Agents as Reasoners, Observers or Arbitrary Believers

Enrico Giunchiglia¹ Fausto Giunchiglia^{2,3} Luciano Serafini²

Mechanized Reasoning Group

¹DIST - University of Genoa, 16145 Genova, Italy

² IRST, 38050 Povo, Trento, Italy

³DISA - University of Trento 38100 Trento, Italy

The work described in this paper aims at the definition of a general framework for the formal specification of agents' beliefs in a multiagent environment. The basic idea is to model both agents' beliefs and the view that each agent has of other agents' beliefs as logical theories. Consider an agent a_i having beliefs only about the world. At a very abstract level, a_i 's beliefs can be modeled by a reasoner defined as a pair (L_i, T_i) : L_i is the language of the reasoner and T_i are the beliefs of the reasoner (in the following, we abbreviate a reasoner (L_i, T_i) with R_i). Now assume that a_i has beliefs about an agent a_j and that a; has only beliefs about the world. This situation can be easily modeled introducing two other reasoners R_j , R_{ij} —modeling a_j 's beliefs and a_i 's beliefs about a_j respectively— and extending R_i signature with a unary predicate B^{j} , used to express a_{i} 's beliefs about a_j . R_{ij} thus plays the role of a_i 's (mental) representation of a_j. R_i, R_{ij} and B^j characterize a basic belief system, defined as $(R_i, R_{ij})_{B^i}$: R_i is the observer, R_{ij} is the observed reasoner and the parameter B^{j} is the belief predicate of the basic belief system. Suppose that also a_j has beliefs about another agent a_k . We model a_i 's beliefs as a reasoner R_i , a_i 's beliefs about a_j as a reasoner R_{ij} and a_i 's beliefs about a_j 's beliefs about a_k as a reasoner R_{ijk} . R_i observes R_{ij} and R_{ij} observes Rijk. From this example, it is easy to see how to represent an agent with arbitrary beliefs with a family of reasoners, in which each reasoner is possibly observing other reasoners. Such configurations of reasoners are described with "belief systems". Formally, if I is a set of indices (each corresponding to a reasoner), a belief system is a pair $\{\{R_i\}_{i\in I}, B\}$ where $\{R_i\}_{i\in I}$ is a family of reasoners and B is an n-tuple of binary relations over I. If (i, j) is an element of the k-th binary relation then R_i observes R_j and expresses its beliefs about R_i using a B^k predicate (we thus assume that to the k-th binary relation there corresponds a unary predicate B^{*t*}). Following (Giunchiglia et al. 1993), we say that R_i is an ideal reasoner if T_i is closed under logical consequence. Analogously, we say that R_i is a B^k-ideal observer of R_j if $\overline{T}_j = \{A \mid B^k(A^n) \in T_i\}$. Notice that the two notions of ideal reasoner and ideal observer are independent. For instance, an ideal observer may be at the same time a real reasoner.

Consider a belief system $\langle \{R_i\}_{i \in I}, B \rangle$. Both the language L_i and the beliefs T_i $(i \in I)$ of each reasoner can be extensionally characterized as sets of formulae satisfying certain conditions. However, a belief system can be also intensionally characterized by multi context systems (Giunchiglia & Serafini 1994). A multi context system or MC system is a pair $\langle \{C_i\}_{i \in I}, BR \rangle$, where $\{C_i\}_{i \in I}$ is a family of axiomatic formal systems (that we call contexts) and BR is a set of bridge rules, *i.e.* inference rules having premises and conclusion in distinct contexts. Notationally, we write $\langle A, C_i \rangle$ to indicate the formula A in the context C_i .

Definition 1 (MR^B-) Let I be a set of indexes, $\{C_i\}_{i\in I}$ a family of contexts and B a n-tuple of binary relations over I. $MS = \langle \{C_i\}_{i\in I}, BR \rangle$ is an MR^{B}_{I} system if and only if for each $\langle i, j \rangle$ in the k-th relation in B, BR includes the following bridge rules:

$$\frac{\langle A, C_j \rangle}{\langle \mathbf{B}^k(``A^n), C_i \rangle} \mathcal{R}_{up.}^{\mathbf{B}^k} \quad \frac{\langle \mathbf{B}^k(``A^n), C_i \rangle}{\langle A, C_j \rangle} \mathcal{R}_{dn}^{\mathbf{B}^k}$$

both restricted to the case when the premise does not depend on formulae of the same context.

We say that an MR_I^B system generates the belief system $({R_i}_{i \in I}, B)$ if $T_i = \{A \mid \vdash_{MS} (A, C_i)\}$ $(i \in I)$.

MC systems provide the proper tools for presenting belief systems: each reasoner R_i corresponds to a context C_i . The properties of R_i (e.g. the language) are mapped in corresponding properties of C_i and the desired relation between the beliefs of R_i and the beliefs of another reasoner R_j can be imposed via bridge rules. The relation between MR^B_J systems and some modal approaches to the problem of logical omniscience is studied in the longer version of this paper.

References

Giunchiglia, F., and Serafini, L. 1994. Multilanguage hierarchical logics (or: how we can do without modal logics). Artif. Intell. 65:29-70.

Giunchiglia, F.; Serafini, L.; Giunchiglia, E.; and Frixione, M. 1993. Non-Omniscient Belief as Context-Based Reasoning. In *IJCAI'93*, 548-554.