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Abstract

We present an algorithm that quickly finds optimal plans for
unforeseen agent preferences within graph-based planning
domains where actions have deterministic outcomes and ac-
tion costs are linearly parameterized by preference parame-
ters. We focus on vehicle route planning for drivers with per-
sonal trade-offs for different types of roads, and specifically
on settings where these preferences are not known until plan-
ning time. We employ novel bounds (based on the triangle
inequality and on the the concavity of the optimal plan cost
in the space of preferences) to enable the reuse of previously
computed optimal plans that are similar to the new plan pref-
erences. The resulting lower bounds are employed to guide
the search for the optimal plan up to 60 times more efficiently
than previous methods.

Introduction

Planners must provide optimal plans quickly to meet the
real-time demands of many planning applications. One ef-
fective approach for expeditiousness is the reuse of compu-
tations obtained from previous plans. For example, the D*
algorithm (Stentz 1995) initially plans and then efficiently
re-plans in dynamic environments by only recomputing por-
tions of the search space where optimal plans are affected
by action cost changes. When these cost changes are sparse,
large efficiency benefits are obtained through this approach.
However, if there are abundant cost changes, this approach
is no better than replanning from scratch.

We focus on planning problems where the action costs
are controlled by a parametric space of preference weights
that trade-off between different cost factors. These prefer-
ence weights will often differ from agent to agent, and may
even change during plan execution as additional experience
with the environment is obtained (Sofman et al. 2006), in-
troducing potentially ubiquitous changes in action cost be-
tween queries (i.e., planning problems). Intuitively, if the
preference weights change only slightly, then the previously
optimal plan will still at least be close to optimal, but we
desire plans with optimality guarantees.

The key insight of this paper is that previously computed
optimal plans can be used to efficiently guide new optimal
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plan searches – even though their preference weights dif-
fer. We present an efficient algorithm based on A* search
(Hart, Nilsson, & Raphael 1968). It employs previously
computed optimal plans for differing preference weights to
provide good lower bounds on plan costs for new prefer-
ence weights. The bounds are based on the concavity of
optimal plan cost in the space of preference weights. These
concavity-based lower bounds guide the plan search towards
the most promising plans. This guidance greatly reduces the
search space and time required to obtain the optimal plan.

Our work is motivated by three applications. The primary
motivation is personalized vehicle route planning, where
each driver has unique preference weights (trading off travel
time, distance, city street versus highway, etc.) and desires
the driving route to a specified destination that is personally
optimal. The second is in robotics domains where the ter-
rain of the navigation environment is known, but the robot
is unaware of its own abilities for navigating different ter-
rains (e.g., mud, grass, hills, bushes). As the robot exe-
cutes a preliminary plan, it learns its abilities in the dif-
ferent terrains (Sofman et al. 2006) and a better path can
be planned with this knowledge. The last is the problems
of imitation and inverse reinforcement learning (Ng & Rus-
sell 2000), where the agent’s preference weights are recov-
ered from demonstrated behavior of the agent. A num-
ber of approaches to this problem (Abbeel & Ng 2004;
Ratliff, Bagnell, & Zinkevich 2006; Neu & Szepesvri 2007;
Ramachandran & Amir 2007) repeatedly find optimal plans
for differing preference weights. All three of these appli-
cations could benefit greatly by the improvements in speed
that our approach provides.

We apply our algorithm to quickly plan personalized ve-
hicle route recommendations across the road network of a
large metropolitan city. We first consider the setting where
only the preference weights and origin differ between plans,
while the destination remains fixed. In this setting we find
over an order of magnitude improvement compared to the
previous state of the art approach. As a secondary contri-
bution, we present a novel spatial optimal plan cost bound
using the triangle inequality that expands upon an earlier ap-
proach (Goldberg & Harrelson 2005). Combining this spa-
tial bound and our preference-based bound provides mem-
ory efficiency. We apply the resulting algorithm to the
problem setting where origin, destination, and preference
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Figure 1: A parametric planning space with six states (cir-
cles) and 14 actions (directed lines). Each action has a fea-
ture vector with two features.

weights vary with each plan, and find large performance im-
provements.

In the remainder of the paper, we first provide some pre-
liminary concepts and review existing work in fast graph-
based planning and related problems from the computer sci-
ence and operations research literature. We then present our
bounds on plan cost for dynamic preference weights and
describe an algorithm for efficiently computing them. For
improved memory efficiency, we provide a novel spatially-
based bound on optimal plan costs. Next, we illustrate the
empirical benefits of our algorithm on the problem of per-
sonalized route planning. Finally, we discuss possible ex-
tensions to our work.

Preliminaries and Related Work
Many planning problems can be represented as weighted
graphs, G = (V,E), with each vertex (v ∈ V ) represent-
ing a state (of an agent) and each edge (e ∈ E) representing
an action that deterministically leads from one state to an-
other. Edge weights, w(e), are the cost of taking an action
or, equivalently, the negative action utility or negative ac-
tion reward. In this work, we focus on parameterized action
costs (Equation 1), where actions are characterized by action
features, fe ∈ ℜ

k, and the cost of actions are linearly param-
eterized by a preference weight1, θ ∈ ℜk, that trades off the
utilities of different features. An example of this setting with
two action features is shown in Figure 1.

wθ(e) = θ⊤fe (1)

Plans to reach a goal state (vertex vg) from an initial
state (vertex vi) correspond to paths, ζvi→vg

, through the
graph. Plan costs are equivalent to path costs, wθ(ζ) =
∑

e∈ζ wθ(e), which are the sum of the costs of actions in

the path.
Research on efficiently finding the lowest cost path be-

tween two vertices in the graph for fixed θ has a long history.
We denote this optimal path as ζ∗a→b,θ and its cost as w∗

a→b,θ

with upper and lower bounds w+

a→b,θ and w−

a→b,θ.

ζ∗a→b,θ = argmin
ζa→b

wθ(ζa→b)

1These weights may also be dynamic contextual variables of the
domain (e.g., cost of gasoline) that are independent of the agent.

w∗
a→b,θ = min

ζa→b

wθ(ζa→b) = wθ(ζ
∗
a→b,θ)

w+

a→b,θ ≥ w∗
a→b,θ ≥ w−

a→b,θ

Dijkstra’s algorithm (Dijkstra 1959) searches a tree of par-
tial plans from the origin in the order of increasing partial
plan weight until a path to the goal state is obtained, which
is guaranteed to be optimal. The A* search algorithm (Hart,
Nilsson, & Raphael 1968) is a best-first search that incorpo-
rates an underestimate of the remaining cost to the goal state.
This underestimate is called an admissible heuristic func-
tion, w−

vx→vg
. A* expands the search tree of optimal paths

in the order of most promising partial plan first, which it es-
timates using the lower bound on that partial plan’s cost to
reach the goal, w∗

vi→vx
+ w−

vx→vg
. For spatially-embedded

planning spaces, one such admissible heuristic function is
obtained by multiplying the Euclidean distance between two
points in the space by the smallest cost to travel a unit dis-
tance in the space. When the admissible heuristic function is
monotonic (i.e., satisfies the triangle inequality), each node
need be explored at most once and can be tracked using a
closed set (Algorithm 1). The algorithm for non-monotonic
admissible heuristic functions is similar, but can re-explore
a vertex when a lower cost path to the vertex is found.

Algorithm 1 A* search algorithm

A* search(graph G, initial state vi, goal state vg)

Add partial path ζ = (vi) to priority queue Q

Initialize closed set C ← {}

While Q not empty

Pop ζx (to vx) with lowest w∗
vi→vx

+ w−
vx→vg

If (vx ∈ C) continue

If (vx = vg) return ζx

C ← C ∪ vx

For each successor vy of vx

Add ζy = (ζx, vy) to Q

One approach for improving planning speeds is to obtain
better bounds to guide A* searches. Goldberg & Harrelson
(2005) employ the triangle inequality using precomputed
optimal path costs to obtain tighter lower bounds for guid-
ing vehicle route planning. One advantage of this approach
is that if road costs only increase (e.g., accidents, construc-
tion, road closures), optimality is still guaranteed (Delling &
Wagner 2007).

A second approach is specific to applications where the
goal state is the same between queries, but some action costs
change. For example, as a robot executes a plan it may sense
its surroundings and refine the terrain map it uses for path
planning, potentially changing the optimal plan. Intuitively,
if the number of changes is small, only a limited portion of
the space of optimal sub-plans may need to be updated. The
D* algorithm (Stentz 1995) and various extensions (Koenig
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& Likhachev 2002; Ferguson & Stentz 2005; Likhachev et
al. 2005) have been developed to reuse previous planning
results when they are unaffected by changes in cost. These
approaches have realized significant empirical performance
benefits when the amount of change is limited.

A final approach is to restrict the search space during a
pre-processing time, and then search only on the restricted
search space. For example, large portions of the road net-
work can be eliminated from consideration by determin-
ing all the optimal paths that pass through a particular area
(Sanders & Schultes 2007). These approaches have been
quite impressive in practice, reducing path planning times
for continent-wide road networks to a few milliseconds. The
approach has been extended to deal with changes in road
segment cost (Schultes & Sanders 2007), and performs well
as long as the amount of change is limited.

A similar idea can be employed in the space of prefer-
ences. In the multicriteria shortest path setting studied in
operations research, edges have vectors of costs, but the
preference weight, θ, is unknown. The problem is to find the
pareto-optimal set of paths that contain exactly the paths that
are optimal for any choice of θ. This subset of paths can then
be searched more quickly than the complete class of paths.
While some approaches to the multi-criteria shortest path
problem are based on admissible heuristic functions (Refani-
dis & Vlahavas 2003) and A* search (Stewart & White 1991;
Mandow & de-la Cruz 2005), there are a number of short-
comings to the general approach of precomputing the op-
timal paths for every possible preference weight. First, in
general, finding the pareto-optimal set of paths is NP-hard
(Hansen 1980), making it difficult to scale to large problem
settings, like a large road network. Similarly, it is unclear
how to obtain the subset of optimal paths efficiently for all
origin states in the planning space, which is needed for ve-
hicle route planning. Finally, unlike admissible heuristic-
based search, path optimality is not guaranteed if edge costs
increase.

In our problem setting, the preference weights are known
at query time and the action costs are linearly parameter-
ized by those weights. Most dynamic planning problems
assume and are only effective when the number of action
costs changing between queries is limited. In our setting,
these action costs can all change since they are controlled
by a preference weight, θ, that varies for each query. These
changes in preference weight can make action costs lower,
so approaches that rely on the heuristic function to remain
a valid underestimate are also not applicable. Unlike the
multi-criteria shortest path pre-processing approach, which
finds all potentially optimal paths for any possible prefer-
ence weight, our approach finds the optimal path for a par-
ticular preference weight provided at query-time and doesn’t
suffer from the same tractability issues.

Though the problem setting is significantly different, the
concavity-based bounds we employ are similar to bounds
used in Partially Observable Markov Decision Processes
(POMDPs). In POMDPs, an agent’s actions reveal informa-
tion about hidden variables. The function of interest when
planning actions in the POMDP is the optimal policy value
in the space of beliefs over unobserved variables. This func-

tion is piece-wise linear and convex for finite MDPs (Kael-
bling, Littman, & Cassandra 1998). The optimal policy
values for a set of beliefs are computed (along with the
gradient) and used to bound the optimal policy values of
other portions of the belief space (Pineau, Gordon, & Thrun
2006). This approach yields solutions with bounded policy
value losses and enables applicability to much larger prob-
lems than exact approaches can afford.

Preference Weight Bounds

We now derive bounds on the cost of the optimal path be-
tween two vertices (a and b), w∗

a→b,θ = wθ(ζ
∗
θ,a→b), for

some preference weight, θ ∈ ℜk, based on a set of previous
preference weights φ1, φ2, ..., φn ∈ ℜ

k, and their associated
optimal path costs, w∗

a→b,φ1
, w∗

a→b,φ2
, ..., w∗

a→b,φn
.

a. b.

Figure 2: Six paths with costs evaluted over the preference
simplex and the optimal path cost function (a). The optimal
path cost function evaluated at two points (circles) and the
resulting upper and lower bound functions (dotted lines) (b).

First, consider a single path, ζa→b, from vertex a to vertex
b. Summing the path’s action features yields a path feature
count, f ζa→b

=
∑

e∈ζa→b
fe ∈ ℜ

k. The cost of the path

is obtained by applying a preference weight, θ, to the path
feature count.

wθ(ζa→b) = θ⊤fζa→b
(2)

We restrict our consideration to preference weights and
feature values that are non-negative. This constrains all path
costs to be positive, and avoids the possibility of having neg-
ative cost cycles. Path optimality is invariant to positively
scaling the preference weights, so without loss of generality,
only the simplex of preference weights need to be consid-
ered (i.e., θ :

∑

i θi = 1). The cost of a single path is linear
(Equation 2) over this simplex of preference weights, form-
ing a hyperplane in the space (Figure 2a). The function of
optimal path preference weights is the minimum cost of all
paths from a to b evaluated at each point in the space (Figure
2a)2.

w∗
a→b,θ = min

ζa→b

θ⊤fζa→b
(3)

2Our analysis and method also easily extend to paths that are
not constrainted to terminate at a particular vertex.
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The minimum of this set of linear functions is piecewise lin-
ear and also concave (Boyd & Vandenberghe 2004)3. The
defining property of concave functions is that any linear
interpolation between two points on the function creates a
lower bound for the function. So if the optimal path costs
have been obtained for two preference weights, a lower
bound on any interpolation of those preference weights can
be easily obtained. More generally, for αi ≥ 0 and points φi

on the (k − 1)-simplex of preferences:

∑

i

αiw
∗
a→b,φi

≤ w∗

a→b,
P

i
αiφi

(4)

This provides a useful lower bound on w∗
a→b,θ for some

new preference weight θ using previously evaluted optimal
path costs for basis preference weights φi and αi ≥ 0 :
∑

i αiφi = θ. In Figure 2b, the lower bound is shown using
two basis preference weights.

Upper bounds are simpler to obtain. Evaluating any path
at θ provides an upper bound. The tightest upper bound can
be obtained by taking the minimum over all those evalua-
tions: minφi

θ⊤fζ∗

a→b,φi
. Figure 2b shows the upper bound

obtained by “extending” the planes evaluated at each basis
preference weight. If the same path is optimal in other por-
tions of the preference weight space, the upper bound and
optimal path cost functions will match in those places.

Fast Dynamic Preference Algorithms

In practice, optimizing to minimize the average query time
is a trade-off between obtaining tighter bounds that guide
the search (Algorithm 1) with better focus, minimizing the
time to compute those bounds at query time so the overall
search will be fast, and restricting the memory and time re-
quirements for generating and storing information to com-
pute those bounds during pre-processing.

We focus on optimizing for the problem of finding opti-
mal routes for vehicles in the road network of a major city.
At query time, we bound plan (i.e., path) costs using the
costs of precomputed optimal plans for similar preference
weights.

Precomputation

During precomputation, our objective is to obtain optimal
path costs from each state to the goal state for varying pref-
erence values so that the bound at query time will be reason-
ably tight. The basic algorithm is shown below.

The first step is choosing a set of basis preference weights.
For reasons we detail in the following subsection, including
the principle preference vectors (e.g., [0 1]⊤ and [1 0]⊤ for
2 dimensional preferences) is useful. The remaining basis
preference weights can be selected in a number of different
ways. Two simple approaches are to select them randomly
or systematically to evenly cover the preference space.

The second step of the algorithm is accomplished using
Dijkstra’s algorithm to find the shortest paths from each
edge in the network to the goal state. This is repeated for

3The minimum of a set of concave functions is concave, so our
method is more generally applicable to concave cost functions.

Algorithm 2 Fixed goal pre-processing algorithm

Pre-process(parametric graph G, goal state vg)

1. Choose basis preference weight set Φ = {φ1, φ2, ...}

2. ∀edge x,φi
compute and store w∗

x→vg,φi

3. Construct searchable data structure of Φ

each basis preference weight, φi, yielding a running time
of O(|Φ||E| log |V |) for problems with |E| actions and |V |
states, which dominates the other precomputation steps.

In the final step of the algorithm, the algorithm constructs
a kd-tree (Bentley 1975) that enables finding suitable basis
preference weights quickly at query time. The kd-tree works
by repeatedly splitting the k-dimensional space of prefer-
ences into a search tree that has a height that is logarithmic
in the number of basis preference weights. Its usage is de-
scribed in the following subsection.

Query Time

At query time, the planner is provided the origin state vi

and a preference weight (θ), and must find an optimal plan
from vi to vg under preference weight θ. It employs A*
search (Hart, Nilsson, & Raphael 1968) to explore the most
promising partial paths first, using a lower bound (based on
the precomputed optimal path costs) to estimate the remain-
ing cost to the goal (Algorithm 1). The basic algorithm for
computing the lower bound is shown below.

Algorithm 3 Fixed goal lower bound computation algorithm

Heuristic(state vx, preference weight θ)

1. If α uninitialized, choose α : αi ≥ 0,
∑

i

αiφi = θ

2. Return
∑

i

αiw
∗
vx→vg,φi

The first step of the algorithm is finding basis weights,
α. There are many ways to choose basis weights α so that
∑

i αiφi = θ. Any choice of α satisfying this equality will
yield a lower bound, however the tightness of the bound will
vary. The tightest bound for each vertex vx explored in the
search for the optimal path to vg can be obtained by solving
the Linear Program (LP) shown in Equation 5.

max
α

∑

i

αiw
∗
vx→vg,φi

(5)

such that:
∑

i

αiφi = θ and αi ≥ 0

However, solving this LP at each step of the A* search is not
efficient for our domain – the search space is minimized, but
the benefits of the minimization do not outweigh the added
time required to solve each LP. Instead, we find a single
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set of basis preference weights for the entire query, rather
than for each vx, and instead of solving the LP, we use a
greedy approximate algorithm that is much faster. As we
show experimentally, this approximation still provides very
tight bounds.

a. b.

Figure 3: A preference simplex with previously evaluated
preference bases (circles), a new query (x), and query-
dependent subdivision of the preference space (a). A valid
interpolation plane (solid triangle) and an invalid interpola-
tion plane (dotted triangle) using preference bases (b).

The problem characteristics of selecting basis weights are
shown in Figure 3. In our approach, we divide the preference
weight space into regions using the proportions of the new
query preference weights as boundaries (Figure 3a). We re-
strict our set of basis preference weights to contain one basis
weight from each of those regions. Unfortunately, this con-
straint alone does not yield a valid interpolation plane for
our new query preference weight (i.e., one containing the
new preference weights), as shown in Figure 3b. Starting
with the principle preference weights (i.e., simplex corners),
we iteratively find the closest basis preference weight from
each region that can be included in the set while maintaining
validity. We use a kd-tree initialized in the pre-processing al-
gorithm to efficiently find these closest preference weights.
A valid set of preference weights is guaranteed to be found
by the algorithm as long as the principle preference weights
are included in the basis preference weight set.

Spatial Bounds

In many domains, the goal state varies between queries. The
previously described method can be applied independently
for each goal state, but this approach can often lead to mem-
ory requirements that are prohibitive for large graphs. An
alternative with lower memory requirements is to employ
spatial bounds in addition to utility weight bounds. It’s im-
portant to note that unlike Euclidean-based lower bounds,
the bounds we describe do not require the planning domain
to have additional geometric information available.

ALT Bounds

Goldberg & Harrelson (2005) combine A* search with
Landmarks and the Triangle inequality in the ALT heuris-
tic. A small number of landmarks (e.g., 16) are chosen in
the graph. The optimal path cost between each point and
each landmark in the planning graph is pre-computed. At

query time, the costs of optimal paths between a landmark
(La or Lb) and two points (a and b) are employed to com-
pute a lower bound on the optimal path cost between those
points using the triangle inequality.

Figure 4: Landmark-based bounds on the cost between a
and b using costs from landmark La or to landmark Lb.

The precomputed optimal path costs are shown in Figure
4. The optimal path cost from La to a to b can be no lower
than the optimal path cost from La to b, and the optimal path
cost from a to b to Lb can be no lower than the optimal path
cost from a to Lb.

w∗
a→b,θ ≥ w∗

La→b,θ − w∗
La→a,θ (6)

w∗
a→b,θ ≥ w∗

a→Lb,θ − w∗
b→Lb,θ

When the number of landmarks is fixed to a small constant
number, the memory requirements remain linear in the size
of the planning space and the approach can be applied to
large networks. Goldberg & Harrelson (2005) are limited to
16 landmarks due to memory constraints and obtain faster
overall query times by only considering a query-dependent
subset of 3 or 4 of those landmarks.

ALT2 Bounds

We now introduce our dual landmark-based bounding ap-
proach, which we call ALT2 since it is a natural extension
of the single landmark-based approach. Unlike ALT, which
at query time selects a good subset of the 16 landmarks on
which to base its bounds, ALT2 chooses a fixed subset of
landmarks at pre-processing time for each state in the plan-
ning graph. In the ALT2 approach, optimal costs are pre-
computed between all pairs of landmarks and between each
non-landmark and a constant-sized set of its nearby land-
marks. For a fixed set of landmarks, the bounds are looser
than the single landmark approach, but this approach enables
a much larger number of landmarks to be incorporated (e.g.,
2000 vs. 10), ultimately providing faster planning.

Figure 5: Landmark-based bounds on the cost between a
and b using costs from landmark La or to landmark Lb.

The bounds for the dual landmark-based approach are
based on landmarks La and Lb close to points a and b. In-
tuitively, the bound is tight when points a and b lie on the
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optimal path between La and Lb.

w∗
a→b,θ ≥ w∗

La→Lb,θ − w∗
La→a,θ − w∗

b→Lb,θ (7)

If La and Lb are the same landmark, the single landmark
bound (Equation 6) can be employed.

Consider a dual landmark bound where each of the
Naction edges in the planning space has Nlocal local land-
marks chosen from a total of Nlandmark landmarks. The
memory requirements for the dual landmark approach are:
O(NactionNlocal + N2

landmark). The single landmark approach
can be viewed as a special case of the dual landmark ap-
proach with Nlocal = Nlandmark that only uses the single
landmark bounds of Equation 6. Its memory requirements
are O(NactionNlandmark). If Nlocal is kept small (e.g., 1),
then for the same amount of memory that the ALT ap-
proach uses for 16 landmarks in large planning graphs (e.g.,
Naction > 1, 000, 000), the ALT 2 approach can use thou-
sands of landmarks. However, unlike the ALT bounds, the
ALT2-based bounds are non-monotonic (i.e., they may not
satisfy the triangle inequality) and may require exploring a
previously explored node again during the A* search.

Combining Spatial and Preference Bounds

We now present two different approaches for combining
preference bounds and spatial bounds. The first uses spatial
bounds within the preference bound. Note that the prefer-
ence bound (Equation 4) holds when using underestimates
for the cost of basis-dependent optimal paths (with appro-
priately chosen φi and α as described previously).

∑

i

αiw
−

a→b,φi
≤ w∗

a→b,θ (8)

Spatial bounds (Equation 6 or Equation 7) can be used for
obtaining these underestimates. The combination yields our
overall bounds. The combined preference-dual-landmark
bound is shown in Equation 9.
∑

i

αi

(

w∗
La→Lb,φi

− w∗
La→a,φi

− w∗
b→Lb,φi

)

≤ w∗
a→b,θ

(9)
The second approach is to employ preference bounds

within the spatial bound. The spatial bounds (Equation 6
or Equation 7) can first be relaxed using appropriate under-
estimates and overestimates.

w∗
a→b,θ ≥ w−

La→a,θ − w+

La→b (10)

Preference bounds are then employed as those underes-
timates and overestimates. We show the single-landmark-
preference bound (incorporating Equation 6) in Equation 11.
The dual-landmark-preference bound is similarly obtained.

w∗
a→b,θ ≥

(

∑

i

αiw
∗
La→a,φ

)

−min
φi

θ⊤fζ∗

La→a,φi
(11)

The algorithms for utilizing these bounds are very simi-
lar to Algorithm 2 and Algorithm 3. During pre-processing
time, the necessary optimal path values and optimal path
features are computed (e.g., landmark-based optimal paths
for different preference weights). At query-time the lower
bound is computed using those precomputed values.

Fast Route Planning Evaluation

We evaluate different variants of our approach and compara-
tive baseline approaches on the problem of personalized ve-
hicle route planning.

Experimental Setup

We evaluate our approach on the road network of Pittsburgh,
Pennsylvania, which is one of the 25 largest metropolitan ar-
eas in the United States. The network contains over 300,000
nodes (road segments) and 900,000 edges (transitions be-
tween road segments). Though less compact than treating
intersections as nodes and road segments as edges, this rep-
resentation allows costs for different transitions at intersec-
tions. A small portion of the road network is shown in Figure
6. Note that without good search heuristics, the density of
road segments in certain areas makes the search space for
optimal paths very large and time-consuming to explore.

Figure 6: A small portion of the road network covering
1/256th of the total road network’s area.

We employ three different cost factors that are traded off
differently with each query. They are:

• Path distance

• Travel time estimate

• City street and local road distance

To allow each factor to have an equally strong influence, we
scale the feature values of each factor so that the average
values are equal. As can be imagined, preferentially mini-
mizing different combinations of these factors yield vastly
different routes between pairs of endpoints that can be ex-
tremely sensitive to the trade-off between cost factors.

For our experiments, the parameters of each query are
chosen uniformly at random from the portion of the simplex
of preferences where the travel time weight is greater than
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0.5. Origins and destinations are chosen uniformly at ran-
dom from the road network’s road segments as well. Land-
marks and basis preference weights for our experiments are
chosen similarly. We plan for all pairs of 100 starting lo-
cations and 100 destinations – each with a different ran-
domly chosen preference weight, and report averaged exe-
cution statistics.

All experiments were conducted on a single 2.33GHz In-
tel Xeon processor with 4MB cache size and 24GB total
memory. Algorithms were implemented in C++ and com-
piled with g++ at optimization level 3. We used double pre-
cision (8 bytes) for all cost calculations and comparisons and
a simple heap-based priority queue within our A* search.

Evaluation Metrics

Quickly providing optimal personalized routes is our pri-
mary concern. For this purpose, we measure the average
optimal route planning time. We also measure machine-
independent metrics that are also independent of data struc-
ture implementations. The first is the efficiency of the plan
search, which Goldberg & Harrelson (2005) define as the ra-
tio of path length to total nodes explored in the search. At
100% efficiency, only components of the optimal path are
searched. The second metric we employ is the tightness of
the heuristic function, which is the ratio of the optimal path
cost to the heuristic function’s estimate of the path cost. At
a value of 100%, the heuristic function is a perfect estimate
of the optimal path cost.

Fixed Destination Experiments

We first consider the scenario where the destination of
queries is fixed and known by the planner during its pre-
processing time, but the origin and preference weights are
provided at query time.

Model Efficiency Tightness Time

Dijkstra’s 0.19% 0% 315ms
Euclidean A* 0.47% 46.2% 217ms
Preference A* (3) 22.7% 92.7% 14.9ms
Preference A* (5) 34.3% 95.0% 11.3ms
Preference A* (7) 50.0% 96.7% 8.7ms
Preference A* (10) 61.2% 97.9% 6.9ms
Preference A* (15) 68.7% 98.4% 4.2ms
Preference A* (25) 75.1% 98.7% 3.7ms

Table 1: Fixed destination evaluation results.

The preference-based bounds provide much better perfor-
mance on all evaluation metrics, as shown in Table 1. The
number of basis preference weights is shown in parenthe-
ses. All measures improve with the number of basis weights.
In particular, the mean planning time shows significant im-
provement over Dijkstra’s algorithm and Euclidean-based
A* search, which are almost two orders of magnitude worse
than the best preference-based approach.

Spatial Bounds Experiments

When the destination state is also unknown, the number of
pairs of intersections in our road network (i.e., ≈ 1011)

makes applying our fixed destination methods at each des-
tination prohibitively memory and computationally expen-
sive. Instead, we employ memory-efficient spatial bounds in
addition to our preference weight bounds.

Bases, Effic. Tight Time Space
Landmarks (%) (%) (ms) (MB)

5,10 2.31% 74.8% 113 240
5,20 2.62% 80.4% 96 480
5,30 2.75% 81.7% 94 720
5,40 3.46% 84.0% 89 960
10,10 2.71% 76.4% 99 480
10,20 3.84% 84.2% 74 960
10,30 4.79% 86.6% 66 1440
10,40 5.70% 88.5% 61 1920

Dijkstra’s 0.19% 0% 315 0
Euclidean A* 0.47% 46.2% 217 0

Table 2: Combined preference and ALT evaluation results.

We bound the optimal plan costs using the ALT bound
within the preference-based bounds (ALT version of Equa-
tion 9). Our algorithm automatically selects three landmarks
to use for all estimates in a single query (Goldberg & Har-
relson 2005), which provides faster planning times than any
other number of landmarks. The resulting planning metrics
are shown in Table 2 for different numbers of preference
basis weights and landmarks. While the spatial bounds are
much looser than the preference-based bounds, their com-
bination still yields significantly better planning times than
Dijkstra’s algorithm and Euclidean-based A*.

Bases, Effic. Tight Time Space
Landmarks (%) (%) (ms) (MB)

5,1000 1.22% 77.3% 96 65
5,2000 1.84% 82.1% 65 185
5,3000 2.30% 84.1% 54 385
5,4000 2.76% 85.0% 49 665
5,5000 3.08% 86.2% 41 1025
10,1000 1.42% 79.8% 83 130
10,2000 2.27% 84.6% 53 370
10,3000 2.91% 86.6% 42 770
10,4000 3.52% 87.6% 38 1330
10,5000 3.95% 88.6% 31 2050

Table 3: Combined preference and ALT2 evaluation results.

In Table 3, we evaluate the combination of preference-
based bounds and ALT2 bounds (Equation 9). We em-
ploy a single local landmark, which we found provides the
best average planning time. Compared to the ALT bounds,
the ALT2 bounds provide faster planning while requiring a
smaller amount of space. This is despite the fact that ALT2

bounds are not monotonic (i.e., could violate the triangle in-
equality), which may necessitate revisiting nodes in the A*
search. However, the ALT2 bounds do not provide corre-
sponding performance improvements on average efficiency
and tightness in comparison with the ALT bounds.
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Figure 7: Scatterplots of bound tightness and optimal path
cost for ALT and ALT2.

The reason for this discrepancy is illuminated by Figure
7. The ALT2 heuristic is generally less tight on predictions
for short paths than the ALT heuristic, but better on longer
paths. This translates to faster planning times for ALT2 be-
cause the planning time cost for less tightness on shorter
paths is much less severe than the additional planning time
required for less tightness on longer paths.

Conclusion and Future Work

In this paper, we presented an approach for quickly find-
ing optimal plans when costs vary according to a paramet-
ric preference weight. We employed both preference-based
bounds and memory-efficient spatial-based bounds to pro-
vide good estimates of the remaining costs to reach a goal
state. We applied this approach to the problem of personal-
ized route recommendation and showed large performance
improvements over previous state of the art planning ap-
proaches to the problem.

We are working to create a preference-dependent route
recommendation web service powered by this approach. We
are also investigating methods for automatically analyzing
the range of preferences that drivers demonstrate using GPS
traces of their driving patterns. This will help focus our ef-
forts on relevant portions of the preference space. Addition-
ally, we plan to incorporate more efficient data structures
(e.g., the Fibonacci heap (Fredman & Tarjan 1987)) and
additional search techniques (e.g., bi-directional techniques
(Pohl 1971)) to obtain further performance improvements.
Future work will also focus on incorporating both prefer-
ence changes and local action cost changes into a fast plan-
ning framework. This will allow real-time factors on travel
like accidents and road construction to be incorporated.
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