time”, “(strong) until”, and
“weak until” temporal operators, respectively. “A” and “E”
are the universal and existential path quantifiers, where a
path is an infinite sequence of states. They allow us to
specify requirements that take into account nondeterminism.
Intuitively, the formula AX g means that g holds in every
immediate successor of the current state, while the formula
EX g means that g holds in some immediate successor. The
formula A(g1 U g2) means that for every path there exists an
initial prefix of the path such that g2 holds at the last state of
the prefix and g1 holds at all the other states along the pre-
fix. The formula E(g1 U g2) expresses the same condition,
but only on some of the paths. The formulas A(g1 W g2)
and E(g1 W g2) are similar to A(g1 U g2) and E(g1 U g2),
but allow for paths where g1 holds in all the states and g2

never holds. Formulas AF g and EF g (where the temporal

operator “F” stands for “future” or “eventually”) are abbre-
viations of A(>U g) and E(>U g), respectively. AG g and
EG g (where “G” stands for “globally” or “always”) are ab-
breviations of A(g W⊥) and E(g W⊥), respectively.

A remark is in order. Even if negation ¬ is allowed only
in front of basic propositions, it is easy to define ¬g for
a generic CTL formula g, by “pushing down” the nega-
tions: for instance ¬AX g ≡ EX¬g and ¬A(g1 W g2) ≡
E(¬g2 U(¬g1 ∧ ¬g2)).

Goals as CTL formulas allow us to specify different
classes of requirements on plans. Let us consider first some
examples of reachability goals. AF g (“reach g”) states that
a condition should be guaranteed to be reached by the plan,
in spite of nondeterminism. EF g (“try to reach g”) states
that a condition might possibly be reached, i.e., there ex-
ists at least one execution that achieves the goal. A reason-
able reachability requirement that is stronger than EF g is
A(EF g W g): it allows for those execution loops that have
always a possibility of terminating, and when they do, the
goal g is guaranteed to be achieved.

We can distinguish also among different kinds of main-
tainability goals, e.g., AG g (“maintain g”), AG¬g (“avoid
g”), EG g (“try to maintain g”), and EG¬g (“try to avoid
g”). The “until” operators A(g1 U g2) and E(g1 U g2) can
be used to express the reachability goals g2 with the addi-
tional requirement that property g1 must be maintained until
the desired condition is reached.

We can also compose reachability and maintainability
goals in arbitrary ways. For instance, AFAG g states that
a plan should guarantee that all executions reach eventually
a set of states where g can be maintained. The weaker goal
EFAG g requires that there exists a possibility to reach a set
of states where g can be maintained. As a further example,
the goal AG EF g intuitively means “maintain the possibil-
ity of reaching g”.

Notice that in all examples above, the ability of compos-
ing formulas with universal and existential path quantifiers
is essential. Logics like LTL that do not provide this ability
cannot express these kinds of goals.

Given an execution structure K and an extended goal g,
we now define when a goal g is true in (s, o, c, a), written
K, (s, o, c, a) |= g by using the standard semantics for CTL
formulas over the Kripke Structure K.

Definition 9 (semantics of CTL) Let K be a Kripke struc-
tures with configurations as states. We extend |=0 to propo-
sitions as follows:

• s |=0 ¬p if not s |=0 p;

• s |=0 p ∧ p′ if s |=0 p and s |=0 p′.

We define K, q |= g as follows:

• K, q |= p if q = (s, o, c, a) and s |=0 p.

• K, q |= g ∧ g′ if K, q |= g and K, q |= g′.

• K, q |= g ∨ g′ if K, q |= g or K, q |= g′.

• K, q |= AX g if for all q′, if q → q′ then K, q′ |= g.

• K, q |= EX g if there is some q′ such that q → q′ and
K, q′ |= g.
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• K, q |= A(g U g′) if for all q = q0 → q1 → q2 → · · ·
there is some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= E(g U g′) if there is some q = q0 → q1 → q2 →
· · · and some i ≥ 0 such that K, qi |= g′ and K, qj |= g
for all 0 ≤ j < i.

• K, q |= A(g W g′) if for all q = q0 → q1 → q2 → · · · ,
either K, qj |= g for all j ≥ 0, or there is some i ≥ 0
such that K, qi |= g′ and K, qj |= g for all 0 ≤ j < i.

• K, q |= E(g W g′) if there is some q = q0 → q1 → q2 →
· · · such that either K, qj |= g for all j ≥ 0, or there is
some i ≥ 0 such that K, qi |= g′ and K, qj |= g for all
0 ≤ j < i.

We define K |= g if K, q0 |= g for all the initial configura-
tions q0 ∈ Q0 of K.

Plan validation
The definition of when a plan satisfies a goal follows.

Definition 10 (plan validation for CTL goals) Plan Π
satisfies CTL goal g on domain D, written Π |=D g, if
K |= g, where K is the execution structure corresponding
to D and Π.

In the case of CTL goals, the plan validation task amounts
to CTL model checking. Given a domain D and a plan
Π, the corresponding execution structure K is built as de-
scribed in Definition 7 and standard model checking algo-
rithms are run on K in order to check whether it satisfies
goal g. This simple consideration has an important conse-
quence: the problem of plan validation under partial observ-
ability can be tackled with standard model checking machin-
ery, and with existing model checking tools.

We describe now some goals for the domain of Figure 2.
We recall that the initial room of the robot is uncertain, and
that light can be turned on (but not off) without the interven-
tion of the robot.

Example 11 The first goal we consider is

AF (¬light-on[3]),

which requires that the light of room 3 is eventually off. Plan
Π1 satisfies this goal: eventually, the robot will be in room
3 and will turn out the light if it is on.

There is no plan that satisfies to following goal:

AFAG (¬light-on[3]),

which requires that the light in room 3 is turned off and stays
then off forever. This can be only guaranteed if the robot
stays in room 3 forever, and it is impossible to guarantee this
condition in this domain: due to the partial observability of
the domain, the robot does never know it is in room 3.

Plan Π1 satisfies the following goal
∧

i∈1,...,N
AGAF (¬light-on[i]),

which requires that the light in every room is turned off in-
finitely often. On the other hand, it does not satisfy the fol-
lowing goal

AG AF
∧

i∈1,...,N
(¬light-on[i]),

which requires that the lights in all the rooms are off at the
same time infinitely often. Indeed, the nondeterminism in the
domain may cause lights to turn on at any time.

While plan Π1 does not guarantee that all the lights will
be eventually off, it always leaves open the possibility that
such a configuration will be eventually reached. That is,
plan Π1 satisfies the following goal

AG EF
∧

i∈1,...,N
(¬light-on[i]),

which asserts that in each moment (AG) there is the possi-
bility of reaching (EF) the desired configuration.

Finally, consider the goal

AG AF
∧

i∈1,...,N
(light-on[i]),

which requires that the lights in all the rooms are on at the
same time infinitely often. It is satisfied by plan Π2: once
all the rooms have been explored, and the lights have been
turned on, they will stay on forever.

Goals over actions and observations

The CTL formulas that we have considered so far can only
express properties on the evolution of the states of the do-
mains. The proposed approach, however, can be easily ex-
tended in order to allow for formulas that express properties
also on the observations and on the executed actions. We
have only to extend to observations and actions the interpre-
tation of basic propositions b. This allows for basic proposi-
tions like light, that is true if the robot observes that the light
is on in the current room, or like switch-light, that is true if
the robot is going to switch the light.

Formally, we assume that predicate s, o, a |=0 b holds if
and only if basic proposition b is true on state s, observation
o, and action a; moreover, we define:

• K, q |= p if q = (s, o, c, a) and s, o, a |=0 p

with |=0 extended to generic propositions as in Definition 9.
As shown by the following example, the possibility of

speaking of actions and observations in the goals is very use-
ful in planning, in particular for expressing conditions on the
valid behaviors of the plan.

Example 12 Goal

AG (sensed ∧ light → switch-light)

expresses the requirement that, if the robot has just sensed
the current status of the light, and if it is on, then the robot
has to turn it immediately off.

As a further example, goal

AG (go-right ∨ go-left → AX sense)

requires that, as soon as the robot moves into a new room
(performing actions go-right or go-left), then it has to sense
the status of the light.
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Goals over knowledge: K-CTL
Under the hypothesis of partial observability, CTL is not ad-
equate to express many interesting goals. Consider for in-
stance the first goal in Example 11. Notice that the robot
will never “know” when condition ¬light-on[3] holds. In
fact, the robot cannot detect when it is in room 3, and once
that room is left, the light can be turned on again. The inade-
quacy of CTL is related with the limited knowledge that the
plan execution has to face at run-time, because of different
forms of uncertainty (e.g., in the initial condition, and in the
execution of actions) that cannot be ruled out by the partial
observability. In order to tackle this problem, in this section
we extend CTL with a knowledge operator K p. Goal K p
expresses the fact that the executor knows, or believes, that
all the possible current states of the domain, that are compat-
ible with the past history and the past observations, satisfy
condition p. This allows, for instance, for expressing reach-
ability under partial observability, by stating a goal of the
kind AFK g.

Definition 13 (K-CTL) The goal language K-CTL is de-
fined by the following grammar:

g ::= p | K p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)

p ::= b | ¬p | p ∧ p

In order to define when a plan satisfies a given K-CTL
goal, we have to extend the execution structure with an ad-
ditional piece of information, called belief state. A belief
state is a set of possible candidate states of the domain that
we cannot distinguish given the past actions and the obser-
vations collected so far.

Definition 14 (bs-configuration) A bs-configuration for
domain D = 〈S,A,U , I, T ,X〉 and plan Π = 〈Σ, σ0, α, ε〉
is a tuple (s, o, c, a, bs) such that (s, o, c, a) is a configura-
tion for D and Π and bs ∈ 2S . We require:

• s ∈ bs (the current state must belong to the belief state);

• if s̄ ∈ bs then o ∈ X (s̄) (the states in the belief state must
be compatible with the observed output).

Bs-configuration (s, o, c, a, bs) may evolve into bs-
configuration (s′, o′, c′, a′, bs′), written (s, o, c, a, bs) →
(s′, o′, c′, a′, bs′), if (s, o, c, a) → (s′, o′, c′, a′) and
bs′ = {s̄′ : ∃s̄ ∈ bs. s̄′ ∈ T (s̄, a) ∧ o′ ∈ X (s̄′)}. Bs-
configuration (s, o, c, a, bs) is initial if s ∈ I, c = σ0, and
bs = {s̄ ∈ I : o ∈ X (s̄)}. The reachable bs-configurations
are defined by trivially extending Definition 5.

Definition 15 (semantics of K-CTL) Let K be a bs-
execution structure, namely a Kripke structures with bs-
configurations as states. We define K, q |= g by extending
Definition 9 as follows:

• K, q |= K p if q = (s, o, c, a, bs) and s̄ |=0 p for all
s̄ ∈ bs.

We define K |= g if K, q0 |= g for all the initial configura-
tions q0 of K.

DOMAIN

MONITOR

PLAN

belief state

observation

action

Figure 5: Monitor.

Plan validation for K-CTL goals
Also in the case of K-CTL, the definition of when a plan
satisfies a goal is reduced to model checking.

Definition 16 (plan validation for K-CTL goals) Plan Π
satisfies K-CTL goal g on domain D, written Π |=D g, if
K |= g, where K is the bs-execution structure correspond-
ing to D and Π.

We consider now an additional set of K-CTL goals.

Example 17 In Example 11 we have seen that plan Π1 sat-
isfies goal AF (¬light-on[3]). However, it does not satisfy
goal

AFK (¬light-on[3]).

In fact, this goal cannot be satisfied by any plan: due to the
uncertainty on the room occupied by the robot, there is no
way to “know” when the light in room 3 is turned off.

Goal
AFK (light-on[3]),

instead, is satisfied by Π2. Even if it is not possible to know
when the robot is turning on the light in room 3, we “know”
for sure that the light is on once the robot has visited all the
rooms. Plan Π2 satisfies also the more complex goal

∧

i∈1,...,N
AFK (light-on[i]).

According to Definition 16, the problem of checking
whether a plan satisfies a K-CTL goal g is reduced to model
checking formula g on the bs-execution structure corre-
sponding to the plan. While theoretically sound, this ap-
proach is not practical, since the number of possible be-
lief states for a given planning domain is exponential in the
number of its states. This makes the exploration of a bs-
execution structure infeasible for non-trivial domains.

In order to overcome this limitation, in this section we
introduce a different approach for plan validation. This ap-
proach is based on the concept of monitor. A monitor is a
machine that observes the execution of the plan on the do-
main and reports a belief state, i.e., a set of possible current
states of the domain (see Figure 5). Differently from the be-
lief states that appear in a bs-configuration, the belief states
reported by the monitor may be a super-set of the states that
are compatible with the past history. As we will see, it is this
possibility of approximating the possible current states that
makes monitors usable in practice for validating plans.
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Definition 18 (monitor) A monitor for a domain D =
〈S,A,U , I, T ,X〉 is a tuple M = 〈MS,m0,MT ,MO〉,
where:

• MS is the set of states of the monitor.
• m0 ∈ MS is the initial state of the monitor.
• MT : MS × U × A ⇀ MS is the transition function

of the monitor; it associates to state m of the monitor, ob-
servation o, and action a, an updated state of the monitor
m′ = MT (m, o, a).

• MO : MS × U → 2S is the output function of the mon-
itor; it associates to each state m of the monitor and ob-
servation o the corresponding belief state MO(m, o).

Definition 19 (m-configuration) A m-configuration for do-
main D, plan Π and monitor M is a tuple (s, o, c, a,m)
such that s ∈ S, o ∈ X (s), c ∈ Σ, and m ∈
MS . M-configuration (s, o, c, a,m) may evolve into m-
configuration (s′, o′, c′, a′,m′), written (s, o, c, a,m) →
(s′, o′, c′, a′,m′), if: (s, o, c, a) → (s′, o′, c′, a′) and m′ =
MT (m, o, a). M-configuration (s, o, c, a,m) is initial if s ∈
I, c = σ0, and m = m0. The reachable m-configurations
are defined by trivially extending Definition 5.

We say that a monitor is correct for a given domain and
plan if the belief state reported by the monitor after a certain
evolution contains all the states that are compatible with the
observation gathered during the evolution. In the following
definition, this property is expressed by requiring that there
are no computations along which a state of the domain is
reached that is not contained in the belief state reported by
the monitor.
Definition 20 (correct monitor) Monitor M is correct for
domain D and plan Π if the following conditions holds for
all the reachable m-configurations (s, o, c, a,m):

• s ∈ MO(m, o);
• MT (m, o, a) is defined.

From now on we consider only correct monitors.
We now define when a triple domain-plan-monitor satis-

fies a given K-CTL goal g. We start by defining the Kripke
structure corresponding by the synchronous execution of the
machines corresponding to domain, plan, and monitor.
Definition 21 (m-execution structure) The m-execution
structure corresponding to domain D, plan Π, and monitor
M is the Kripke structure K = 〈Q,Q0, R〉, where:

• Q is the set of reachable m-configurations;
• Q0 are the initial m-configurations;
• R =

{(

(s, o, c, a,m), (s′, o, c′, a′,m′)
)

∈ Q × Q :

(s, o, c, a,m) → (s′, o′, c′, a′,m′)
}

.

The validity of a K-CTL formula on a m-execution structure
K is defined as in Definition 15, with the exception of the
case of goals K p, where:

• K, q |= K p if q = (s, o, c, a,m) and s̄ |=0 p for all
s̄ ∈ MO(m, o).

Definition 22 (plan validation using monitors) Plan Π
satisfies K-CTL goal g on domain D according to monitor
M, written Π |=D,M g, if K |= g, where K is the m-
execution structure corresponding to D, Π, and M.

The possibility of using monitors for plan validation is
guaranteed by the following theorem.

Theorem 23 Plan Π satisfies K-CTL goal g on domain D if
and only if there is a correct monitor M for D and Π such
that Π |=D,M g.

The proof of this theorem is simple. For the if implication, it
is sufficient to notice that, for any reachable m-configuration
(s, o, c, a,m), the output MO(m, o) of a correct monitor
is a super-set of the belief states that are compatible with
the evolutions leading to the m-configuration. The condition
for the validity of knowledge goals given in Definition 21 is
stronger than the condition given in Definition 15. There-
fore, if Π |=D,M g, then Π |=D g. In order to prove the only
if implication, we introduce universal monitors.

Definition 24 (universal monitor) The universal monitor
MD for domain D is defined as follows:

• MS = 2S are the belief states of D.

• m0 = I.

• MT (bs, o, a) = {s̄′ : ∃s̄ ∈ bs. o = X (s̄) ∧ s̄′ =
T (s̄, a)}.

• MO(bs, o) = {s̄ ∈ bs : o ∈ X (s̄)}.

The universal monitor of a domain traces the precise evo-
lution of the belief states, that is, it does not lose any in-
formation. One can check that the belief state reported
by this monitor for a given m-configuration coincides with
the belief state of the bs-configuration corresponding to the
same computation. Therefore, Π |=D g if and only if
Π |=D,MD

g. Since the universal monitor is correct, this
is sufficient to prove the only if implication of Theorem 23.

The possibility of losing some of the information on the
current belief state makes monitors very convenient for plan
validation. In many practical cases, monitors are able to rep-
resent in a very compact way the aspects of the evolution
of belief states that are relevant to the goal being analyzed.
Consider for instance the extreme case of a K-CTL goal g
that does not contain any K p sub-goal — so it is in fact a
CTL goal. In order to apply Definition 16, we should trace
the exact evolution of belief states, which may lead to an ex-
ponential blowup w.r.t. the size of the domain. Theorem 23,
on the other hand, allows us to prove a plan correct against
a very simple monitor: the monitor with a single state that
is associated to the belief state bs = S, independently from
the observation. This monitor traces no information at all on
the belief states, which is possible since no knowledge goal
appears in g (compare with Definition 9).

Another, less extreme example of the advantages of using
monitors for plan validation is the following.

Example 25 Consider the execution of Π2 on the domain
of Figure 2. The belief states corresponding to the differ-
ent steps of the execution are rather complex. They have to
take into account that, after i rooms have been visited by the
robot, we know that there are i consecutive rooms with the
light on, but that we do not know which are these rooms. For
instance, after two rooms have been visited, the belief state
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is the following:

(room = 1 ∧ light-on[1] ∧ light-on[N ]) ∨

(room = 2 ∧ light-on[2] ∧ light-on[1]) ∨

(room = 3 ∧ light-on[3] ∧ light-on[2]) ∨ · · ·

Most of the information of these belief states is useless for
most of the goals. Consider for instance goals

AFK (light-on[3])

or
∧

i∈1,...,N
AFK (light-on[i]).

The only relevant information for proving that these goals
are satisfied by plan Π2 is that, once the robot has visited all
the rooms, all the lights are on. A suitable monitor for these
goals is the following. It has two states, m0 and m1, with m0

the initial state, and m1 corresponding to the termination of
the exploration. The transition function and the output of the
monitor are defined by the following table:

m o a MT (m, o, a) MO(m, o)
m0 any wait m1 >

m0 any 6= wait m0 >

m1 any wait m1

∧

i∈1,...,N

(light-on[i])

According to Definition 22, the problem of proving that
plan Π satisfies K-CTL goal g on domain D according to
monitor M is reduced to model checking goal g on the m-
execution structure corresponding to the synchronous exe-
cution of D, Π, and M. In order to conclude that Π satisfies
goal g, however, we have to prove that monitor M is correct.
The correctness of a monitor can also be proved using model
checking techniques. Indeed, it corresponds to prove that the
following formula is true on the m-execution structure:

AG (s ∈ MO(m, o)).

In this paper we do not address the problem of defining
a suitable monitor for checking plan validation. In practice,
it may be very difficult to decide what information on the
belief states has to be traced by the monitor. Intuitively, the
problem amounts to identifying an abstraction of the univer-
sal monitor that is sufficient for proving that the plan satisfies
a given the goal. Although the use of incremental abstrac-
tion refinement techniques can be envisaged, this is currently
an open problem. In the case the plan is synthesized by an
algorithm, however, a proof of the correctness of the plan
is built implicitly during the search. In this case, a monitor
could be produced by the algorithm itself, by generating a
sort of proof-carrying plan.

K-CTL and negation
A limit of K-CTL is that it does not allow to express the
fact that a given property is not known. For instance, in the
domain of Figure 2 we would like to express the fact that,
if the robot is in a given room and the current status of the
light is not known, then a given goal g has to be achieved

(for instance, the robot has to sense the light status). This
could be expressed by the following formula:

AG (¬K light-on[room] ∧ ¬K¬light-on[room] → g).

We remark that property ¬K p is weaker than property
K¬p. The second property states that executor knows that
property p is false, while the first property only states that
the executor does not know for sure that p is true.

We now extend K-CTL with the possibility of expressing
that some property is not known.

Definition 26 (K-CTL with negation) The goal language
K-CTL with negation is defined by the following grammar:

g ::= p | K p | ¬K p | g ∧ g | g ∨ g | AX g | EX g

A(g U g) | E(g U g) | A(g W g) | E(g W g)

p ::= b | ¬p | p ∧ p

The semantics of K-CTL with negation is defined by extend-
ing Definition 15 with the following case:

• K, q |= ¬K p if q = (s, o, c, a, bs) and s̄ 6|=0 p for some
s̄ ∈ bs.

The approach based on monitor for proving the validity
of a plan has to be extended in order to deal with K-CTL
with negation. In particular, in order to conclude that ¬K p
is true in m-configuration (s, o, c, a,m), it is not sufficient
to check that there is some state s̄ ∈ MO(m, o) such that
s̄ 6|=0 p (see Definition 22). Indeed, MO(m, o) is an over-
approximation of the current belief state, and it might be the
case that s̄ is not part of the belief state. In order to probe that
¬K p is true, we need an under-approximation of the current
belief state and a state s̄ in this under-approximation such
that s̄ 6|=0 p. Exploiting this idea, we define an extended
version of monitors, that provide both an over- and an under-
approximation of the current belief state.

Definition 27 (extended monitor) An extended monitor
for a domain D = 〈S,A,U , I, T ,X〉 is a tuple M =
〈MS,m0,MT ,MO+,MO−〉, where:

• MS is the set of states of the monitor.
• m0 ∈ MS is the initial state of the monitor.
• MT : MS ×U ×A ⇀ MS is the transition function of

the monitor.
• MO+ : MS ×U → 2S provides an over-approximation

of the current belief state.
• MO− : MS × U → 2S provides an under-approxima-

tion of the current belief state.

The validity of a K-CTL formula on a m-execution structure
K is defined as in Definition 15, with the exception of the
case of goals K p, where:

• K, q |= K p if q = (s, o, c, a,m) and s̄ |=0 p for all
s̄ ∈ MO+(m, o).

• K, q |= ¬K p if q = (s, o, c, a,m) and s̄ 6|=0 p for some
s̄ ∈ MO−(m, o).

Extended monitors are also useful for proving that a given
plan does not satisfy a given K-CTL goal. In order to prove
that goal g is not satisfied by plan Π, it is not sufficient to
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exhibit a monitor for which the goal is not satisfied. Indeed,
it might be the case that the goal is satisfied, but that the
monitor is not powerful enough for proving the correctness
of the plan. To prove that goal g is not satisfied from state s0,
one can prove instead that formula “not g” is satisfied, that
is, one can exhibit a monitor for “not g”. In general, if g is a
K-CTL formula, then one needs ¬K atoms in order to rep-
resent formula “not g”, as shown by the following example,
thus extended monitors are necessary.

Example 28 To prove that plan Π1 does not satisfy goal

AFK (¬light-on[3])

one can show that the negation of this goal is satisfied in-
stead. That is, we should show that the plan satisfies for-
mula

EG¬K (¬light-on[3]).

Concluding remarks
This paper is a first step towards planning for temporally ex-
tended goals under the hypothesis of partial observability.
We defined the basic framework and introduced the K-CTL
language, that combines the ability of expressing temporally
extended constraints with the ability to predicate over uncer-
tainty aspects. Then, we introduced the notion of monitor,
and defined correctness criteria that can be used in practice
to validate plans against K-CTL goals.

The issue of “temporally extended goals”, within the sim-
plified assumption of full observability, is certainly not new.
However, most of the works in this direction restrict to de-
terministic domains, see for instance (de Giacomo & Vardi
1999; Bacchus & Kabanza 2000). A work that consid-
ers extended goals in nondeterministic domains is described
in (Kabanza, Barbeau, & St-Denis 1997). Extended goals
make the planning problem close to that of automatic syn-
thesis of controllers (see, e.g., (Kupferman, Vardi, & Wolper
1997)). However, most of the work in this area focuses on
the theoretical foundations, without providing practical im-
plementations. Moreover, it is based on rather different tech-
nical assumptions on actions and on the interaction with the
environment.

On the other side, partially observable domains have been
tackled either using a probabilistic Markov-based approach
(see (Bonet & Geffner 2000)), or within a framework of
possible-world semantics (see, e.g., (Bertoli et al. 2001;
Weld, Anderson, & Smith 1998; Rintanen 1999)). These
works do not go beyond the possibility of expressing more
than simple reachability goals. An exception is (Karlsson
2001), where a linear-time temporal logics with a knowl-
edge operator is used to define search control strategies in
a progressive probabilistic planner. The usage of a linear-
time temporal logics and of a progressive planning algo-
rithm makes the approach of (Karlsson 2001) quite different
in aims and techniques from the one discussed in this paper.

Future steps of this work will include the definition of
a procedure for synthesizing monitors from K-CTL goals,
and the investigation of planning procedures for planning
for extended goals under partial observability. The syn-
thesis of monitors appears to be related to the problem

of generating supervisory controllers for the diagnosis of
failures. We are investigating whether the techniques de-
veloped by the diagnosis community (see, e.g., (Sampath
et al. 1996)) can be applied to the synthesis of moni-
tors. The main challenge for obtaining a planning proce-
dure appears to be the effective integration of the techniques
in (Bertoli, Cimatti, & Roveri 2001; Bertoli et al. 2001;
Pistore & Traverso 2001) that make effective use of (ex-
tensions of) symbolic model checking techniques, thus ob-
taining a practical implementation based on symbolic model
checking techniques.
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