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Abstract

In this paper, potential synthesis cases in distributed
expert systems (DESs) are identified. Based on these
results, necessary conditions of synthesis strategies
in different synthesis cases and two methodologies to
solve the problem of synthesis of solutions in DESs are
proposed. A computational strategy by using analy-
sis methods and a neural network strategy which is
an example of inductive methods axe introduced in
detail for solving synthesis problems in conflict syn-
thesis cases. Both methodologies are evaluated and
compared.

Introduction

A distributed expert system (DES) is one of the special
configuration of distributed problem solving. It con-
sists of different expert systems (ESs) which are con-
nected by computer networks. In a DES, each expert
system (ES) can work individually for solving some
specific problems, and can also cooperate with other
ESs when dealing with complex problems.

Due to limitation of knowledge, the problem solving
ability of single ESs, and the uncertain features of some
problems, some tasks (or subtasks) may be solved 
more than one ES in order to increase the reliability
of the solution. A typical example is when "several
doctors diagnose the same patient".

If the same task is allocated to more than one ES,
each ES will obtain a solution. For example, two ESs
predict an earthquake in a particular area. ES1 be-
lieves that the possibility of the potential earthquake
being class 5 is zl = 0.8, while ES2 believes that the
possibility of the potential earthquake being class 5 is
z2 = 0.5. The problem is how to obtain the final un-
certainty if more than one uncertainty for the same
solution exists. The synthesis strategies are responsi-
ble for synthesizing the uncertainties of the solution
from different ESs to produce the final uncertainty of
the solution.

Consider the following two cases based on the above
example.

Case (1): two ESs obtain the uncertainties of the
solution (a class 5 earthquake in a particular area)

zl = 0.8 and z2 = 0.5, respectively, based on the same
geochemical results. This case demonstrates a belief
conflict between ES1 and E$2 because they obtained
the same solution with different uncertainties given the
same evidence. The final uncertainty S(zl, z2) should
be between z~ and z2 (i.e., min{z~, z2) _< S(zl, z2) 

Case (2): ES1 predicts a class 5 earthquake in an
area with uncertainty of Yl = 0.8 based on the evi-
dence from a geophysical experiment and ES2 obtains
the same solution with uncertainty of y2 = 0.5 based
on the geological structure of this area. The final un-
certainty for the solution of a class 5 earthquake in this
case should be bigger than any one of yl and Y2 (i.e.,
S(yl, y~) >_ ~naz{yl, y2}) because two ESs obtain the
same solution from different evidence, so this solution
is more reliable than the solution which comes from
the same evidence.

The conclusion is, that if two ESs obtain the same
solution with two identical uncertainties, such as z: =
yl, z2 = y2 (using the above example), the synthesis
of zl and z2 represented by S(zl, z2) may be different
from S(yl, y2) if these solutions originate from different
evidence.

The above two cases indicate that a right synthesis
strategy is not only based on uncertainties, but also
based on the relationship between evidence of solu-
tions. If an improper synthesis strategy is chosen in
a situation, a wrong solution may result. Therefore,
how to classify, design and choose synthesis strategies
is one of the critical research issues in a DES field.

Previous strategies for synthesis of solutions in DESs
have only considered the solutions, without consider-
ing the evidence which result in the solutions. Let us
briefly review these strategies. The uncertainty man-
agement strategy proposed by Khan (Khan &:Iain
1985) in 1985 can solve belief conflicts. A synthe-
sis strategy for a heterogeneous DES introduced by
Zhang (Zhang 1992) in 1992 can cope with the synthe-
sis problem for a heterogeneous DES which may use
different inexact reasoning models in different ESs. An
improved synthesis strategy proposed by Liu (Liu et al.
1992) in 1992 considers both uncertainties of proposi-
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tions and authorities of ESs. The key limitations of
these synthesis strategies are:

(1) The proposers of these strategies did not take
into consideration of the evidence which results in the
solutions; and

(2)Theses strategies were developed by only math-
ematical models. They did not work well if the rela-
tionship between multiple solutions from different ESs
and the desired final solution after synthesis cannot be
summarized by a mathematical method.

The purpose of this research is to overcome the above
limitations. In this paper, the potential synthesis cases
in DESs will be identified thoroughly, two possible
methodologies of synthesis of solutions in DESs will
be proposed, and examples of two methodologies will
be introduced and evaluated.

This paper is organized as follows. In Section 2,
the analysis of synthesis problem is described in detail
which includes the identification of potential synthesis
cases in DESs, and discussion of necessary conditions of
choosing or developing synthesis strategies in DESs. In
Section 3, the principles of two methodologies for syn-
thesis of solutions are proposed, two different strategies
which are developed by two different methodologies are
introduced, and compared. Finally, in Section 4, this
paper is concluded and further work is outlined.

Analysis of synthesis problem

In this section, the synthesis problem will be described
first, then the number of synthesis cases will be identi-
fied in DESs, and the necessary conditions of choosing
or developing synthesis strategies in DESs will be dis-
cussed.

Description of synthesis problem

Let’s see an example first. Suppose there are three ESs
(e.g. ESI, ES2, ESs) to decide the identity of the or-
ganism for a specific patient. ES1 says that it is pseu-
domonas with uncertainty 0.36 and proteus with un-
certainty -0.9, ES~ says that it is pseudomonas with
uncertainty 0.5 and serratia with uncertainty 0.4, and
ESs says that it is serratia with uncertainty 0.1 and
proteus with uncertainty 0.85. Because ES1 doesn’t
mention serratia, we believe that ES1 has no idea
about it. We can represent this unknown by using un-
certainty 0 in the EMYCIN model (Melle 1980). Then
the above solutions are represented in Table 1.

Pseudomonas Serratia Proteus Authority
ES, 0.36 0 -0.9 0.9
ES2 0.5 0.4 0 0.8
B& 0 0.1 0.85 0.9

Table 1: The uncertainties for each attribute value ob-
tained by the ESs.

The purpose of the synthesis of solutions here is to
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decide the final uncertainty distribution among pseu-
domonas, serratia, and proteus according to Table 1.

We now formally describe the problems. Suppose
there are n ESs in a DES to evaluate the values of
an attribute of an object (e.g. in a medical DES, the
identity of an organism infecting a specific patient).
The solution for an ESi can be represented as

(< object >< attribute > (V1 CF,1 A,) (V2 CF,2
A,) ... (V~ CF,,~ A,)) 2.1

where Vj (I _< ] _< m) represents flh possible value,
CF~# (1 < i < n, 1 < j < m) represents the uncer-
tainty for jth value from ESi, A~ represents the author-
ity of ES~, and m indicates that there are m possible
values for this attribute of the object. For example,
there are 6 possible values for the face-up of a die.

From the synthesis point of view, all ESs are con-
cerned with the same attribute of an object. So we
will only keep the attribute values, uncertainties, and
authorities in the representation. Here is the represen-
tation of m possible values with uncertainties from n
ESs:

CFn CFn... CFI,~ A1 ]
CF21 CF2~... CF2,,~ A~ 2.2

CF,~I CF,~... CFnm A,~

The synthesis strategy is responsible for obtaining fi-
nal uncertainties (OF,1 CF, a ... CF, m ) based on Ma-
trix 2.2 where * indicates the synthesis result from cor-
responding values with the subscriptions of 1,2, ..., n in
the same place.

The authority A~ (I < i < n) is the confidence level
for the solution from ES~. The value range of the au-
thority is [0, 1]. The higher the authority, the more
reliable the solution. It can be assigned for each ES
from human experts or generated based on the histor-
ical performance of ESs.

Potential Synthesis Cases in DESs

From Section 1, we know, for the same uncertainties,
the synthesis results can be different. That is, when
we develop synthesis strategies, the first problem is to
identify the different synthesis cases in DESs.

In this subsection, we will analyze the synthesis cases
in DESs based on the relationship between evidence
sets of a solution from different ESs. Informally, we
know that there are four relationships between evi-
dence sets of a solution. That is, the evidence sets
of a solution from different ESs are (a) identical, (b)
inclusion, (c) overlap, and (d) disjoint.

Before we formally define synthesis cases, some
preparation work should be done. We use propositions
to represent evidence and use conclusions to represent
solutions. In order to simplify the explanation, we will
fristly work on the assumption that there are two ESs
in a DES; then we will extend to any number of ESs
in DESs.
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Let P be a set of propositions, R be a set of rules,
and CF represent the uncertainty of a proposition in
an ES.

Definition 1: An inference network G in an ES is
defined as a directed acyclic graph in which the nodes
are propositions in P, and the arcs are activated rules
in R. (Suppose the rule format be A , B in this
definition). The root of such a network is a proposition
in P which is not the premise of any rule in R. In
contrast, a lea/is a proposition in P which is not the
conclusion of any rule in R.

Definition 2: A rule chain is defined as any chain
from one node A to another node B in an inference
network G (1) if there exists a rule a in which A is 
premise of the rule a and B is a conclusion of the rule
a; or (2/ if there exist a sequence of rules in which A
is a premise of the rule a and there exists a rule chain
from a node in the conclusion of the rule a to node B.

Definition 3: A general rule chain is defined as
a rule chain from a leaf to the root of an inference
network G (Zhang 1992).

Definition 4: The original evidence set of a propo-
sition B is represented by E(B), where E(B) is a
unique set of leaf propositions which satisfy the condi-
tion that there is a rule chain to connect such a leaf to
the proposition B.

For example, if there are inference networks Gi in
ES~, where G~ is:

D--~ 0 , A , B, F---~ E , B,T ,
A , C , B, then E~(B) = {D, F, r}.

The next four definitions are our formal definitions
of different synthesis cases. In the following definitions,
only the evidence in original evidence sets are consid-
ered because they are objective.

Definition 5: A conflict synthesis case occurs when
the original evidence sets of a proposition from differ-
ent ESs are equivalent, but different ESs produce the
same solution with different uncertainties. That is, for
a proposition B, if there exist E~(B) = Ej(B), where
E~(B) is in ESi, Ej(B) is in ESj, and CFi # CFj,
where C’Fi is the uncertainty of the proposition B from
ES~, and CFj is the uncertainty of the proposition B
from ESj.

For example, if there are inference networks G~ in
ES~ and Gj in ESj, where G~: D , C , A , B,
F , H , B aadGj: D---* H , B, F
I , B, then E,(B) = {D, F] and %(B) = {D, 
are equivalent..

Definition 6: An inclusion synthesis case occurs
when the original evidence set of a proposition from
one ES is a subset of an original evidence set of another
ES. Formally, for a proposition B, EB, C EB,, or vice
versa, where Es, is in ES~, and Es~ is in ESj.

For example, for a proposition B, there are infer-
ence networks G~ in E$~ and Gj in ESj, where Gi :
A ,C ,B,D ~B, andGj :A ,K ,B,
D ~ G , B, C ~ B, E , B. In this ex-
ample, ~,(B) = {A,D}, E~(B) = {A, D,C,E}, 
Ei(B) C E$(B). Note: for ESj, C is an original evi-
dence while for ESi, C is a derived evidence, so that
C is not in the E,(B) but in Ej(B).

Definition 7: A overlap synthesis case occurs when
the original evidence sets of a proposition from differ-
ent ESs are not equivalent, but the intersection of orig-
inal evidence sets is not empty. Formally, for a propo-
sition B, ~,(B) n~ (B) # 4, ~,(B)n~(B) 
and E,(B) Ej(B) # Ej (B) where E, (B) is in ES,
and j(8) is 

For example, for a proposition B, there are inference
networks G~ in ESi, and Gj in ESj, where Gi : A ,
C ~ B, D ~ B and Gj: A ~ E ~ F ¯ B,
H , G , S. In this example, Ei(S) = {A, m},
Ej(B) = {A,H}, so E~(B)N Ej(B) = {A} 4,
E,(B)NEj(B) --/: Ei(B), and Ei(B)nEj(B) :/= Ej(B).

Definition 8: A disjoint synthesis case occurs when
the intersection of original evidence sets of a proposi-
tion from different ESs is empty. Formally, for a propo-
sition B, E~(B) N Ej(B) = ~, where Ei(B) is in ES~,
and E~(B) is in ESj.

For instance, for a proposition B, there are inference
networks Gi in ESi and G~ in ES~ where Gi: A
C ,B,X. ,H ,BandG~:F ,D ,B.
In this example, E,(B) = {A,X}, E~(B) = {F}, so
E,(B) n E (B) 4.

From the above analysis, we know that there are four
synthesis cases in DESs based on the relationships be-
tween original evidence sets of a solution from differ-
ent ESs. There are only four synthesis cases because
only four relationships of original evidence sets exist in
DESs, which are (i) conflict, (ii) inclusion, (iii) overlap,
and (iv) disjoint.

The analysis of the above four synthesis cases is
based on only two ESs. Now we extend above defi-
nitions to n ESs.

Definition 9: A conflict s~lnthesis c~e occurs
among n ESs when the original evidence sets of a
proposition from n ESs are equivalent, but different
ESs produce the same solution with different uncer-
tainties. Formally, for a proposition B, if there exist

= = ... - where is in
ES~, E2(B) is in ES~, ..., and E.(B) is in ES., and
3i,], (1 < i,] < n,i # # CFj, where
is the uncertainty of the proposition B from ES~ and
CF~ is the uncertainty of the proposition B from ES~.

Definition 10: An inclusion synthesis case among
n ESs occurs if these exists an original evidence set of a
proposition from ES~ (E~(B)) in which E~(B) strictly
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includes all other Ej(B). Formally, for a proposition
B, vj (i <_ j _< n,j # i), E,(B) Ej(B) where El(B)
is in ESI, E2(B) is in ES2, ..., and E,~(B) is in ES..

Definition 11: A disjoint synthesis case occurs
among n ESs when the intersection of any two original
evidence sets of a proposition from n ESs is empty. For-
mally, for a proposition B, Vi, j, (1 _< i, j S n, i # ]),
E~(B) f3 Ej(B) -- ~b, where El(B) is in ES~, E2(B) is
in ES2, ..., and E,(B) is in ES,~.

If the number of ESs in a DES is more than 2, firstly
we identify whether the synthesis case belongs to a
conflict, inclusion, or disjoint case. If the synthesis
case doesn’t satisfy the conditions of the above three
cases, it is an overlap case.

Necessary Conditions of Synthesis
Strategies in DESs

Thus far, literature concerning DESs has not demon-
strated any necessary condition of synthesis strategies
for each of the synthesis cases. It is very important to
find the necessary conditions of synthesis strategies be-
cause they can be used to eliminate inappropriate use
of synthesis strategies. For example, conflict synthesis
strategies are inappropriate to be used in the inclusion,
overlap, or disjoint synthesis cases.

In this subsection, we will describe both general nec-
essary conditions of all synthesis strategies and specific
necessary conditions for synthesis strategies in each
synthesis case. The general conditions are on a more
abstract level, while specific conditions are on a more
concrete level.

General necessary conditions for all synthesis
strategies Let S represent a synthesis strategy of
CF~ and CFj (S(CF~, CFj)) where CFi and CFj rep-
resent the uncertainties of a proposition B from ESi
and ESj, respectively. S could be any of the synthe-
sis functions appropriate to the different situations of
conflict, inclusion, overlap, or disjoint.

The following properties are the general necessary
conditions which an acceptable synthesis strategy in
DESs should satisfy.

(a) Suppose that X is the set of uncertainties 
propositions in an inexact reasoning model. If Vi, j,
CF~ 6 X & CFj 6 X, then S(CF~,CFj) 6 X. The
reason for this property is that the value of uncer-
tainty after synthesis should be still in the same un-
certainty range, otherwise the synthesis result will
be meaningless.

(b) The synthesis function S on X must satisfy the
associative law. The reason for this property is that
in the real world, the final solution of the problem is
only based on the evidence which is used to obtain
the solution, not on the order of evidence. That is,
s(s(cF,, CFj), CFk) = S(CF , S(CF 
(c) The synthesis function S on X must satisfy the
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commutative law. The reason for this property is
the same as (b).

The general necessary conditions are valid only when
the synthesis strategies synthesize different uncertain-
ties by accumulative manners (i.e., synthesize two un-
certainties at once).

Specific necessary conditions for syn-
thesis strategies in each synthesis case In
the conflict synthesis case, the necessary con-
dition for the synthesis function should be
min{CF~, CFj} <_ Seo,,fl~et(CF~, GFj) <
maz{CFi, CFj }, where Seo, ll,~t is a synthesis function
for a conflict synthesis case, because both uncertainties
of CFi and CFj come from the same original evidence
set (E~(B) = Ej(B)). This condition is nothing related
to any inexact reasoning model even we use rain and
maz. In other words, the difference between CFi and
CFj only comes from the different subjective interpre-
tation of different ESs on the same objective evidence.
Since there is no additional evidence for each of the
ESs, the opinion from all of them should be consid-
ered, and they constrain each other.

In the disjoint synthesis case, there is no overlap
between EB, and EBj. EB, or E~ can contribute
positively or negatively to the uncertainty of proposi-
tion B being true independently. Therefore, if both
ESs favor the proposition B being true (CF~ > 
and CFj > 0 under the EMYCIN (Melle 1980) in-
exact reasoning model), the necessary condition for
the synthesis function should be Sd~ajo~t(CF~, CFj) 
max{CF~, CFj }; where Sdisjoi,,~ represents a synthesis
function for the disjoint synthesis case. If both ESs
are against the proposition B being true (CFi < 0 and
CFj < 0), then Sdi,ja~nt(CFi, CFj) < min{CFi, CFj}.
In all other cases, it should be min{CFi,CFj] <_
Sai,joi,,t(CFi, CFj) < max{OFi, CFj }.

In the inclusion synthesis case, if Ei(B) is the subset
of Ej(B), the necessary condition of inclusion synthe-
sis case should be Si,~¢z,~,i~(CFi, CFj) = CFj where
S~,,~t,,,io,~ is the synthesis function for the inclusion
case. The idea behind this is that ESi gets the solution
based on less evidence than ES~. Evidences used by
ES~ are already used by ES~, so ESi makes no more
contribution to the final solution.

In the overlap synthesis case, there is some ad-
ditional evidence between Ev, and Ev,. The
necessary condition for this kind of case should
be So,,,,q,,~,(CF~,CFj) > Seo,.,.f~¢,(CF~,CFi) if
CF~ > 0, CF~ >_ 0); or So.,.,.~(CFi,CF~) 
S,o.1zi,t(CFi, CYj) (if CFi < O, CYi < 0)where
So~er~a~ is the synthesis function for the overlap syn-
thesis case.

Both the conflict synthesis case and the disjoint syn-
thesis case are extreme cases. Both the inclusion syn-
thesis case, and the overlap synthesis case lie between
these two extreme cases.
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The relationships of the necessary conditions for the
synthesis strategies among four synthesis cases should
be as follows:

S~o./,,a(CF~, CFj) < S,.~,~°,o,~(CF,, CFj) <
Sd.io,.,( C F~, CE~);

Sco.fUc,(CF~, CFj) < S~,.,ap(CF~, CFj) 
s~.i~.,(cF~, cEi) if CF? > 0 and CFi > 0

&o~f,,a(CE~, CE~) >_ &.a~.o.(CF~, CFD 

S~f,~.,(CFi, CFi) > So..,.p(CFi, CFi) 
S~.#~,(CF~, CF#) if CF~ <_ 0 and CF5 < 0

Methodologies of solution synthesis

Description of solution synthesis

If we use X~ to represent a matrix (n * (m+ 1)) of 
tiple solutions from different ESs (refer to Matrix 2.2),

to represent a vector (m) of the desired final solu-
tions after synthesis of X~, and f to represent a perfect
synthesis function (the relationship between all Xi and
Y~), we can use the following symbols to describe syn-
thesis of solutions in general cases.

f(Xi) = Y~ for i = I, 2, 3, ...
As we described above, we always know all X~.

Questions here are (I) how to define ~ for any X~ and
(2) for how many Xi we know corresponding I’~. For
the first question, it is reasonable to define Y~ as human
experts’ solution for any X~. For example, experts in
grant agency (e.g. Australian Research Council) nor-
madly distribute any grant proposal to 3-5 domain ex-
perts to review the proposal, then they make a final
decision (score) of the proposal based on the scores
and comments from different domain experts. In this
example, X~ is the scores of a proposal from different
domain experts and Yi is the final score of the pro-
posal from experts in grant agency. For the second
question, if for any X~, we know Y~, we have nothing
to do about synthesis of solutions. If we don’t know

for any Xi, quality of a synthesis function would be
difficult to check because we don’t know it is good or
not. In fact, only for limited X~, we know correspond-
ing Yi and / is defined as a psuedo function to map
these limited X~ to corresponding Yi perfectly.

The goal of synthesis of solutions is to find a mapping
function f in which ff(X~) = Y~’ should be very closed
to f(x~) = y~ for all x,.

We now define ~(X~) 

which can be used to measure the difference between
the desired final solution ~ (expert solution) and the
real solution Y~’ from the function, m is the number of
possible values for an attribute.

If we use 6~ to represent the mean error and 6~
to represent the maximum error of outputs from if, 6~
and ~a, are defined as follows, respectively.

171

a~’"= - ma={16~l, 16i~1, ..., 161"l}

Generally, there are two methodologies to define f.
One is the method through the analysis of characteris-
tics of the input Xs thoroughly (Zhang 1995) to define
ff (analysis methods) and the other is from limited 
and the corresponding Y~ to define f (inductive meth-
ods).

In the following subsections we will analyse these
two methods.

Analysis methods

Basic principle of this methodology is to define a syn-
thesis function f through analysis of characteristics of
input Xi. The characteristics may include the rela-
tionships among original evidence sets from ESs which
derive the input matrix, the factors which affect the
desired final solution, and the weights for all factors.

Normally, analysis methods require some precondi-
tions. If synthesis cases satisfy these preconditions,
this kind of strategies can work well. In this method,
only input has been analysed. The typical examples
of analysis methods are: uncertainty management in
which the final solution to the task is based on not
only the mean value of uncertainties of the proposition
but also the uniformity among ESs about the proposi-
tion (Khan & Jain 1985); a synthesis strategy for het-
erogeneous DESs which was developed based on both
transformation functions among different inexact rea-
soning models among heterogeneous ESs and mean val-
ues of solutions from DESs (Zhang 1992). The meth-
ods of measurement of 5 are according to some nec-
essary conditions of synthesis of strategies (Zhang 
Zhang 1994), or comparison with other strategies.

Inductive methods

The idea of inductive methods is different from the
idea of analysis methods. By using inductive methods,
we don’t care about the characteristics of the input.
However, we must know enough samples. Each sample
represents one input matrix X~ and one correspond-
ing output vector I~. These samples should cover very
wide cases. Based on a number of Xi and correspond-
ing ~, we try to induce a synthesis function / to map
X~ to Y~ closely.

An example using inductive models is a neural net-
work strategy for synthesis of solutions (Zhang 
Zhang 1995). The character of these kind of strategies
are based on samples of both inputs and corresponding
outputs to find the best mapping functions to match
relationships between inputs and corresponding out-
puts. Once the relationship is found, actual outputs
~’ comes from the mapping function and X~.
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A synthesis strategy derived by analysis
methods

In this subsection, we discuss a computational strategy
which was developed by analysis methods.

This computational synthesis strategy is used to
solve synthesis problems for conflict cases (Zhang 
Zhang 1994). The design principles of this strategy
are to (1) analyze the characteristics of input matrix
Xi (uncertainties from different ESs) in conflict cases,
(2) design a mathematical model to solve inconsistency
problems based on the mean value and uniformity of
uncertainties from ESs, and (3) use evidential theory
to solve contradiction problems. The above procedures
are typically main steps of analysis methods.

Different cases of belief conflicts Suppose there
are n ESs in a DES to evaluate an attribute with m
possible values, the range of uncertainty of ESs is in
[-1, 1] and the set of uncertainties given by different
ESs is Uj : {CFq}, where j = 1,2,...,rn and i =
1, 2, ..., n. Uj represents flh column only of the matrix
X~. Belief conflicts can be divided into two cases:

Case 1: Inconsistency
All of the ESs in a DES believe that the proposition
is partially true (or partially false) and the differ-
ence is their uncertainties. This situation can be de-
scribed as: VCFq G Uj, CFq >_ 0, which means the
proposition is partially true, (or VCFq G Uj, CFij <_
0, which means the proposition is partially false),
where 0 represents the unknown in the EMYCIN in-
exact reasoning model (Melle 1980).

Case 2: Contradiction
The opinions of all ESs in a DES are contradiction.
Some of the ESs believe the proposition is partially
true while others believe not. This case can be rep-
resented in the following way: 3CFzj 6 Uj, CF:j < 0
and 3CF~j 6 Uj, CFkj > O.

The principle of the strategy The key idea of this
strategy is to classify conflicts cases into inconsistency
and contradiction. For each case, there is a correspond-
ing algorithm to solve the problem.

This strategy includes five steps:

(a) If the range of uncertainties of a proposition 
not in [0,1], the uncertainties of the proposition are
transformed from that range to the range of [0, 1]
by using the heterogeneous transformation functions
(Zhang 1992). For example, if an ES uses the EMYCIN
model, the range of [-1, 1] should be transformed into
the range of [0, 1].

(b) After transformation, the sum of uncertainties
may not satisfy the precondition in the Probability
model (Duds, Hart, & Nilsson 1976). If such a case
happens, the normalization function is used to nor-
malize uncertainties in the Probability model.
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(c) If the conflict degree is great, the cluster strategy
is used to classify the uncertainties into several subsets.
In each subset, the conflict degree should satisfy a cer-
tain requirement. At least, it should fall in the case of
inconsistency.

(d) For each subset, the synthesis strategy for incon-
sistency is used to obtain the final uncertainty among
uncertainty values if there is more than one uncertainty
value in a subset of uncertainties. The synthesis strat-
egy for inconsistency calculates one column only from
the input matrix (refer to Matrix 2.2) each time.

Here the basic idea of the synthesis strategy for in-
consistency is briefly introduced.

Suppose that FCF denotes a final uncertainty value,
MEAN is the mean value of all uncertainties (CFq) in
a subset where i = 1,2, ..., n, and UNIFORMITYis the
deviation of uncertainty values, the FCF will depend
on both MEAN and UNIFORMITY of uncertainties.
One method of calculating MEAN and UNIFORMITY
is as follows:

where Ai is the authority of ESi.
The formula of calculating FCF is:

FCF =

7" MEAN-/3, ¯ UNIFORMITY if MEAN > po
7 * MEAN + f12 * UNIFORMITY if MEAN < po

where 7, ~I, and 82 are constants. We have derived "y = 1,
~I ----f12 ---- ½ (Zhang & Zha~g 1994).

(e) If there is more than one subset after cluster, the
synthesis strategy for contradiction is used to obtain
the final uncertainty for the whole set of uncertainties.
In this case, evidential theory (Shafer 1976) is used 
form the synthesis strategy for contradiction.

Suppose S is a finite set, S = {sl, s2, ..., s,n} where
sl, s2, ..., s,, are propositions and m is the number of
possible values for an attribute. 2’ denotes the set of
all subsets of S. Suppose Sp~ and Spz are two ba-
sic support functions over the same set 2’. Sph(si)
and Spz(si) are used to measure the uncertainty of
proposition si by ES~ and ES[, respectively where k,
l- l,2,...,n.

The principle of the synthesis strategy for contra-
diction is to calculate final uncertainties based on the
whole input matrix. The synthesis function is defined
as follows:
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In the above functions, Spz(si) and Spl(s) are given
by:

where OFli is the uncertainty for the ith possible value
from the ESz (refer to Matrix 2.2), At is the author-
ity for ESz, F1 is the transformation function from
the EMYCIN model to the Probability model, and F2
is the inverse function of FI (Zhang 1992). The same
method can be used to define Spk(si) and Spk(s). In
the steps (d) and (e), both uncertainties of a propo-
sition from different ESs, and the authorities for each
ES are considered.

A synthesis strategy derived by inductive
methods

The key idea of inductive methods is to get the best
mapping function based on certain number of samples
(both input Xi and corresponding Y~). Normally, 
can use mathematical models to find mapping func-
tions such as The Least Square Method. However,
for some difficult problems, neural network strategies
are very good methods to find the best mapping func-
tions because neural networks can simulate some com-
plicated relationships between inputs (uncertainty ma-
trix from ESs) and outputs (final solution vector after
synthesis).

In this subsection, we demonstrate one of inductive
methods, neural network strategies. We have proposed
three neural network strategies for synthesis of solu-
tions in both conflict and non-conflict cases (Zhang 
Zhang 1995). Here we introduce the basic principle
of neural network strategies, and give an example of
neural network strategies.

The basic principles The basic principles are: the
inputs of the neural networks are the matrix of multiple
solutions from ESs (refer to Matrix 2.2); the outputs
of neural networks should be the desired final solutions
after synthesizing multiple solutions. If a neural net-
work can converge for all of patterns after training, this
neural network can act as an inductive function.

An example of neural network strategies Now
we introduce the structure of a neural network strat-
egy working in conflict cases (Zhang & ghang 1995).
This method is to investigate whether a neural network
can be trained to converge for solving belief conflicts if
enough patterns are given. The works should be done
include to collect enough numbers of patterns from the
real world, to set up a neural network architecture, to
decide an activation function, and to train this neural
network by adjusting the weights of links to accom-
modate all patterns. Currently, 200 artificial patterns
have been created, which cover various possibilities, in
which 180 patterns were chosen as training patterns
and further 20 patterns were used to test the neural
network.

The architecture The input layer has 4 * 6 nodes
and output layer has 6 nodes. The hidden layer con-
sists of 49 nodes. The neural network is fully con-
nected. The learning algorithm is backpropagation.
Figure 1 shows the architecture of this neural network.

Figure I: The architecture of the dynamic neural net-
work

Result analysis The neural network was trained by
90,000 cycles.

If we use 6i ’n~" to represent the maximum error and
~ to represent the mean error from all testing data,
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Figure 2 figures out the distribution of test errors of
all test data from test patterns (untrained patterns).
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Figure 2: The distribution of the test errors

The mean error 6~ = 0.036 and for 93% of test data,
6"n4~ < 0.07. This result indicates that a neural net-
work synthesis strategy is a good inductive method to
solve synthesis problems if enough training patterns
are available.

Comparison of two methodologies

Both analysis methods and inductive methods com-
pensate each other in the following ways:

¯ Computational synthesis strategies are the first
choice if the relationship among multiple solutions
from different ESs to a subtask and the final solu-
tion from a DES to the subtask can be represented
by a mathematical model.

¯ If there are enough patterns available and the neu-
ral network converges, the neural network strategy is
better than computational strategies because it can
simulate human experts quite closely. The neural
network strategies cover a wider range of problem
solving than computational synthesis strategies, be-
cause they can combine different strategies together
by training patterns.

¯ If a neural network does not converge, or it is too
hard to get enough training patterns, computational
synthesis strategies can reasonably solve synthesis
problems.

Conclusion
In this paper, we have identified the potential cases
of synthesis in DESs and classified the types of DESs.
Based on theses results, necessary conditions of syn-
thesis strategies in different synthesis cases and two
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methodologies to solve the problem of synthesis of so-
lutions in DESs, which are analysis methods and induc-
tive methods, have been proposed. A computational
strategy by using analysis methods and a neural net-
work strategy which is an example of inductive meth-
ods have been introduced for solving synthesis prob-
lems in conflict synthesis cases. Both methodologies
have been compared.

This work gives clear idea of two potential ways for
doing research in synthesis of solutions and also offer a
guideline for developing and choosing synthesis strate-
gies in DESs by using two different methodologies.

Further work is to apply two different methodologies
in real application domains, and investigate how to
combine analysis methods with inductive methods.
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