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Abstract

Plan recognition remains a largely unexplored
paradigm for facilitating coordination. In this paper,
we begin to explore domain, task, and agent charac-
teristics which impact upon the utility of using plan
recognition for coordinating multiple agents and, in
particular, collections of agents organized into com-
peting teams. Agents in our research are supplied
plan-recognition capabilities in the form of specially
instantiated belief networks called Plan Recognition
Networks (PRNs). Our initial experiments test sev-
eral hypotheses concerning coordination performance
as a factor of plan-recognition model expressiveness
compared to coordination based upon using communi-
cation protocols of varying expressiveness. The initial
results demonstrate that plan-recognition capabilities
permit agents to realize better coordination perfor-
mance in many situations due to increased knowledge
provided through observation and inference compared
to that supplied by communication protocols.

Introduction

An agent that considers the concurrent activities of
other agents when deciding on its own activities is usu-
ally better able to choose actions that lead to outcomes
that it favors. Such coordination between an agent’s
actions and those it expects of others has been an on-
going concern in the multi-agent systems (MAS) com-
munity, whether the agents are trying to cooperate,
compete, or merely co-exist.

Effective coordination thus requires knowledge
about what others are, and will be, doing. A variety
of strategies for possessing this kind of knowledge have
been developed, including: (1) static specifications 
agents’ roles in an organization (Corkill & Lesser 1983;
So & Durfee 1992) or social laws that agents adhere
to indefinitely (Shohanl & Tennenholtz 1992); (2) 
lective, multi-agent plans that agents construct before
pursuing their current goals, to ensure the agents act
in concert when the plan is executed (Corkill 1979;
Georgeff 1983; Ephrati & Rosenschein 1993; Durfee
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& Montgomery 1991); (3) partial, tentative collec-
tive plans formulated during the process of execution
through the ongoing exchange of evolving plans (Dur-
fee & Lesser 1991); and (4) immediate, reactive 
sponses to interactions generated on-the-fly without
considering long-term repercussions at all (Tambe 
Rosenbloom 1995).

A principle concern in the dynamic, anticipatory ap-
proaches (2 and 3 in the list above) has been in fig-
uring out how agents should decide what information
about their plans and goals they should share, with
whom to share it, and when. This has led, for exam-
ple, to approaches that allow" an iterative revelation of
the relevant information (Durfee & Montgomery 1991;
Ephrati & Rosenschein 1993) or a reliance of "meta-
level organizations" that guide such communicative
decisions (Durfee & Lesser 1991). More reactive ap-
proaches sidestep such issues by assuming that it is
instead up to the agent who needs the information to
acquire it by watching out for it, instead of assuming
that others will volunteer the right information at the
right time.

In our work, we want to take advantage of the abil-
ities of agents to watch out for their own interests,
but we still want agents to be able to anticipate what
other agents will do, rather than simply reacting to
what they are doing. We do this by providing agents
with the ability to use observations of others not only
to recognize current actions, but also to recognize on-
going plans and goals based on the sequences of actions
that others take. Once they recognize the plans and
goals of others, our agents can employ any of a number
of techniques (see (O’Hare & Jennings 1996), especially
Chapter 6) for coordinating their planned actions with
those of others.

Plan recognition through observation offers several
advantages over explicit communication about plans,
including lower communication overhead, higher relia-
bility and speed when channels are faulty or congested,
greater expressiveness (the communication language
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might be less rich than what can be recognized1), and
it is robust in the face of agents who are not forth-
coming about their plans or who might be deceitful.2

Of course, it also has disadvantages, including the fact
that agents need to (at least assume they) know how
other agents act in pursuit of their goals, that actions
might not be accurately observable or might support
multiple possible plans, and that inferring the plans
of others can be more time-consuming than being told
explicitly by them.

In this paper, our objective is to demonstrate that
plan-recognition-based coordination can achieve many
of the advantages listed above, without suffering overly
from the disadvantages. Specifically, while for now
we assume that agents have reasonably good models
of how others accomplish their goals, we do not as-
sume that agents take actions that are unambiguous.
We therefore explicitly deal with the inherent uncer-
tainty involved in plan recognition, and we empirically
demonstrate that in domains such as our test domain,
uncertainty can be managed and plan-recognition in-
ferences can be accomplished without excessive over-
head.

In the next section, we describe our approach for ex-
plicitly handling plan-recognition uncertainty by map-
ping the procedures agents follow into a belief net-
work representation that facilitates managing uncer-
tainty efficiently and soundly. We then turn to ap-
plication domains where plan-recognition-based coor-
dination makes sense, and in particular describe the
experimental domain that we use for evaluating the im-
pact of plan-recognition-based coordination. The sub-
sequent section posits a series of hypotheses about the
effects of using goal-based agents with plan recognition
in the experimental domain, and reveals the strengths
and limitations of our approach as those hypotheses
are tested. Finally, we conclude the paper with our
assessment of the role of plan-recognition-based coor-
dination in multi-agent systems.

Probabilistic Plan Recognition

We argue that native plan representations - those
which autonomous agents execute - are not conducive
to agents wishing to use them to perform plan recog-
nition. Plan recognition requires the ability to rea-
son "backward" from actions to determine the active
goal(s) that motivated the action. Plan representa-
tions were designed with other issues in mind, however,
such as execution efficiency, representational clarity,
and conciseness. Similarly, current plan-recognition

IAs in the saying, "A picture is worth a thousand
words."

2And, "Actions speak louder than words."

representations were designed to address issues other
than execution. To bridge this gap, we have conceived
of and implemented ASPRN (Automated Synthesis of
Plan Recognition Networks) (Huber, Durfee, & Well-
man 1994), a computational system that automatically
constructs a plan-recognition representation directly
from an agent’s executable plans.

In brief, our approach to plan-recognition-based
multi-agent coordination starts with a plan library of
an observed agent. From this plan library, ASPRN
then creates a probabilistic model which we call a Plan
Recognition Networks (or PRN for short). PRNs pro-
vide a well-founded model (based upon probability the-
ory) with which to perform plan recognition, and also
deal naturally with the uncertainty inherent in both
the inferencing process and domain (e.g., observational
uncertainty such as inaccuracy and perception system
errors (Huber & Duffee 1993)). Agents can then 
the PRNs to incorporate evidence in the form of obser-
vations of other agents’ actions and, based upon this
evidence, determine through inference the most likely
goals and plans4 that the observed agent is executing.

To give an idea of how PRNs work, the inferred
information is represented within a PRN as a poste-
rior probability distribution over possible states in each
node. The state space of each node depends upon the
type of plan component that it represents. For in-
stance, nodes representing goals have a state space of
(Inactive, Active, Achieved}, while nodes representing
primitive actions have a state space of (Notperformed,
Performed}. As observations of an agent that is work-
ing on achieving a particular goal are made, the pos-
terior distribution for the PRN’s associated goal node
skews toward the Achieved state. Posteriors for alter-
native goals, those that are not being achieved, skew
toward the Inactive state. The observing agent can
query its PlUs for information regarding various nodes
and can then reason about possible conflicts or syner-
gies with its own goals and modify its own behavior
accordingly.

Agent plans

Our research assumes that the coordinating agents are
"deliberative". That is, the agents do not simply react

SThis is not the same as Charniak and Goldman’s plan
recognition network of (Charniak & Goldman 1991). While
they serve the same function, our PKNs were designed ex-
plicitly to deal with executable plan representations and
issues. Charniak and Goldman’s PRNs were designed to
deal with natural language issues such as syntactics, se-
mantics and pragmatics.

41nformation concerning the beliefs, internal state, and
even the most likely next primitive action of the observed
agent can also be determined with PRNs.
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to situations, but reason about a structured response,
perhaps in the form of goals and plans, for accom-
plishing those goals. One of the primary issues in co-
ordination based upon plan recognition quite naturally
is the modeling of other agent’s goals, plans, and ac-
tions. We assume these agents’ plans can be modeled
with a certain set of constructs, such as sequences of
actions, subgoaling, iteration, context (i.e. precondi-
tions), state (i.e., beliefs), and conditional execution 
alternative execution paths (i.e., branches). While the
plans of the agents being observed and coordinated
through plan recognition may not explicitly contain
such constructs as those that we model them as having,
we are interested in agents having the ability to model
the behavior resulting from execution of their plans aa
il their plans did have such constructs. The accuracy
of such a model becomes apparent in the success with
which such a characterization supports recognition of
the plan(s) being executed and the ability to generate
accurate hypotheses regarding the future actions of the
agent.

Our initial efforts have utilized one particular plan
representation, which we believe represents the com-
mon plan constructs in a relatively generic manner.
The representation is that of UM-PRS (Huber et al.
1993), a C+÷ implementation of the Procedural Rea-
soning System (PRS) of Ingrand, Georgeff, Rao, et.
al. (Ingrand, Georgeff, & Rao 1992). Please refer 
these references for representation details. Of primary
concern at this point is that UM-PRS supports action
sequences, conditional branching, contextualized goals
and subgoals, and iteration.

Coordination of Teams of Agents

The form of team coordination that we are explor-
ing is that which is facilitated by each agent’s own
observations and plan-recognition inferences. In this
paradigm, each temn member continually performs dy-
namic and opportunistic reasoning about coordinating
with others on the team based upon its own goals and
the relative merits of each other team member’s goals.
When a team member recognizes a situation where the
benefits of assisting another team member outweigh
the benefits of its own current tasks, the first agent
will assume the tasks or roles most advantageous to
the agent that it has decided to aid. Team coordina-
tion, then, emerges as a result of each agent’s decision-
making with regards to coordinating with other agents
of the same team or against agents of the opposing
team.

The experiments that we have performed so far can
be expressed in terms of the following informal hy-
potheses:
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Hypothesis 1: An agent that has an explicit repre-
sentation of goals and procedures for accomplishing
them is at least as competent as an agent where all
of this is implicit, but which might incur more over-
head.

¯ Hypothesis 2: An agent that has the explicit rep-
resentation is more flexible when circumstances
change. Specifically, when a communication black-
out occurs, the explicit representation (along with
ASPRN) allows plan-recognition-based agents to
perform much better.

¯ Hypothesis 3: Plan recognition with rich models will
be superior to communication when communication
is rooted in a limited language/protocol.

¯ Hypothesis 4: Performance of plan recognition will
degrade when the models of other agents are limited
(e.g., incomplete).

¯ Hypothesis 5: Even poor plan-recognition models
can be better than relying solely on communication
when communication fails!

The domains that we are particularly interested in
exploring are dynamic, uncertain environments where
agents execute complex plans and where there are time
pressures to correctly coordinate with or against other
agents. The research described in this paper is not lim-
ited in applicability to just these domains, however.
The truths revealed by testing the above hypotheses
are applicable to any coordination domain where ob-
servation of other agent’s actions is possible. For exam-
ple, our approach should work well in dynamic air com-
bat domains such as described by Tambe in (Tambe 
Rosenbloom 1995) and certainly in less time-critical
applications such as intelligent user interfaces. The
hypotheses above are, of course, very general, and we
are just beginning to test some of the issues that arise.
However, as will be shown by our initial experimental
results, the above hypotheses do appear to be valid,
and should be of some usefulness to others exploring
coordination paradigms for nmlti-agent systems.

Experiments

The world in which we have placed our plan-
recognizing agents is a dynamic, real-time, fine-
grained, multi-agent simulator originally constructed
for the Internet network game called Netrek ( (Ahn
1996) is a good source for more information). 
Netrek, agents act in a grid world where the agents
are organized into two teams of up to 8 agents on
each team. The environment has distributed through-
out it forty labeled, immobile landmarks (called plan-
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ets) each with a dynamically changing, limited num-
ber of resources (called "armies"), with each team ini-
tially "owning" ten of the planets. The world updates
rapidly (10 updates/second); agents can perform var-
ious movement, combat, navigation, and tactical ac-
tions up to five times a second. Individual agents en-
gage in highly dynamic "dog-fights" with individual
agents of the other team, which involves arcade-like
reactivity and real-time management of ship speed,
course, shields, weapons, and other functions. Those
agents that are victorious are then capable of pick-
ing up resources (armies) from the team’s own planets
(which produce armies) and transporting the armies
to a planet owned by the opposing team. If more
armies are transported to an opponent’s planet than
that planet has opponent’s armies, the planet changes
ownership to the team transporting armies. The global
objective of each team in the simulation is to capture
the other team’s planets. The termination conditions
for the experiments is when the losing team owns 7 or
fewer planets.

The Netrek environment domain is a challenging,
real-time environment with a number of realistic char-
acteristics. The environment changes dramatically and
quickly, with agents moving about quite rapidly, act-
ing upon each other and upon the environment itself.
Sensing of other agents’ activity is uncertain, depend-
ing upon their distance and other factors. Each agent
must reason about a large number of dynamic objects
(the other agents and their weapons) and low-level
actions as well as managing high-level roles (as dis-
cussed above). Human players find the environment
extremely challenging to maintain cognitive awareness
of both the tactical (short range) display and the galac-
tic (long range) display due to the fast pace and large
amount of information to process and the number of
decisions to make.

Domain Tasks and Plans

The agents that we implemented were originally pro-
grammed in the C language by Ted Hadley, currently
a research scientist at the University of California,
Irvine. In order to model these agents using ASPILN-
constructed PRNs, this original code was in part re-
placed by UM-PRS Knowledge Areas (plans) and UM-
PRS primitive functions. The original agent design
partitioned the top-level task of winning the game
into a number of roles, or states. We followed the
same scheme in the UM-PRS plans. The possible
roles (goals) that the agents can take include: dog-
fighting with the closest opponent (ENGAGE), bombing
or taking a planet (ASSAULT), help a team agent when
it tries to take an opponent’s planet (ESCORT), sui-

cide attack an opponent (OGO), defend a team-owned
planet from an assault (PROTECT), repair and/or re-
fuel (RECHARGE), and move to a team-owned planet
that has armies and pick them up (GETARMIES). The
UM-PRS agents maintained the exact same function-
ality as the original agents in all respects, including the
capability of communication with other agents.5

The resulting UM-PRS plan library as used by
agents is too large to list here unfortunately, but con-
sisted of 33 plans in total. This plan library was given
to ASPRN, which produced a PRN of 105 nodes and
150 arcs that modeled the plan library.

The agents’ basic decision-making architecture was
left as it was when obtained from Hadley in or-
der to clearly attribute performance differences.
The decision-making architecture is a set of order-
dependent heuristics ordered by role according to the
relative importance of the role in winning the game.
Each agent determined its role (goal) based upon its
view of the current situation (each agent performed
its own perception) and maintained some persistence
with respect to its role once a role was undertaken.
During decision-making, each plan-recognizing agent
queried posterior distributions (beliefs) of random vari-
ables within it PRNs for relevant information8 approx-
imately once every 0.7 seconds,z

The plan-recognizing agent would use the informa-
tion extracted from the PRNs to determine what other
agents were doing and, if it determined that one of
the other agents was doing (or was going to be doing)
something that it should help or hinder, it would switch
to the appropriate role. For example, if an agent mov-
ing to bomb a planet determined that another agent
was already going to bomb that planet, it would either
select another planet to bomb or take on some other
role, such as defending armies on its own planets or de-
fending against an enemy carrying armies. As another
example, if an agent noticed that a team/opponent
agent was going to take a planet and it was in a posi-
tion to coordinate, it would escort or defend the planet
as appropriate.

As was mentioned earlier, one of the major issues
associated with coordination via plan recognition is
the uncertainty and computation overhead incurred by
needing to infer information that might otherwise (in
a perfect world) simply be communicated. The Ne-

5Although communication was never actually utilized
by the UM-PRS agents in the experiments described in
this paper.

SEach agent maintained one PILN for each other agent
that it was coordinating with or against

7This was an arbitrary value that seemed to work well
and was never changed - this would be an interesting pa-
rameter to change in future experiments.
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trek environment introduces uncertainty (sensed loca-
tions of other agents can have reduced precision or be
slightly randomized), as does the agent’s observation
functions, which are non-trivial and are not infallible.

Experiment Statistics

During each experiment, we accumulated statistics
which are typically accumulated during human Ne-
trek matches. These statistics are analyzed after hu-
man games to determine relative performance and can
provide insight into autonomous agent performance as
well. These statistic consisted of:

¯ tpt - total planets taken.

¯ tpd - total planets destroyed (i.e., reduced to 
armies).

¯ tek - total dog-fights won.

¯ def- the number of times team agents died.

¯ tab - total armies bombed.

¯ tac - total armies carried.

¯cak - carried armies killed.

¯ eao - enemy armies ogged.

Some additional information was also captured, such
as total experiment time (referred to as "time" in ex-
periment results shown later) and bombing latency
(the accllmulated time between when a planet grew
armies and when the planet was bombed, and referred
to as "latency" in the results).

Explicit vs. Implicit Representation

We briefly describe our first experiments’ results as
they simply represent a baseline comparison of the
UM-PRS agents (without plan-recognition or commu-
nication capabilities) when they competed against the
equivalent C agents ("Stdbots"). We hypothesized
that the UM-PRS agents with their explicit represen-
tation of goals and plans could only do as well, but
not better, than the Stdbots because of the inherent
overhead of UM-PRS.

Out of forty games, the Stdbots won 25, or 62.5 per-
cent, of them. In these games, the Stdbots performed
slightly better than the UM-PRS agents almost across
the board, indicating a slight performance decrease due
to the overhead associated with the use of UM-PRS
and its explicit goal and plan representation and ex-
ecution scheme. Clearly, the computational overhead
associated with UM-PRS’s more general and flexible
architecture outweighed its benefits in this simple, di-
rect translation.
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Plan recognizing Agents vs.
Non-communicating C Agents

Our next experiments were conducted to test how
flexible the agents that coordinate based upon PRNs
would be against the original agents, but in this case
in a world where communication channels are dis-
abled for some reason (e.g., being jammed). The
results of experiments of the plan-recognizing agents
("PRbots") competing against non-communicating
Stdbots is shown in Table 1.

In a series of forty games, tile PRbots won 36. Al-
most all of the statistics in the table point to dom-
inance by the PRbots. The PRbots captured and
destroyed more planets, won more dog-fights, carried
more armies, and killed more enemy-carried armies.
Bombing latency reflects that the PRbots coordinated
much better in their bombing and distributed them-
selves better when multiple planets needed bombing
(more on this later). The higher "tab" statistic for the
Stdbots seems at first glance to indicate that the Std-
bots did a better job bombing overall, but this is miti-
gated by the fact that, as the experiments progressed,
the Stdbots had fewer planets producing armies so tile
PRbots had less opportunity to bomb them.

In this set of games, the PRbots clearly outmatched
the Stdbots. One important result of these runs was to
establish that the PRbots were apparently able to rec-
ognize the goals/plans of the other agents early enough
to give one or more of the PRbots an opportunity to
be in the right place and time to help or hinder, as
the situation required. In contrast, had the same ob-
servations been made just before the observed agent
completed the critical portion of its task (e.g., drop-
ping armies on a planet) the the PRbots would have
been unable coordinate with the observed agent. This
introduces the concept of "observation distribution" -
a measure of where observable actions occur during ex-
ecution of a plan (e.g., early or late in the plan). This
is an extremely important issue in plan recognition and
one that deserves much more attention.

Another important aspect was the negligible over-
head associated with perfornfing plan-recognition ob-
servations and inferencing (typically 0.02 real-time sec-
onds). Clearly this is an ideal situation, and in future
work we will simulate more complex and higher cost
perceptual processing and inferencing in order to gain
a better understanding of where plan recognition be-
comes too much of a burden to be of utility.

Our observations showed that the PRbots bombed
in a much more coordinated fashion, using their plan-
recognition capabilities to determine that. some other
teanmmte was already bombing (or going to bomb)
an enemy planet and choosing another planet to bomb
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[Tea I star. I totall avg. J,td.de J
PRbots tpt 122 3.05 5.86

tpd 143 3.58 5.80
tek 954 23.85 52.85
def 752 18.8 49.04
tab 8057 201.43 460.60
tac 1134 28.35 44.31
cak 37 0.93 6.33
eao 80 2 8.60
time 16469

latency 30649
Stdbots tpt 47 1.18 5.53

tpd 46 1.15 5.20
tek 738 18.45 48.22
def 974 24.35 52.72
tab 8136 203.4 476.03
tac 484 12.1 50.79
cak 80 2 8.60
eao 36 0.9 6.34
time 15338

latency 47219

[Team [ Stat. [Total [ Average [ Std.Dev. [
PRbots tpt 129 3.23 7.38

tpd 134 3.35 6.80
tek 937 23.43 59.82
def 766 19.15 44.24
tab 8005 200.13 521.73
tac 1178 29.45 60.41
cak 65 1.55 12.53
eao 59 1.48 12.21
time 15148

latency 17743
Stdbots tpt 41 1.03 7.46

tpd 56 1.4 8.47
tek 776 19.4 53.62
def 981 24.53 69.76
tab 8167 204.18 620.64
tac 511 12.78 71.54
cak 64 1.6 12.21
eao 65 1.63 14.71

time 12478
latency 26234

Table 1: Experiment statistics of full-model PRbots
vs. non-communicating Stdbots.

Table 2: Experiment statistics of full-model PRbots
vs. Stdbots with limited communication.

or, if there were no more planets to bomb, switching
to some other role. The Stdbots, on the other hand,
quite often bombed planets en masse and oftentimes
moved and bombed in a cluster. The PRbots, with
their better bombing efficiency, had more opportunity
to perform other roles, such as protecting armies and
defending planets from enemies carrying armies.

Plan recognizing Agents vs.
Communicating C Agents

Hypothesis 3 claims that the use of rich plan-
recognition models can yield better coordination per-
formance than when limited communication capabili-
ties are used. In these experiments, a Stdbot utilized
a restricted communication protocol to inform team-
mates of its intent to attempt to capture a planetS;
the receiving C agents would use this information in
determining their own courses of action and would as-
sist the planet-capturing agent if they could.

The results of forty experiments of the PRbots com-
peting against Stdbots with limited communications
capabilities is shown in Table 2. Of the forty experi-
ments, the PRbots won 35 while the Stdbots won just
five.

The statistics in Table 2 again show dominance by
the plan-recognizing agents (PRbots). Bombing la-

SThis was the default C agent configuration and com-
munication protocol supplied by Hadley. Future work will
examine relative performance as the expressiveness of the
protocol increases.

tency again shows the PRbots’ improved bombing co-
ordination, with total bombing being nearly equiva-
lent. Again, this increased efficiency permitted the
PRbots to be more flexible, permitting them to switch
more dynamically to other, more useful, roles. One
significant item to note in the results of these experi-
ments is that the "eao"/’cak" ratio was reduced from a
nearly 2:1 ratio in the non-communicating experiments
to a 1:1 ratio in the communicating experiments. This
indicates that the Stdbots were much more successful
in protecting (coordinating with) teammates when the
teammates were taking planets.

Coordination through utilization of a limited com-
munication protocol by the Stdbots led to increased
Stdbot success in safely delivering armies to the PRbot
planets. The Stdbots’ communication language and
protocol, as defined for the C agents, are not powerful
enough, however, to overcome the flexibility provided
the PRbots by PRNs. The relatively rich modeling of
the complete task structure maintained by the PRbots
provided them with a broader scope of coordination
information than that provided by the Stdbots’ com-
municated information, even though the information
provided to the PRbots by the PRNs was uncertain.
Of note here is that the overhead associated with the
Stdbots’ communication was negligible, posing virtu-
ally no computational load and having virtually instan-
taneous transmission. Issues and tradeoffs related to
non-negligible communications with regard to relative
performance against plan recognition is yet another re-
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[ Team [ Stat. [ total [ avg. [ std.dev [
PRbots tpt 72 1.8 6.78

tpd 87 2.18 8.80
tek 904 22.6 59.24
def 919 22.98 42.16
tab 9104 227.6 562.97
tac 737 18.43 67.67
cak 41 1.03 4.65
eao 72 1.8 11.68
time 18545

latency 23310
Stdbots tpt 86 2.15 5.9287

tpd 102 2.55 6.3126
tek 919 22.98 40.604
def 959 23.98 61.953
tab 9105 227.63 539.29
tac 836 20.9 46.931
cak 81 2.03 13.808
eao 41 1.03 4.6542
time 15382

latency 22475

Table 3: Experiment statistics of restricted-model
PRbots vs. communicating Stdbots.

search area to be explored.

Restricted Plan-Recognition Model
Agents vs. Communicating Agents

In a test of Hypothesis 4, the PRbots were limited to
using a restricted plan-recognition model, one corre-
sponding to only the information included in the inter-
agent communication protocol (i.e., only the planet-
taking portion). In this set of games, the Stdbots were
able to use their limited-protocol communication. We
expected to see a reduction in the PRbot teanfs per-
formance due to the limitations placed upon the plan
recognition models used. However, it was unclear to us
how the PRbots’ ability to recognize planet taking of
agents on both teams compared to the Stdbots’ ability
to communicate without uncertainty.

The result of forty experiments showed the PRbots
finally coming out on the losing end, winning only eigh-
teen of the forty games. In these games, the PRbots
fell into the mass bombing pattern demonstrated by
the Stdbot and were subsequently less flexible in their
ability to change roles in a timely manner. The "head-
to-head" competition of communication and a func-
tionally similar plan recognition model provides some
evidence that the additional overhead involved with
plan recognition processing and uncertainty sometimes
outweighs the benefits gained by plan recognition. An
interesting area of research would involve exploring
team performance as communication and plan recog-
nition costs varied.
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I Team [Stat. [total I avg. [std.dev [
PRbots tpt 79 1.98 9.01

tpd 100 2.5 12.37
tek 914 22.85 69.78
clef 878 21.95 48.32
tab 9116 227.9 637.72
tac 861 21.53 92.11
cak 57 1.43 14.07
eao 129 3.23 14.43
time 19392

latency 22819
Stdbots tpt 72 1.8 9.3380

tpd 95 2.375 10.274
tek 887 22.175 53.309
def 958 23.95 75.309
tab 9674 241.85 648.36
tac 883 22.075 63.795
cak 134 3.35 14.575
eao 57 1.425 14.071

time 15282
latency 24532

Table 4: Experiment statistics of restricted-model
PRbots vs. non-communicating Stdbots.

Restricted Plan-P~cognition Model
Agents vs. Non-communicating Agents

To test Hypothesis 5, we again gave the PRbots an
incomplete model of the Stdbot’s plan library. But,
in comparison to the previous experiments, the Std-
bets’ ability to communicate was disabled, simulating
an event such as equipment failure or communication
jamming. Of forty experiments, the PRbots won 22 of
them, in comparison to 18 victories where the Stdbots
could communicate.

Game statistics shows that the two teanm were fairly
evenly matched except for a tremendous difference in
carried armies killed and enemy armies killed. The
PRbots demonstrated that they were able to effectively
coordinate against the opposing team (and with their
own team) even with their incomplete plan model. The
results of these experiments demonstrate that the Std-
bets’ reliance upon communication, which is advanta-
geous if communication is available, leaves them vul-
nerable when the situation is such that communication
cannot be used.

Conclusions

Our experiments verified our hypotheses that the flexi-
ble UM-PRS architecture would be slightly detrimental
compared to functionally equivalent C agents, and that
the PR-based coordination of UM-PRS robots would
be superior to the C agents if communication was im-
possible for both types of agents. We were surprised,
however, with our results on a more fair comparison,
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where the C agents use communication and UM-PRS
agents use plan recognition. We expected that the
teams would be fairly evenly matched, while in fact the
plan-recognition-based agents were significantly bet-
ter. Our analysis revealed that the strength of plan-
recognition-based coordination is that it allows agents
to infer as much as they can about others based on
observations, instead of being restricted to only know-
ing as much about others as can be expressed in the
communication language. Of course, the tables can be
turned in cases where observability is even more lim-
ited than language expressibility. But a clear outcome
of our studies so far has been to establish the benefits
of PR-based coordination when the "picture" is indeed
worth a thousand (or more) words!

The research discussed here only touches lightly
upon a very rich and deep set of research issues. We
have noted some of these issues in the text of the pa-
per and currently are exploring aspects of several is-
sues, including the affect of observation distribution
and observational uncertainty upon coordination per-
formance.
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