
Quality and Utility - Towards a Generalization of Deadline and Anytime
Scheduling

Thomas Schwarzfischer
(schwarzf@fmi.uni-passau.de)

Chair of Computer Organization (Prof. Dr.-Ing. W. Grass)
Faculty of Mathematics and Informatics, University of Passau

Innstr. 33, 94032 Passau, Germany

Abstract

Scheduling algorithms for real-time systems can be
characterized in various ways, one of the most im-
portant ones of which is the underlying task model.
Many concepts of real-time scheduling relate to either
properties local to a single task or constraints imposed
onto a task by its context within an application. In
terms of real-time applications, task-local properties
usually refer to a task-local timeline, whereas context-
imposed constraints can frequently be expressed by
a clock global throughout the real-time application.
This work introduces a paradigm which allows to sep-
arate the two aspects of time inherent in an applica-
tion. Problems under this paradigm are specified in a
hierarchical task model. Finally, a suggestion for a dy-
namic scheduling algorithm based on this specification
methodology is made to demonstrate its feasibility.

Keywords: anytime planning and scheduling, planning
with hierarchical task networks, dynamic scheduling,
scheduling algorithms

Introduction
Specification of processor and resource scheduling prob-
lems is always based on a certain paradigm, and scheduling
algorithms are being developed to cover a range of prob-
lems devised under the assumption of such a paradigm.
Two concepts have been widely used in the area of real-
time systems research. One of these methodologies is
known as deadline scheduling, the other one is called any-
time scheduling. Even though these paradigms seem to be
very contrary on the first glance, they can nevertheless be
unified into one common model.

Problem Statement

The application model used in this work is hierarchical
and forms an and/or tree structure composed of tasks as
nodes and composition relationships as edges. A general-
ized form of precedence relations defines a second directed
graph structure on the same set of nodes. Task arrival times

Copyright c© 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

can be specified as periodic (task instances arrive at reg-
ular intervals), aperiodic (task instances arrive at irregular
intervals), or sporadic (task is instantiated exactly once),
and additional jitter values may indicate minor allowed de-
viations of the actual arrival time from the projected value.
Both of the concepts of task execution times and deadlines
are generalized applying a value-based approach. Value
is accumulated bottom-up using different strategies at the
individual nodes, so the goal of a scheduling algorithm
is to maximize the value being noted at the root node of
the application tree. Due to the presence of nondetermin-
ism caused by possibly irregular and unknown task arrival
times, a heuristic dynamic scheduler is proposed aiming to
optimally utilize the processors of a homogeneous multi-
processor system.

Structure of the Article
This work starts with an overview of related concepts, fol-
lowed by an outline of the basic idea for a model covering
both deadline and anytime specification. After some defi-
nitions, the description of a suitable scheduling algorithm
is given. Implementation issues and simulation results con-
clude the article.

Related Work
This section describes some of the categories of scheduling
methodologies which had influence on this work.

Priority and Deadline Scheduling
One well-known category of scheduling algorithms is
called priority schedulers, basing their task scheduling on
either user-defined or system-determined priorities. Rate-
Monotonic Scheduling (RMS) is a priority scheduler for
periodic task sets, where the priorities are derived from
the tasks’ period lengths. Another important subclass of
priority schedulers use the individual tasks’ deadlines to
make the scheduling decisions and are thus generally re-
ferred to as deadline schedulers. Some of these algorithms
(e.g., Earliest-Deadline-First, EDF) use deadlines as their
only source of information on the task set, others (e.g.,
Least-Slack-Time-First, LST) need additional data on the
execution time of tasks etc. (Liu & Layland 1973) pre-
sented some fundamental work on the concept of priority

ICAPS 2003 277

From: ICAPS-03 Proceedings. Copyright © 2003, AAAI (www.aaai.org). All rights reserved.

and deadline scheduling, which has been investigated into
thoroughly and extended in various directions in the mean-
time (Liu 2000).

Anytime Scheduling
Anytime scheduling algorithms, on the other hand, are
based on a completely different view of tasks. Anytime
tasks are assigned by the scheduler a certain amount of pro-
cessor time and respond to rising allocation of cpu time
with higher contribution to the reward or performance of
the overall application. (Zilberstein 1993) allows a deep
insight into the idea of anytime scheduling. Related con-
cepts to anytime scheduling are flexible scheduling (Brandt
& Nutt 2002), task-pair scheduling (Streich 1994), impre-
cise computation scheduling (Shih, Liu, & Chung 1989;
Liu et al. 1991; Castorino & Ciccarella 2000) or quality-
of-service degradable scheduling (Mittal, Manimaram, &
Murthy 2000).

Clock-based Scheduling
The approach taken by clock-based scheduling algorithms
is to make scheduling decisions according to the compar-
ison of clocks associated with the individual tasks. The
primary aim of clock-based scheduling was traffic control
in networks (Zhang 1991). However, it has also success-
fully been applied to task scheduling (Duda & Cheriton
1999). Some clock-based schedulers distinguish explic-
itly between (usually one) global clock and task-internal
clocks. Task-internal time advances only when the corre-
sponding task is allowed to execute on a processor, in con-
trary to the global clock.

Value-based Scheduling
Value-based scheduling comprises all kinds of schedul-
ing by dint of some kind of time-value functions assigned
to the tasks. Value-based solutions have been applied to
both (generalized) deadline (Chen & Muhlethaler 1996;
Horvitz & Rutledge 1991) and anytime scheduling prob-
lems (Zilberstein 1993; Burns et al. 2000). However, due to
the different notion of time in these two classes of schedul-
ing algorithms, time-value functions are generally inter-
preted differently. (Cheng 2002) describes a value-based
solution for the time-budgeting problem using Lagrange
multipliers.

In the deadline-based context, time-value functions can
serve as a generalization of deadlines by indicating the
utility of a task when completed at a certain point on the
global timeline. Figures 1a), 1b), and 1c) show examples
of time-value functions describing hard, firm, or soft dead-
lines, respectively. Note that the arrow in figure 1a) indi-
cates that the value associated with a task having passed
its hard deadline is −∞. Apart from the traditional notion
of deadlines associated with the tasks of a real-time appli-
cation, suggestions have been made to further generalize
this concept by introducing a so-called critical time. The
utility function of a task is such that it contributes to the
application only if the task finishes its execution within a

small interval of time. Examples can be found in multime-
dia applications, where an early display of a video frame is
considered as bad as a late display. Figure 1d) shows the
time-value function of such a task with steeply ascending
or descending edges at the borders of the positive-valued
interval.

For anytime applications, time-value functions describe
the relationship between the cpu time assigned to the task
and the resulting contribution to the application’s perfor-
mance. Figure 2a) shows the quality function for a task
with fixed execution time, whereas figures 2b) through 2d)
show other typical functions describing anytime behaviour
of tasks.

timetime

d)
value

time

b)
value

c)
value

- 8

value
a)

time

Figure 1: Typical time-value functions describing deadlines

time

d)

value

time

c)

value

time

b)

value

time

a)

value

Figure 2: Typical time-value functions describing anytime
behaviour

It has to be noted that time-value functions for deadline
schedulers are generally defined on a global time domain,
whereas time-value functions for anytime schedulers are
defined on a task-local time domain. We relate the notion
of global and local time to clock-based scheduling. In this
respect, global attributes are not affected by the task being
allowed to execute on a processor or not. Therefore, dead-
lines can obviously be called global attributes, even if they
are specified relative to the task’s release time.

278 ICAPS 2003

Hierarchical Scheduling
Hierarchical scheduling is an expression which is used for
both scheduling of a hierarchically specified application
and the use of a hierarchy of schedulers to schedule an
application. Hierarchically specified applications require
a system of task instantiation rules to prevent inconsis-
tent hierarchy states during the execution (Decker 1996).
Scheduler hierarchies need a sophisticated set of guaran-
tees which describe the strucure of legal scheduler hierar-
chies (Regehr 2001).

Adaptive Scheduling
For many applications, service requirements vary over
time, and in many cases arrival of tasks happens unpre-
dictably. Under these circumstances, schedulers must be
able to maintain a minimum of service under high load
or overload while not wasting resources during times of
low load. Adaptive scheduling algorithms take into ac-
count these dynamic requirements and try to use informa-
tion on the current load of the system to parameterize the
scheduling algorithm or even apply different algorithms
(Hamidzadeh, Atif, & Ramamritham 1999; West 2000).
Additionally, some adaptive schedulers try to find an op-
timal compromise in the effort-quality tradeoff usually ex-
perienced in all planning and scheduling systems and espe-
cially important in dynamic systems. Dynamic scheduling
algorithms compete with the application tasks for shared
resources, like, e.g. the processing unit(s). Therefore,
it is essential to limit the overhead caused by the sched-
uler itself (McElhone & Burns 2000). A major advance in
adaptive scheduling can be seen in Feedback Control Real-
Time Scheduling (Lu 2001), which allows for explicit rea-
soning about the influence of scheduling on the system to
schedule, in contrary to traditional open loop scheduling
paradigms.

Unification of Deadline and Anytime
Scheduling

The question is whether it is possible to unify the two kinds
of time-value functions described in the previous section.
The problem arises from the usage of global time on the
one hand and local time on the other hand.

This problem can be overcome by binding the local time
view of the tasks to the global time domain whenever nec-
essary. Tasks are first bound to the global time domain
when they are released and again when they are selected
for execution on a processor, so that the internal time ad-
vances. In other words, it is necessary to introduce time-
value functions which are not functions of only one, but
of two time variables. Fortunately, it will not normally be
necessary to calculate these functions entirely, so that lazy
evaluation mechanisms can be exploited.

The new kind of time-value functions will arise by com-
bining traditional time-value functions for local and global
time domains. Note that the following figures are mere pro-
jections onto the global time domain. We will show differ-
ent phases during the ”life-time” of a task instance, start-

ing from its release time, ρ, and ending at its deadline, δ.
Figure 3a) shows the combination of the time-value func-
tion of figure 2d) for an anytime task with the time-value
function of figure 1b) representing a firm deadline at the
instantiation time of the task, assuming exclusive availabil-
ity of the processor. The aggregate function used in this
case is a simple unweighted pointwise product of the un-
derlying functions. Figure 3b) depicts the situation when
∆t (global) time has passed, but no cpu time at all has been
allocated to the task. On the contrary, in figure 3c) the task
was able to execute during the whole interval [ρ; ρ + ∆t[.
Finally, in figure 3d) 2 · ∆t time has passed, and ∆t units
of cpu time have been allocated to the task. In figures 3c)
and 3d) the fact that the overall allocation of cpu time to a
task can be no smaller than the allocation already occured
in the past is expressed by raising the function’s values be-
yond the deadline to the level perceived at the current time.

∆ tt∆

∆ t

time
current current

time

time
currentcurrent

time

time

value

value

time

value

time
δρδρ

δρδρ

2*

d)c)

b)a)value

time

Figure 3: Aggregate function derived from a step anytime
quality function and a firm-deadline utility function

Unlike quality functions and utility functions defined by
the application developer, aggregate functions are derived
from other time-value functions. We will call these aggre-
gate time-value functions value functions throughout the
rest of this article.

Definitions

Our application model consists of a set of interruptible
tasks T = {T1, . . . , T|T |} arranged in a tree structure and a
homogeneous set of processors P = {P1 . . . , P|P|}, where
|S| = card(S) denotes the cardinality of a set. In order
not to further add to the complexity of the model and the
scheduling algorithm described later in this work, commu-
nication and context switch costs are neglected.

ICAPS 2003 279

A global allocation of tasks to processors is a function

α : T × P × N0 → B,

where B = {true, false} is the set of boolean values.
We derive allocation functions for the individual tasks

T ∈ T as follows:

αT : N0 → N0

αT (t) := |{P ∈ P : α(T, P, t) = true}|
As we constrict ourselves to homogeneous architectures,
the individual processors need not be distinguished here.

We extend the allocation functions αT to intervals of
time as follows:

αT : N0 × N0 → N0

αT [t1; t2[:=
{ ∑t2−1

t=t1
αT (t) if t2 > t1

0 otherwise

αT [t1; t2[denotes the number of time units task T is as-
signed in the interval [t1; t2[.

Note that due to the tree structure of the application,
in general more than one processor can be allocated to a
task at a certain point in time, depending on its position
in the hierarchy. Consequently, for the allocation during
an interval, [t1; t2[, one can state that 0 ≤ αT [t1; t2[≤
max(0, t2 − t1) · |P|.

We identify a set of allocations with the corresponding
global allocation and write α = {αT1 , . . . , αTk

}.
Based on a specific allocation, α, one can define the local

time function of a task T as follows:

τT : N0 × (N0 × N0 → N0) → N0

τT (t, αT) := αT [0; t[(1)

We will now introduce an application model suitable for
combination of anytime behaviour and deadline specifica-
tions. We realized that there exist (amongst possibly others)
two basic relationships between tasks, which we wanted to
provide for. One of them is the situation where the ex-
ecution of all the elements of a set of tasks is desireable
and these tasks compete for shared resources (in our case
the processors only). The other situation is a choice be-
tween alternatives, so that the execution of more than one
of the tasks does not yield any advantage compared to ex-
ecuting only one. We therefore considered a hierarchical
task model to be most suitable for our needs. An appli-
cation in this model can be represented as a tree structure
with three different kinds of nodes: and, or, and atomic.
Leaves of the tree have to be so-called atomic tasks, which
can be thought of as instances of basic algorithms taken
from a predefined algorithm library. Each atomic task Tat

is associated a monotonic increasing time discrete quality
function

qTat : N0 → R+
0 .

And and or type nodes reflect the notion of competing tasks
or alternative tasks, respectively. All task nodes T have
time discrete utility functions

uT : N0 → R+
0 ∪ {−∞}

and a release time, ρT ∈ N0.
Figure 4 shows an example graph with and type (symbol:

∧), or type (symbol: ∨), and atomic type (symbol: ◦) tasks.
Tasks in this example are annotated with release times, ρ,
and (firm) deadlines, δ.

Figure 4: Example application graph

Certain restrictions have to be applied to allocations of
processors to tasks according to their logical type and their
position within the application tree. An allocation α and its
derived allocations αT are called conflict-free, if

• for every atomic task Tat, no more than one processor
can be allocated at a time:

∀t ∈ N0 : αTat(t) ≤ 1 (2)

• the allocation of resources to the atomic tasks does not
exceed the maximum number of resources available:

∀t ∈ N0 :
∑

T∈{T ′∈T :T ′ atomic}

αT (t) ≤ |P| (3)

• for all child nodes T1, . . . , Tk of an or type task Tor, their
allocations are no greater than the parent node’s alloca-
tion:

∀t ∈ N0 : ∀k
i=1 : αTi(t) ≤ αTor (t) (4)

• for all child nodes T1, . . . , Tk of an and type task Tand,
the sum of their allocations is no greater than the parent
node’s allocation:

∀n ∈ N0 :
k∑

i=1

αTi(n) ≤ αTand
(n) (5)

For every allocation αT to task T with child nodes
T1, . . . , Tk, we denote the subset of (N0 → N0)k of
conflict-free allocations for subnodes of T with A(αT).

Value functions for the inner nodes are calculated as ag-
gregate functions of the value functions of the child nodes,
where the method of aggregation depends on the logical
type of the node. Value functions for atomic tasks are cal-
culated, as described above, as pointwise product of qual-
ity and utility function. The value function for or type
nodes is a simple pointwise maximum function of the child
nodes’ value functions, whereas the calculation of value
functions for and type nodes constitutes a complex opti-
mization problem. It is therefore essential for efficiency

280 ICAPS 2003

reasons to apply lazy evaluation in the calculation of value
functions.

Instead of defining value functions of two time variables,
as outlined above, we chose a notation which includes the
global time and the allocation of cpu time to a task. Re-
member the task-local time can be derived from the task’s
allocation. Hence, the value function of a task T is a func-
tion vT : N0 × (N0 × N0 → N0) → R0 ∪ {−∞}.

First, let T be an atomic type task node with quality func-
tion qT and utility function uT . Given an allocation αT for
the atomic task, its value function is defined as:

vT (t, αT) :=

{
uT (t − ρT) · qT (t − ρT + τT (t, αT))

if t ≥ ρT

0 otherwise

(6)

Now, let T be an or type task node with child task nodes
T1, . . . , Tk and utility function uT . Given an allocation αT

for the or type task, its value function is defined as:

vT (t, αT) :=




uT (t − ρT) · kmax
i=1

vTi(t, αT)
if t ≥ ρT

0 otherwise
(7)

Finally, let T be an and type task node with child task
nodes T1, . . . , Tk and utility function uT . With �α =
(α1, . . . , αk) being a vector of child node allocations and
given an allocation αT for the and type task, its value func-
tion is defined as:

vT (t, αT) :=




uT (t − ρT) · max
�α∈A(αT)

k∑
i=1

vTi(t, αi)

if t ≥ ρT

0 otherwise

(8)

Note that vector �α is taken from the set of conflict-free
allocations to subnodes of T and hence is restricted accord-
ing to equation 5. For example, to calculate the aggregate
function vT for and task T with subnodes T1 and T2, we
impose a constraint αT1(t) + αT2(t) ≤ αT (t) at all times
t and calculate the sum vT1(t, αT1) + vT2(t, αT2). We can
then receive the new value function by finding maxima in
the resulting profiles. Figures 5 and 6 show profiles for the
cases t = 100, αT [0; t[= t and t = 50, αT [0; t[= t. It is
easy to see from this description that calculating aggregate
functions basically means solving the knapsack problem.

Optimizing resource (i.e., processor) allocation to the in-
dividual nodes thus means applying the appropriate defini-
tion for value functions at all nodes and trying to maximize
the value obtained at the root node. To start the calcula-
tion of value functions, one has to set an allocation for the
root node. We assume the application defined by an appli-
cation graph has exclusive access to the resources. Hence,
the allocation used for the root node, T0, is

∀P ∈ P : ∀t ∈ N0 : α(T0, P, t) = true

Figure 5: Profile for t = 100, αT [0; t[= t

Figure 6: Profile for t = 50, αT [0; t[= t

or
∀t ∈ N0 : αT0(t) = |P|

Note that the simplified description in this section is
valid only for the situation that none of the tasks affected
have been allocated any units of cpu time prior to the time
of running the scheduling algorithm. A dynamic scheduler,
however, is called multiple times during the run-time of the
application and cannot generally rely on this assumption.
Furthermore, the model does so far not take into account
precedence relations; we will outline the idea of how to in-
tegrate this notion of dependencies between tasks into our
model briefly in the following section.

Scheduling Algorithm
We now present a feasible scheduling algorithm for a sim-
plified version of the general problem described in the pre-
vious sections. Here, we choose utility functions represent-
ing firm relative deadlines only, i.e., for every task T , its
utility function uT is defined as follows:

uT (t) =
{

1 if t < δT

0 if t ≥ δT

δT is called the deadline of T .
We propose a dynamic scheduling scheme which allows

for partial calculation of schedules. Given a lookahead pa-
rameter, the algorithm aims at optimizing the resource al-
location for the interval defined by the current time and the
lookahead. Obviously the quality of the optimization de-
pends largely on the setting of this parameter.

Calculation of Active Intervals
In a preparatory step the scheduling algorithm represents
the problem in a way suitable for an optimization algo-
rithm. We note that we need not generally take into account
every single point of time within the scheduling interval, as
the tasks are by definition interruptible at any time without

ICAPS 2003 281

cost. It is easy to understand that the allocation of proces-
sors to tasks depends only on the allocation within certain
intervals, whereas the allocation at exact points of time is
irrelevant. Hence, we define the set of active intervals IT

for all tasks T ∈ T as follows:

• For an atomic type task Tatomic, the only active inter-
val starts at the release time of the task and ends at its
deadline:

ITatomic := {[ρT ; δT [}
• For an or or and type task Tand/or with child tasks

T1, . . . , Tk, the set of active intervals is derived from the
child tasks:

ITand/or
:= { [ts; te[: ts < te

∧ (∃i, j ∈ {1, . . . , k} :
(ρTi = ts ∨ δTi = ts)
∧(ρTj = te ∨ δTj = te))

∧ (�l ∈ {1, . . . , k} :
ts < ρTl

< te
∨ts < δTl

< te)
∧ (∃m ∈ {1, . . . , k} :

ρTm ≤ ts
∧δTm ≥ te)}

Figure 7 explains the calculation of active intervals for the
application of figure 4 in bottom-up manner.

Figure 7: Calculation of active intervals for example graph

Table 1 gives the set of active intervals for all nodes in
the graph.

node active intervals
T0 [0; 2[, [2; 8[, [8; 10[, [10; 13[, [13; 22[
T1 [0; 10[
T2 [2; 13[
T3 [8; 22[
T1.1 [0; 10[
T1.2 [0; 10[

Table 1: Active intervals for nodes of example graph

Table 2 shows the tasks active in a specific interval.
Atomic tasks are written bold.

We can then use allocations on active intervals I =
[ts; te[instead of individual points of time.

Primary Allocation
Having established the set of active intervals for all tasks
in bottom-up manner, the optimization algorithm starts off

interval active tasks
[0; 2[T0, T1, T1.1, T1.2

[2; 8[T0, T1, T1.1, T1.2, T2

[8; 10[T0, T1, T1.1, T1.2, T2, T3

[10; 13[T0, T2, T3

[13; 22[T0, T3

Table 2: Active nodes for all intervals

with an allocation for the root node. The basic scheme for
the distribution of cpu time is derived from the intervals
previously calculated, as can be seen in figure 8. Once
again, we make the assumption of full allocation of re-
sources to the root node. Figure 9 shows a distribution of
cpu time as it might be used at the beginning of the op-
timization process. To root node T0, the allocation of cpu
cycles in an interval [ts; te[is te−ts units. Allocations at or
nodes are passed on to the children to full extent, whereas
allocations at and nodes are distributed approximately uni-
formly amongst the child nodes.

Figure 8: Basic scheme for distribution of cpu time

Figure 9: Primary distribution of cpu time

Optimization

According to the logical type of the task nodes, allocations
for the child nodes are calculated as follows: The optimiza-
tion code for every type of node consists basically of two
functions, optimize() and evaluate(). Figures 10 and 11
show the pseudocode for the functions used for and nodes,
figures 12 and 13 the pseudocode for the functions used for
or nodes.

Assume the step quality functions for the atomic nodes
as given in table 3, so that q(t) = max0≤t′≤t q(t′).

The allocation of figure 9 would then yield an overall
value of 1.3, the optimized allocation of figure 14 an overall
value of 1.9. The Gantt chart for the resulting schedule is
shown in figure 15.

282 ICAPS 2003

optimizeand(αand)
forall intervals i do

c := #active children in interval i
a := αand(i)
for n = 1 to c do

αchild(n) :=

�a
c
 + 1 − min(1,

⌊
n−1

max(1,a mod c)

⌋
)

od
od
Temp := Tempstart

V := evaluate(αchild(1), . . . , αchild(k))
while(Temp > Tempmin) do

for n = 1 to #repetitions do
(α′

child(1), . . . , α
′
child(k)) :=

searchStep(αchild(1), . . . , αchild(k))
optimize and evaluate children
V ′ := evaluate(αchild(1), . . . , αchild(k))
if(V ′ > V) then

(αchild(1), . . . , αchild(k)) :=
(α′

child(1), . . . , α
′
child(k))

V := V ′

else

with probability min(1, e
V −V ′
Temp) do

(αchild(1), . . . , αchild(k)) :=
(α′

child(1), . . . , α
′
child(k))

V := V ′

od
fi
Temp := cooldownFactor · Temp

od
od

end

Figure 10: optimize() function for and node

evaluateand()
return

∑
children c value(c)

end

Figure 11: evaluate() function for and node

optimizeor(αor)
forall children c do

αc := αor

od
optimize and evaluate children

end

Figure 12: optimize() function for or node

evaluateor

return maxchildren c value(c)
end

Figure 13: evaluate() function for or node

Node Step 1 Step 2 Step 3 Step 4
t q t q t q t q

T1.1 0 0.0 4 0.2 6 0.6
T1.2 0 0.0 2 0.4 8 1.0
T2 0 0.0 2 0.1 4 0.2 6 0.3
T3 0 0.0 4 0.3 8 0.4 12 0.8

Table 3: Assumed quality functions of atomic tasks

Figure 14: Final distribution of cpu time

Figure 15: Gantt chart of result schedule

Value dependencies

Precedence relations between tasks describe which task has
to be executed prior to another one due to application-
specific constraints like, e.g., dataflow conditions.

In the context of value-based scheduling, there is no in-
trinsic equivalent to the completion of execution in tradi-
tional task models. One can, however, emulate this prop-
erty in our model by using quality functions with two val-

ues only, e.g., q(t) =
{

0 if t < t0
1 if t ≥ t0

.

Precedence relations between tasks can be stated as
weighted directed edges, where the interpretation of an
edge is as follows: A weight of 0 indicates that the origin
of the edge is no precondition for the target node at all; the
edge is interpreted as non-existent. A weight of 1 means
that the origin of the edge has full impact on the value of
the target node. We call this kind of relationship value de-
pendency.

Our model assumes that all tasks can be executed inde-
pendently of each other. Value dependencies affect only
the calculation of aggregate value functions and hence the
overall value achieved by the application. However, tra-
ditional precedence relations can be imitated as follows.
Imagine task T1 has to be executed prior to T2 because of
a dataflow dependency. Our scheduler would then assign
a lower value to the pair of tasks when executed the other

ICAPS 2003 283

way around; hence, the optimization algorithm would ef-
fectively avoid this situation.

Value dependencies form a graph structure in addition
to the hierarchy graph. The algorithm fragments shown
above can be used basically unchanged if the dependency
graph is acyclic; a modification allowing graphs to be cyclic
would require a more sophisticated concept of task in-
stances, which has not yet been integrated into this model.
The tasks T together with the (value) dependency edges,
DE, of an application form the (value) dependency graph,
DG = (T , DE).

Of the many possible interpretations of value dependen-
cies, we chose the following, for which we extend the def-
inition of the value function for node T in the interval
Ii ∈ I = {I1, . . . , I|I|}:

v′T (Ii, αT) =
{

0 if ∀i
j=1αT (Ij) = 0

ξ · vT (Ii, αT) otherwise

(9)

where the impact factor ξ is

ξ =
∏

T ′∈pred(T)

(v′T ′(Iσ))weight(T ′ ,T), (10)

the start interval index σ is

σ =
l

min
j=1

{j : αT (Ij) > 0}, (11)

and the set of predecessor nodes pred(T) of T is

pred(T) = {T ′ ∈T : ∃(T, T ′) ∈ DE : weight(T, T ′) > 0}.
(12)

This interpretation assumes a value flow to happen via
the edges of the value dependency graph when a task starts
executing on a processor for the first time (in the interval
Iσ). Later rise in value at the predecessor nodes does not
affect the successor’s value any more. Under this assump-
tion, a scalar, ξ (the impact factor), is sufficient to fully de-
scribe the predecessors’ influence on a task. Note that this
way it is possible that a node passes on different values to
its successor nodes, which may very well make sense due
to different timing constraints and edge weights.

Implementation issues
This section presents some important notes connected to
the implementation of the scheduling algorithm.

Caching
To avoid multiple optimizations for the same allocations at
a node, it is essential to maintain a cache of previously cal-
culated solutions for each node. The cache can be used to
find an exact match (in which case no new optimization has
to be performed) or to find a solution for a similar alloca-
tion to be used as a hopefully good starting point for the
search.

Deterministic clusters
As stated before, our model comprises both predictable and
unpredictable specifications of arrival times for tasks. It is
typically possible to extract determinstic clusters (i.e., sub-
trees) within the application graph. For these clusters, it
is possible to maintain separate caches, which can be con-
sulted whenever the root node of these clusters is instanti-
ated.

Parameters of Simulated Annealing Algorithm
The optimization for and nodes is being done by simulated
annealing, and the structure of the application graph helps
direct the search. To keep the optimization algorithm scal-
able and useful for dynamic scheduling, it is important to
distribute the limited time allowed for running the schedul-
ing algorithm among the individual task nodes. A helpful
parameter can be the size of the (local) search space. Con-
sider a node with active intervals I = {i1, . . . , i|I|}, an
allocation of α(i) for every interval Ii and ci children of
the node sharing with the parent node interval Ii as active
interval. For example, in figure 8 node T0 has an active in-
terval [10; 13[, which it shares with two of its child nodes,
T2 and T3. It is easy to see that the search space of the
node, given allocation α, has size:

searchSpaceSize =
∏
i∈I

(α(i) + ci − 1)!
(α(i))! · (ci − 1)!

Assume we want to scale the scheduling effort at each node
according to the size of the local search space and a param-
eter pc (percentage of the search space size). Supposing
further the number of temperature levels should be the same
as the number of repetitions within a temperature level, we
can calculate some of the parameters of the simulated an-
nealing algorithm as follows:

• number of repetitions within temperature level:

#repetitions :=
⌈√

searchSpaceSize · pc
⌉

• cooldown factor

cooldownFactor =
(

Tempmin

Tempstart

)#repetitions−1

Partial Calculation of Value Functions
In the previous definitions allocation functions are defined
over discrete points of time taken from N0. Calculating
value functions for an infinite number of times is obviously
intractable. We calculate value functions and allocations it-
eratively for a limited interval of time (lookahead) and thus
receive increasing prefixes of the schedule. On the other
hand, it appears obvious that scheduling for too small a pe-
riod of time degrades the performance of a scheduling al-
gorithm. For periodic task sets, it is known that scheduling
has to be done in the interval between 0 and the least com-
mon multiple (lcm) of the task periods. For sporadic task
sets, the entire scheduling time domain is finite. However,

284 ICAPS 2003

in the presence of nondeterminism, arising from aperiodic
tasks or release time jitter, recalculation of schedules will
frequently be necessary. The proper choice of the schedul-
ing lookahead is one of the main parameters to adapt the
algorithm to a specific application.

Simulation
The algorithm described has been implemented in Pascha,
an integrated specification and simulation environment for
scheduling problems. Figure 16 shows an application graph
specified using the enviroment’s editor, figure 17 the result
of a simulation run.

Figure 16: Application graph in the Pascha editor

Figure 17: Pascha simulation run

Results
Simulation runs have been performed for generic loads
composed of typical mixed sets of periodic and sporadic
tasks (in the range of 100 task instances), for a simulation
space of 500 units of time, and various task sizes from 5 to
150 time units. Apart from running the example application
graphs with the simulated annealing algorithm described
above, the optimal distribution of cpu time was calculated,
and for further comparison a value-based version of EDF
(using the maximum level of value functions to determine
the worst-case execution times of the corresponding tasks)

Figure 18: Performance profiles of simulated annealing and
EDF scheduling algorithms

was applied. The results derived from these simulations
can be seen in figure 18.

As expected, EDF (which is known to be optimal if the
system is not in overload) outperforms our algorithm dis-
regarding any parameter settings up to a utilization of 1.0
and degrades rapidily beyond this value. Furthermore, a
higher lookahead for our algorithm is obviously rewarded
with better overall results, but has, of course to be paid for
by higher costs of scheduling.

Figure 19 shows that the performance profiles of the al-
gorithm for different loads can themselves be interpreted
as monotonic increasing time-value functions; compared to
the rather complex optimization algorithm, the scheduling
overhead for EDF is negligible and not shown in the dia-
gram.

Figure 19: Time-value functions for simulated annealing
algorithm

Due to this fact, the scheduler can be integrated into the
application model by introducing a new task node, TS, rep-
resenting the scheduling algorithm, a new common parent
node, T ′

0, for scheduler and application root node, and a
dependency edge between them, as outlined in figure 20.

Apart from the utilization and the lookahead, further im-
portant parameters influencing the performance of the al-
gorithm are the diversity of the task set and the degree of
unpredictability. The optimization problem is much eas-
ier if the task periods are harmonic (i.e., they are multiples

ICAPS 2003 285

0T

0T

ST
1

’

Figure 20: Extended application graph

of each other) or in the same order of magnitude. Obvi-
ously, nondeterminism arising from release time jitter or
aperiodic task arrival times makes a proper estimation of
the near future behaviour of the system more difficult and
may necessitate recalculations or adaptions to the precalcu-
lated partial schedule.

Conclusion
In this work we presented a paradigm for the common spec-
ification of local properties (quality) and context properties
(deadlines, utility) of tasks in a real-time application along-
side with a suggestion for the implementation of an algo-
rithm based on this paradigm. We also showed the qual-
ity of the resulting schedules and the applicability to dy-
namic schedulers. Our future work will include evaluation
of other optimization methods for the formulated problem,
extension of the task model to explicitly handle instances
and to make cyclic dependency graphs possible, and in-
vestigating into the effects of different sources of nonde-
terminism on the performance of the algorithm. Another
interesting topic will be the relaxation of the assumption of
very simple utility functions representing deadlines only. It
appears to be reasonable to assume that more general util-
ity functions do not have much effect on the performance of
global, but most likely on the performance of local search
algorithms, as the topology of the search space may tend
to make the search much more difficult. For the profiles in
figures 5 and 6, e.g., it would no longer suffice to look for
maxima at the edges (αT1(t) + αT2(t) = αT (t)), as is the
case for the simplified problem. Furthermore, the comfort-
able concept of active intervals is not applicable in the case
of generalized utility functions.

References
Brandt, S., and Nutt, G. 2002. Flexible soft real-time
processing in middleware. Real-Time Systems 22:77–118.
Burns, A.; Prasad, D.; Bondavalli, A.; Giandomenico,
F. D.; Ramamritham, K.; Stankovic, J.; and Strigni, L.
2000. The meaning and role of value in scheduling flex-
ible real-time systems. Journal of Systems Architecture
46:305–325.
Castorino, A., and Ciccarella, G. 2000. Algorithms for
real-time scheduling of error-cumulative tasks based on
the imprecise computation approach. Journal of Systems
Architecture 46:587–600.
Chen, K., and Muhlethaler, P. 1996. A scheduling algo-
rithm for tasks described by time value function. Real-
Time Systems 10:293–312.

Cheng, A. M. 2002. Real-Time Systems. John Wiley &
Sons.
Decker, K. 1996. TAEMS: A Framework for Environ-
ment Centered Analysis & Design of Coordination Mech-
anisms. In Foundations of Distributed Artificial Intelli-
gence, Chapter 16, 429–448. G. O’Hare and N. Jennings
(eds.), Wiley Inter-Science.
Duda, K., and Cheriton, D. 1999. Borrowed-virtual-time
(bvt) scheduling: supporting latency-sensitive threads in
a general-purpose scheduler. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles.
Hamidzadeh, B.; Atif, Y.; and Ramamritham, K. 1999. To
schedule or to execute: Decision support and performance
implications. The International Journal of Time-Critical
Computing Systems 16:281–313.
Horvitz, and Rutledge. 1991. Time-dependent utility and
action under uncertainty. In Proceedings of Seventh Con-
ference on Uncertainty in Artificial Intelligence, 151–158.
Liu, C., and Layland, J. 1973. Scheduling algorithms for
multiprogramming in a hard-real-time environment. Jour-
nal of the ACM 30:46–61.
Liu, J.; Lin, K.; Shih, W.; Yu, A.; Chung, J. Y.; and Zhao,
W. 1991. Algorithms for imprecise computations. IEEE
Computer 24:58–68.
Liu, J. 2000. Real-Time Systems. Prentice-Hall.
Lu, C. 2001. Feedback Control Real-Time Scheduling.
Ph.D. Dissertation, University of Virginia.
McElhone, C., and Burns, A. 2000. Scheduling optional
computations for adaptive real-time systems. Journal of
Systems Architecture 46:49–77.
Mittal, A.; Manimaram, G.; and Murthy, C. S. R. 2000.
Integrated dynamic scheduling of hard and QoS degrad-
able real-time tasks in multiprocessor systems. Journal of
Systems Architecture 46:793–807.
Regehr, J. 2001. Using Hierarchical Scheduling to Sup-
port Soft Real-Time Applications in General-Purpose Op-
erating Systems. Ph.D. Dissertation, University of Vir-
ginia.
Shih, W.-K.; Liu, W.; and Chung, J. 1989. Fast algorithms
for scheduling imprecise computations. In Proceedings of
the Real-Time Systems Symposium, 12–19.
Streich, H. 1994. Task Pair-Scheduling: An approach
for dynamic real-time systems. In Proceedings of the 2nd
Workshop on Parallel and Distributed Real-Time Systems.
West, R. 2000. Adaptive Real-Time Management of Com-
munication and Computation Resources. Ph.D. Disserta-
tion, Georgia Institute of Technology.
Zhang, L. 1991. Virtual clock: A new traffic control algo-
rithm for packet-switched networks. ACM Transactions
on Computer Systems 9(2):p101–124.
Zilberstein, S. 1993. Operational Rationality through
Compilation of Anytime Algorithms. Ph.D. Dissertation,
University of California at Berkeley.

286 ICAPS 2003

