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Abstract

The MARS system is described which models coopera-
tive scheduling witldn a society of shipping companies
as a multiagent system. Emphasis is placed on the
functionality of the system as a whole -- the solution
of the global scheduling problem emerges from local
decision-making and problem-solving strategies. An
extension of the contract net protocol is presented; we
show that it can be used to obtain good initial solu-
tiom for complex resource allocation problems. By in-
troducing global information based upon auction pro-
tocols, this initial solution can be improved signifi-
cantly. Experimental results are provided evaluating
the performance of different cooperative scheduling
strategies.
Although the concepts for resource scheduling are pre-
sented solely for the transportation domain, their ab-
straction is useful for a broad variety of resource al-
location problems. The MARS system solves the dy-
nmnic scheduling problem where no complete speci-
fication of the problem is available a priori; thus, it
is designed as an on-line system based upon anytime
algorithms.

Topics:

Practical Applications of Multiagent Systems
Resource Allocation in Multiagent Systems

INTRODUCTION
Bidding protocols have been advocated as a valuable
metaphor in the design of distributed problem solving
for various problems. (Davis & Smith 1983) proposed
the well-known contract net protocol for task decom-
position and task allocation in multiagent systems, as-
suming a setting where the agents are completely co-
operative in the sense that they always tell the truth
and that they pass utility to other agents without re-
strictions. In order to deal with a competitive setting
the walrasian auction was introduced (Wellman 1992).
(Lenting & Braspenning 1994) defined the all pay auc-
tion to increase the global performance of the walrasian
auction.

In this paper we argue on the on hand that the so-
lutions found by distributed task allocation can be sig-
nificantly improved by introducing global information.
On the other hand, we show that the transportation
domain (Fischer et al. 1993; Sandholm 1993) offers
both a cooperative and a competitive setting. We
introduce a modification of the contract net proto-
col to solve the distributed task allocation problem
and a procedure called simulated trading (Bachem,
Hochst~ttler, & Malich 1993) to optimize a given solu-
tion iteratively. The performance of both strategies is
evaluated by a set of benchmarks.

Our domain of application is the planning and
scheduling of transportation orders which is done in
everyday life by human dispatchers in transportation
companies. Many of the problems which have to be
solved in this area, such as the Traveling Salesman and
related scheduling problems, are known to be NP-hard.
Moreover, not only since just-in-time production has
come up, planning must be performed under a high
degree of uncertainty and dynamics. In reality these
problems are far from being satisfactorily solved.

The MAlts simulation testbed (cf. (Kuhn, M/iller,
M/iller 1993)) constitutes a multiagent approach to the
transportation domain; it describes a scenario of geo-
graphically distributed shipping companies that have
to carry out transportation orders arriving dynami-
cally. For this purpose, they have a set of trucks at
their disposal. We evaluate the behavior of the sys-
tem as a whole in a straightforward manner: the mea-
sure of coherence is the quality (costs) of the schedule.
Note that the companies themselves do not have fa-
cilities for scheduling orders; rather, it is their trucks
that maintain local plans. The actual solution to the
global order scheduling problem emerges from the lo-
cal decision-making of the agents. There are two basic
types of agents in MARS corresponding to the phys-
ical entities in the domain: shipping companies and
trucks. Looking upon trucks as agents allows us to
delegate problem-solving skills to them (such as route-
planning and local plan optimization). The shipping
company agent (SCA) has to allocate orders to her1

1We use ’he’ to refer to truck agents (TA) and ’she’
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trucks, while trying to satisfy the constraints provided
by the customer as well as local optimality criteria
(costs). A company also may decide to cooperate with
another company instead of having an order executed
by her own trucks. Each truck agent is associated with
a particular shipping company from which he receives
orders of the form "Load amount al of good gl at
location 11 and transport it to location 12 while
satisfying time constraints {cl,. ¯., Cn)".

In earlier versions of the system, dynamics occurred
solely by the asynchronous arrival of transportation
orders. Once a truck had accepted an order, it was
sure to reach his destination in time; thus, there was
no need of replanning. We dropped this restriction
by introducing a model for simulating traffic jams in
the system (Fischer et al. 1994): the time a truck
needs in order to go from one place to another varies
dynamically according to the output of a simulation
model for traffic jams. Thus, a truck has to reconsider
parts of its plan each time before it starts driving and
possibly has to change it.

TRANSPORTATION SCHEDULING
AND VERTICAL COOPERATION

Interaction of the agents within the scope of one ship-
ping company (called vertical cooperation) is totally
cooperative. This means that a specific truck agent
(TA) will accept deals (i.e. results of negotiation pro-
ceases) even if he does not benefit from them. We call
such a setting an instance of a cooperative task-oriented
domain (cf. (Fischer 1994)). In the cooperation 
tween shipping companies agents (SCA) we investigate
in both a totally cooperative and a competitive setting
(we call the latter setting an instance of a competi-
tive task-oriented domain). If we assume a cooperative
task-oriented domain, we are purely interested in the
quality of the overall schedule which is emerging from
the local problem solving done in the SCAs and TAs.

On the other hand, if a competitive task-oriented do-
main among the SCAs is assumed, it is clear that the
overall schedule which is computed will be far from op-
timal. In this setting we investigate how a single SCA
can maximize her profits and how she can avoid being
tricked by other agents. In this paper we will concen-
trate on the cooperative setting and refer to (Fischer
1994) for the discussion of the latter setting.

Finding an Initial Solution

If an order o is announced to an SCA by a cus-
tomer (which can also be another SCA), she has 
compute a bid for executing the order. In order to
determine the costs, she forwards the order to her
TAs. Each TA Ai,1 < i < n E IV computes a.bid

to refer to shipping company agents (SCA) to x~solve
ambigtfities.
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(Ai, insertioncosts(~, 2, a), where ~ is thecurrent
tour of TA Ai and a is the amount of the order A~ is
able to transport. Let O~ = {ol,...,o,~,),mi E IV
be the current set of orders of TA Ai. A constraint
net is derived from the information which is specified
with the orders. Each solution to this constraint solv-
ing problem is a valid tour which fulfills all constraints
specified by O~. A~ tries to find the best tour for Oi

using a constraint solving and constraint optimization
procedures. For each order o an SCA announces to her
TAs, she gets a set of bids

B = ((A~, ci, a~),..., (A~, c., a.)), 
where ci specifies the costs that arise to TA Ai when
executing amount a, of order o. The SCA selects
(Ami,, cmi,, ami,) E B with

V(A, c, a) E : c. i. < _c
amln a

and sends a grant to the TA Amin, notifying him that
he will be granted the amount amin provided that the
SCA herself will actually receive a grant for o by the
customer.

The procedure described so far is the well known
Contract Net protocol (CNP) (Davis tz Smith 1983).
Because the CNP protocol provides time-out mecha-
nisms it is easy to turn it into an anytime algorithm
(Boddy & Dean 1994; Russell & Zilberstein 1993), pro-
ducing a solution whose quality increases monotoni-
cally as more time for computation is available. Of
course, it is possible that no solution is found within a
specified time t0. In this case the specified transporta-
tion order has to be rejected.

The Extended Contract Net Protocol
The pure contract net protocol runs into problems if

the tasks exceed the capacity of a single TA, i.e. a,,,i, <
amount-to-transport(o). In this case, the manager of
the task, i.e. the SCA, has to solve a knapsack problem,
which for itself is in general NP-hard. To overcome this
problem, we have decentralized task decomposition by
developing an extension of the CNP, which is called the
extended contract net protocol (ECNP). In the ECNP,
the two speech acts grant and reject are replaced by
four new speech acts: temporal grant, temporal reject,
definitive grant, and definitive reject (see Figures 1 and
2).

In the ECNP the manager (SCA) announces an or-
der o to its TAs. She then receives bids for the order
and selects the best one as specified above. The best
TA is sent a temporal grant. All others receive tem-
poral rejects. If the best bid does not cover the whole

ainsertioncosts(T~,o) =,,~! cost(Ti ~ o) - cost(Ti).
Cost(~ ~ o) denotes the costs for Ai when executing 
given ~.

~Our implementation is based on the Oz (Henz, Smolka,
& W/irtz 1993; Schulte, Smolka, & Wiirtz 1994) language
developed at DFKI.
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Figure 1: The ECNP Protocol (Manager)

amount of an order, the remaining part of the order is
reannounced by tile SCA. Tl,is procedure is repeated
until there is a set of bids that covers the total amount
of the original order o. From this set of bids the SCA
computes a bid which is passed to the customer. Based
on the answer of the customer, the SCA sends a defini-
tive grant (or definitive reject, respectively) to all TAs
which got temporal grants before. It is possible to
prove that in general all but the last bid selected are
locally optimal choices for the SCA (Fischer, Kuhn, 
Miiller 1994).

When a TA receives a temporal grant for tile first
time, he has to store a copy of its local situation, i.e. the
currently valid plan, because he must be able to restore
this situation in case he obtains a definitive reject. All
subsequent temporal grants and temporal rejects are
handled like the grants and rejects in the pure CNP. If
a TA is sent a definitive grant for an order, he removes
the copy created above and switches to the new plan.
If a TA gets a definitive reject, he restores the situation
before the first temporal grant.

Simulated Trading: An Auction Procedure
for Further Optimization

Using the ECNP an SCA distributes incoming orders
to her set of TAs. However, because the situation
changes by new orders coming in and because the
TAs will stick to decisions made in the past, the solu-
tion found is not even guaranteed to be pareto-optimal
(WeIIman 1992). At any point in time, when no ECNP
bidding process is active, each TA has a valid tour for
the suborders granted to him in the ECNP. For fnrther
optimizing this solution, we use an auction mechanism
called simulated trading (ST) (Bachem, Hochst~ittler,

Malich 1993).
The main idea is to let the SCA simulate a stock

f [ TrUCk I .......
I

Receive an O~der

Send o Bid

Figure 2: The ECNP Protocol (Bidder)

exchange (see Figure 3) where her TAs can offer their
current orders at some specific "saving price" and may
buy orders at an "insert price". While getting sell and
buy offers from her TAs the SCA tries to find an order
exchange that optimizes the global solution. This is
done by assigning each offer of a TA to a node in a so-
called trading graph TG = (V, E). A node v can be 
buy node v E Vb or a sell node v E Vs, i.e. V = Vb U V,.
Each node has a label v = (A, l, o) which denotes the
name A of the TA, the level l denoting the number of
preceding offers A has sent to his SCA, and the order
o. For each buy node vb, the SCA inserts a directed
edge (vb, v,) to a sell node v0 referring to the same or-
der. The price of a trade (the weight of each edge) 
the difference between the selling and the buying price
of the order. Thus, a global interchange of k orders
between all of the current tours of the TA corresponds
to a matching in the trading graph. The weight of the
matching is defined by the profit of this global inter-
change. Searching for a trading matching is done by
a complete enumeration of the trading graph. Though
this requires exponential time in the worst case, it
turned out to be feasible in practice since normally
the trading graph does not have too many branches.
Whereas we allowed the splitting of orders into subor-
ders in the ECNP, we forbid it in the simnlated trading
process, to restrict combinatorial explosion.

The buy- and sell-offers of the TAs are divided in
different decision levels. That means that the decision
process entering level l requires all previous offers in
lower levels 1,..., ! - 1 to be succeasfnlly finished. For
later use we will refer to this constraint as the level
constraint. The corresponding action of decision level
l charges the tour of the acting agent.

We define I~’in and l~a= as the first and last decision
level of TA ml, respectively. If I rain > l’~ a= the agent
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Order Stock Exchan9o
Among Shipping Companies )

Announcing Announcing
Revoking Revoking
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Selllng/Bylng Ordem ,.~lllnglBybg Orders

Figure 3: Hierarchical organization of tile agents ix,
MARS.

Ai does not get involved into the simulated trading
procedure at all. Otherwise we can recursively define
the tour of TA Ai of level I E JN:

T/(:l’i~-l) = T~ and for I >_ !’~i" :

{Tii-l) @ {o} if agent. Ai sells
order o in level l

T~(’) = Ti(’-l) ~ {o} if agent Ai 

order o ill level l

with lmaz we define the maximal number of decision
levels such that the inequality l~ax - l~m’~ < lma= al-
ways holds. Each TA decision of buying or selling or-
ders is represented as a quintuple denoting tour, level,
customer, price, and decision type (buy or sell).

The current decision level has to take into account
preceding decisions. The prize for buying or selling an
order is calculated as savings or insertion costs depend-
ing on the type of decision. When an order is going to
be sold, the savings are calculated; otherwise the min-
imal insertion costs for this order are determined.

At every decision level, each TA sends a non-empty
list of the above mentioned quintuples to the SA. The
sell and buy decisions of all TAs now form a bipartite
graph where a sell- and a buy-node are adjacent if they
refer to the same order.

This directed bipartite graph G is called trading
graph and is defined by:

G = (V = r6 O V,, E) with

Vc{Al,...,A,}x{1,...,lma=}x{ol,...,om}:

v = (Ai, l, o) ¯ Vb

v= (Ai,l,o) ¯ 

¢=* TA Ai with tour Ti(I- l)

buys order o ill level 1

¢=~ TA Ai with tour Tt(t- I)
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(v, w) ¯ E ¢---V

buys order o in level !
v ¯ Vb, w ̄  V~ :
,~ = ( .... k),w= (_,_,k)

In this definition, ’_’ denotes an anonymous variable.
Further let p : V -+/R+ denote the price of a decision
defined as:

{savings(T~(i-1), o) v ¯ Va
p(v = (Ai,l,o)) = insertioncosts(Tt(t-1),k) v 

So if the SA receives a buy-offer a new node is added
to V~ and connected to all sell-nodes referring to that
order. In case she receives a sell-offer, a new node
in V, is inserted and, if there is already an buy-offer
for that order, a link from the inserted node to tile
corresponding buy-node is created.

Since our objective is to implement the exchange of
orders among TAs, it. may occur that edges and nodes
have to be deleted from the trading graph. A property
that we always want to preserve is admissibility:

A trading gruph G = (V = V, U I~) is called admis-
sible : ¢---~

VU ¯ Vb~W ̄  V# with (v, w) ¯ 

VI1 < 12 < 13 with (A, !1, -), (A, 13, -) ¯ V 

3v ¯ V with v = (A,12,-)
This definition implies that each buy-node in an admis-
sible trading graph is adjacent to at least, one sell-node
and that all decision levels are continuously planned.
Note that tile admissibility condition is not violated
if the SA inserts a node or an edge in the graph be-
cause each TA is continuously planning his decisions
from one level up to the next. higher one and is allowed
to buy only the orders that are offered in the trading
graph.

Now tile SCA has to search for a set. of node pairs,
each of which consists of a buy-node and a proper sell-
node under the conditions that every node is inclnded
in at most one such pair and that the level constraint
is not violated. The level constraint implies that if
a node pair contains the decision in level I of tour Ti
every foregoing decision of TA Ai must be included into
another pair. Because every pair corresponds to an
edge of the trading graph we can define the set of pairs
we are looking for by a matching under constraints: Let
G = (V = Vb O V,, E) be an admissible trading graph
with V C {AI,...,A,} x {1 .... l,n,=} x {oi,...,o,,}.
Further let ~J # M C E denote a set of edges. Let My
denote the set of nodes as follows:

My = {v ¯ V I S,o ¯ V with (v, w) ¯ MV(w, v) 

The set of edges M C E is called a trading matching
if it satisfies tl,e following conditions:

V((t,,,l,,,k,),(t,,,,l,,,,k,,,)) 

~savings(T~l-l) , o) =d,! costs(T~) - costs(~ 
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uv=(t~,l,-)EVAl_~le~.u~EMv and

u,o = (t~, l, _) E V ̂  l _< l~ ~ u,,, E My and

Vv E My n ~ : 3(v,w) E M and

Vv E My n V, : 3(w, v) E M
According to this Definition a trading matching is an
admissible trading graph that is a matching. The gain
of a trading matching My is defined as:

,o(,,,)- ,o(,,)
~EMvnVo ~EMvnVb

Important for the ST procedure are the decision
criteria for the TA to decide which orders to sell or
buy. This is done using heuristics like "buy nearest"
and "sell farthest" combined with randomization tech-
niques.

Note that simulated trading can only be active dur-
ing a period of time when no new orders arrive at the
SCA. Nevertheless, while the ST process is active the
system maintains a valid solution because ST is (lone
using a copy of the current plan of a TA and the cur-
rent plan is replaced by the new one computed via the
simulated trading procedure only if that was success-
ful, i.e. a trading match was found which led to a new
optimum. Thus, reactivity is guaranteed: when a new
order arrives, the TA always uses the consistent origi-
nal plan to compute a bid for the ECNP. If a new order
occurs while simulated trading is active, the procedure
has to be aborted, unless the order fits into the plan
which has been used for the ST process.

Plan Execution and Replanning

An important feature of the MARS system is that TAs
do not only compute plans: when time is up, they ac-
tually start executing the orders. Executing an order
includes the steps of loading, driving, and unloading.
Note, that even after the TA already has started the
execution of his local plan, it is possible for him to
participate in the ECNP protocol. However, in the
ST process the TA is not allowed to sell orders it has
already loaded.

A problem in plan execution is that planning is done
on statistical data which may be too optimistic. For in-
stance, when the plan is actually executed the TA may
get stuck in a traffic jam. Therefore, replanning might
be necessary because the TA may run into problems
with respect to the time constraints which are speci-
fied with the orders. Fortunately, this situation can be
nicely handled in our framework. We distinguish two
cases:

Firstly, there are disturbances that can be resolved
using local replanning. In some cases, the TA can do
this by selecting an alternative route to the next city
he has to deliver orders to. This is done by computing
the shortest path in a dynamically changing graph us-
ing Dijkstra’s algorithm. In other cases, this can force
the TA to completely recompute his local phm using

his local planning procedure. Even if the TA is able to
successfully derive a new plan which satisfies all con-
straints, the quality of the plan may drop and thus,
some orders may be sold within the next ST process.
Therefore, restricted global rescheduling may occur al-
ready in this case.

Secondly, if the TA cannot fix the problem by local
replanning, the procedure depends on whether the or-
der is already loaded on the TA or whether it is not.
In the latter case, the TA initiates a simulated trading
process to sell the orders that he is no longer able to
execute. If a trading matching is found, this is a solu-
tion to the problem. If the simulated trading process
does not find a valid solution for the situation, the TA
has to report the problem and return the respective
orders to his SCA. In this case the SCA herself can
decide whether to sell the order to another SCA (see
below) or to contact the customer, report the problem,
and try to negotiate about the violated constraints. In
the worst case, the company has to pay a penalty fee.

If the orders that are causing trouble are already
loaded on the TA, it is not possible to just return the
order to the SCA or to sell it in a simulated trading
process. In this case, the only chance for the TA is to
report the problem to the SCA which then has to find
a solution by contacting the client, trying to relax the
constraints of the order. If a TA runs into this situation
he is paralyzed in the sense that he cannot participate
in the ECNP or in the simulated trading process un-
til he receives instructions from his SCA. Fortunately,
the ECNP and the simulated trading procedure can
deal with this situation because they do not require
participation of all TAs.

HORIZONTAL COOPERATION

Optimizing the utilization of transport capacities is the
foremost goal for an SCA. Due to the spatial and tem-
poral distribution of incoming orders, cooperation with
other SCAs (so-called horizontal coopenJtion) may be a
beneficial operation. Although it would be possible to
use the simulated trading approach also for global opti-
mization by switching orders between SCAs, we claim
that such an approach is inadequate, for the following
reasons:

1. Within one shipping company, the setup for the sim-
ulated trading process can be provided easily; how-
ever, even in this case the current plans of the TAs
have to be frozen and each TA involved in this pro-
cess can only accept new orders after the simulated
trading process is finished. A simulated trading pro-
cess between SCAs would require an immense syn-
chronization effort and a considerable communica-
tion overhead.

2. In contrast to the coordination between a company
and its TAs, cooperation between companies is a
peer-to-peer process where a solution (e.g. a price
to be paid for all offer) can only be found if all the
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participants agree, and where the conditions of the
solution have to be negotiated among the companies.
Thus, there is no global decision authority in order
to control the negotiation process.

3. SCAs will behave more selfishly than TAs in nego-
tiation. Therefore, global optimality of the overall
schedule which emerges from local problem solving
is no longer the key criterion to guide negotiation.
B.ather the SCAs will try to maximize their own prof-
its by selling and buying orders among each others.
Selfishness is also the reason why, in general, the in-
formation about orders, costs, and prices necessary
for the simulated trading algorithm cannot be as-
sumed to be publicly available.

Because of these reasons we have chosen a model
providing a stock exchange for transportation orders
among SCAs which is organized as a blackboard to
which SCAs can post orders they would like to sell
specifying a price they would like to achieve (see fig-
ure 3). If another SCA wants to buy an order, a bilat-
eral negotiation process between these SCAs is started
to determine the actual price to be paid for the order
in a decentralized manner.

The decision-making of the companies during the ne-
gotiation process is based on information they obtain
by their TAs, e.g. information about free capacities and
costs. This allows a company to determine in how far
cooperation will lead to an increase of its local util-
ity, and thus, to determine its range of negotiation.
Another important issue for decision-making is part-
ner modcling; for example, if all the agents had com-
plete knowledge about tile decision criteria of all other
agents, each agent could locally compute whether there
is a solution accepted by all the partners. In the case
where all the agents have the same decision criteria,
two agents could directly agree on the mean value of
the first bid and the first counter-offer, since negotia-
tion will converge towards this value. However, in real-
ity, agents do not have complete knowledge about each
other; this makes the bargaining process interesting. In
the current system, partner modeling is restricted to
agents making simple assumptions on the parameters
of other agents; future research will aim at enhancing
this model. There are several configurable parameters
that can be used to vary tile decision-making behavior
of an agent, e.g.:

~Od desired profit in per cent for an order.
Wm minimal profit in per cent accepted by an agent.
A function determining the amount to which an

agent’s next offer is modified given its current of-
fer p; for example, it can be set to a constant
k or to maz(k, (~-~’~)’P), where n is a scaling
factor determining the speed of convergence; the
max fnnction guarantees termination of the nego-
tiation independent of the size of n.

114 ICMAS-95

~= threshold denoting the agent’s cooperation sen-
sitivity (i.e. how uneconomic does an order have
to be for an agent to offer it to another agent);

[0,1]
Providing a set of different configurations and strate-

gies for agents is one important functionality of a
testbed; however, it has to be complemented by tools
for performing, monitoring, and evaluating experi-
ments in order to derive general properties of the fea-
tures that are producible by the testbed. This is dis-
cussed in the following subsection.

EXPERIMENTAL RESULTS
In order to evaluate the influence of the strategies pre-
sented so far on the solution of the global scheduling
problem, we ran benchmarks designed by (Desrochers,
Desrosiers, & Solomon 1992), consisting of 12 test sets

100 orders describing instances of the vehicle t~uting
problem with time tt,indows. This is a static scheduling
problem that does not challenge the full expressiveness
of MARS:

¯ There is only one depot from where a set of clients
has to be served.

¯ In each example there are 100 orders for 100 clients
where no client occurs twice.

¯ In the test data, it is assumed that only unloading
at the location of the client does need time. There
are no time restrictions specified for the process of
loading a truck.

¯ There is only a single company modeled.

¯ It is assumed tttat there is always a direct line con-
nection between two cities.

However, despite tltese restrictions, optimal solutions
are known for only a small portion of tile examples.

In general, optimal solutions can only be computed
if a problem is treated as a closed planning problem.
In this case, when the planning processes is started all
input data mnst be known. Throughout the planning
process tile input data is not. allowed to be changed.
It is clear that there exist special purpose algorithms
which perform more efficient than our system for this
specific problem, but these algorithms are not able to
deal with the more general problem solved by MARS.

The parameters to be observed are tile distance
needed by tile trucks (the primary quality criterion in
the benchmark) and the number of trucks reqnired by
the solution (wllich is an important criterion from an
economic point of view). The parameters varied were
the number of orders (25, 50, and 100, respectively),
the percentage of orders with time constraints (25, 50,
75, and 100 %), the strategy (pure ECNP or ST) 
the structure of the input set (random or pre-sorted
by tlle earliest, start time). The latter parameter is of
special importance: randomness simulates dynanfics
in a sense that the agent has no knowledge about the
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temporal ordering of transportation orders. Since no
benchmark for a dynamic problem was available, this
helps us to evaluate how graceful the performance of
our strategies degrades in the dynamic (non-ordered)
case with respect to the static (ordered) case.

Figure 4 shows the results from a class of experi-
ments comparing the relative performance of our solu-
tion before and after the optimization using ST with
the optimal solution for some examples where this so-
lution is known (assuming a sorted input set). It shows
that the ECNP solution is between 3% and 74 % worse
than the optimal solution and thus is comparable to
heuristic OR algorithms; in our experiments ST im-
proves this solution by an average of ca. 12%.

178
170
lelS
180
188
180
148
140
138
130
12B
120
11B
110
108
100

/

1 IS I; 2 i! 10 $ ? 11 4 II 12 order rio.

Figure 4: Comparison of ECNP and ST with the Op-
timal Solution

A second class of experiments compares the perfor-
mance of ECNP with ST for different problem sizes and
different degrees of constrainedness, making a distinc-
tion between random and sorted input. The results of
these experiments are illustrated by figure 5a) to 5d).

The main results of these experiments can be sum-
marized as follows: Firstly, ST improves the ECNP
solutions in most cases. Secondly, presorting improves
the behavior of both algorithms; however, ST yields
much better results in the unsorted case than pure
ECNP; this implies that ST is a good strategy for deal-
ing with dynamic problems, since the trading process is
likely to resolve suboptimal order assignments in the
ECNP solutions. On the other hand, ECNP which
implements a greedy strategy is very sensitive with re-
spect to the ordering of the transportation orders.

Thirdly, note that the orders drawn along the z-axis
are sorted according to how strong they are temporally
constrained: 100 % of the orders in the test sets 1, 5,
9 are constrained, 75 % of order sets 2, 6, 10, and so
on, where test set 1 denotes the set named R101 in
the original benchmark data, 2 stands for R102 and so
on. It is an interesting observation that compared to
ST, ECNP behaves relatively better for strongly con-
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Figure 5: Comparison of ECNP and ST on Random
and Sorted Input Sets

strained orders than for weaker constrained ones: for
25 orders, ST is only 7.2% better than ECNP (in sav-
ings of distance on an average) in the 100% constrained
case, whereas it saves 22.4% for 25 % constrained or-
der sets. We might speculate that this is a general
property of greedy, contract-net, like algorithms; how-
ever, this speculation still needs being confirmed by
further theoretical and empirical results. For results
comparing different horizontal cooperation settings at
the SCA layer, we refer to (Fischer et al. 1993).

CONCLUSION
In this paper, we have presented the MARS system
modeling the transportation domain, a real-world ap-
plication that has been designed and implemented as a
multiagent system. The main contribution of the pa-
per is that it presents a combination of a contract-net-
like protocol and an auction procedure which provides
promising solutions to difficult scheduling problems.

To evaluate the performance of the MARS system, we
have provided a comparison of our approach with Op-
erations Research (OR) solutions, using a set of bench-
mark examples. The quality of the results achieved by
the multiagent approach has been shown to be com-
parable to those of heuristic OR algorithms. In ad-
dition, the multiagent approach is more flexible: it al-
lows to vary the number of agents on-line and can cope
with open, dynamic scheduling problems and with un-
certainty in plan execution, whereas the scope of the
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available Operations Research techniques is limited to
static scheduling problems.

The MARS system has been implemented at the
DFKI using the AGENDA development environment
(Fischer, Miiller, & Pischel 1995) for multiagent sys-
tems. AGENDA supports the design of agents accord-
ing to the INTERRAP agent architecture (Miiller 
Pischel 1994a; 1994b) and provides several desirable
functionalities of a simulation system and testbed, such
as statistics and visualization tools. The fact that the
MARS system can be distributed over a large number
of physical machines makes it a powerful scheduling
tool, and it turned out to be useful to solve industrial
scheduling problems consisting of 800 transportation
orders. Currently, a joint project with a shipping com-
pany with a daily dispatch volume of about 700 trucks
is envisaged, where a tuned version of MARS is to be
used as the kernel of an online scheduling assistant.

An important issue for future work are decision-
theoretic problems: Using the concepts presented in
this paper as a basis for decision-making, the SCAs
will start negotiation processes among each others. In
this negotiation processes, strategies must be found
that guarantee that agents will not benefit e.g. from
lying. In (Fischer 1994), it has already been shown
that the general results presented in (Zlotkin 8z Rosen-
schein 1993) for task-oriented domains are not directly
applicable to the transportation domain as presented
in this paper. Thus, a separate analysis of this setting
will be necessary.
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