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Abstract

In this paper we analyze the most popular
evaluation metrics for separate-and-conquer rule
learning algorithms. Our results show that all
commonly used heuristics, including accuracy,
weighted relative accuracy, entropy, Gini index
and information gain, are equivalent to one of
two fundamental prototypes: precision, which
tries to optimize the area under the ROC curve for
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vast majority of algorithms uses a greedy top-down hill-
climbing or beam search strategy, other approaches search
bottom-up or apply exhaustive or evolutionary search algo-
rithms. Common to all algorithms is that they have to use
a metric for evaluating the quality of a candidate rule.

Note that rule learning algorithms that are based on iter-
ative refinement of candidate rules typically use the same
metric for evaluating complete and incomplete rules. While

the evaluation of complete rules should measure the rule’s

unknown costs, and a cost-weighted difference
between covered positive and negative examples,
which tries to find the optimal point under known
or assumed costs. We also show that a straight-
forward generalization of the:-estimate trades
off these two prototypes.

potential of classifying unseen test cases, the evaluation of
an incomplete rule should capture its potential to be refined
into a high-quality complete rule. In this case, the evalu-
ation metric is used as search heuristic We note that,

in principle, different types of search heuristics are possi-
ble (cf. also Section 5), but, like all refinement-based rule
learning algorithms, we will not further differentiate be-
tween evaluation metrics and search heuristics, and use the
terms interchangeably in the remainder of the paper.

Most rule learning algorithms for classification pro_blems The outline of the paper is as follows. In Section 2 we give
follow the so-calledseparate-and-conqueor covering  gome formal definitions used in the rest of the paper. In
strategy, i.., they learn one rule at a time, each of themggtjon 3 we present our main analysis tool: isometrics in
explaining €overing a part of the training examples. The PN-space (a variant of ROC space). Section 4 is the main
examp!e; covered by the last learned rule are removed fro’ﬂi‘art of the paper, presenting our analysis of rule learning
the training set geparateql before subsequent rules are poristics through isometric plots. Section 5 discusses the

learned (before the remaining training examples@m®- 5 implications of the analysis, and Section 6 concludes.
quered. Typically, these algorithms operate inrcancept

learningframework, i.e., they expect positive and negative ..
examples for an unknown concept. From this training data2- Formalities
they learn a set of rules that describe the underlying cony, the remainder of the paper, we use capital letters to de-

cept, i.e., that explain all (or most) of the positive exam- o+ the total number of positivé®] and negativel{) ex-
ples and (almost) none of the negative examples. If any Oémples in the training set, wherea@') andn(r) are used
the learned rules fires for a given example, the example i?or the respective number of examples covered by a rule
classified as positive. If none of them fires, the example,. - e\ ristics are two-dimensional functions of the form

is classified as negative. This corresponds todiosed- ., ) \we use subscripts to the letterto differentiate
world assumptiorin the semantics of theories (rule sets) peyyeen different heuristics. For brevity and readability,

and clauses (rules) in PROLOG. we will abridgeh(p(r), n(r)) with h(r), and omit the ar-

Various approaches that adhere to this framework differ irgument(r) from functionsp, n, andh when itis clear from
the way single rules are learnediifikranz, 1999). The the context,

1. Introduction
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Definition 2.1 (compatible) Two search heuristick; and

S Table 1. PN- . ROC- .
ho are compatibleff for all rules r, s: able spaces vs. ROC-spaces

ha(r) > hi(s) < ha(r) > ha(s). Property F;CF),CF; ip%ace Pg space
Definition 2.2 (antagonistic) Two search heuristicsh y-axis TPR =2 p
andh, are antagonistidff for all rules r, s: empty theory (0,0) (0,0)
hi(r) > hi(s) € ha(r) < ha(s). correct theory (0,1) 0,P)
Definition 2.3 (equality-preserving) Two search heuris- universal theory (11» 11) (P, N)

tics h; and h, are equality-preservingsf for all rules , s: resolution (5 ~) (1,1)

hi(r) = hi(s) < ha(r) = ha(s). slope of diagopal
. - , slope ofp = n line
Theorem 2.4 Compatible or antagonistic search heuris-

tics are equality-preserving.

Proof: Assume they would not be equality-preserving.

This means there exist rulesands with h,(r) = ho(s)  Ply normalizing the?” andN-axes to the scal@, 1] x [0, 1].

but ho(r) # ha(s). Without loss of generality assume Consequently, the isometrics of a function in a PN-graph

hy(r) > ha(s). This implies that, (r) > h(s) (for com- ~ are equivalent to its isometrics in ROC-space (Flach, 2003).

patibility) or h1 () < hi(s) (for antagonicity). This leads Nevertheless, PN-graphs have several interesting properties

to a contradiction. O that may be of interest depending on the purpose of the vi-
sualization. Table 1 compares some of the properties of

Definition 2.5 (equivalence) Two search heuristicsh1  PN-curves to those of ROC-curves. A more detailed dis-

and h, are equivalent(h; ~ ho) if they are either com-  cussion can be found in fFnkranz & Flach, 2003).

patible or antagonistic. ] ) ) )
Of particular interest for the covering approach is the prop-

Basically, we consider two heuristics as equivalent if theyerty that PN-graphs reflect a change in the total number or

order a set of candidate rules in the same or the oppositdroportion of positive £) and negative{) training exam-
way. ples via a corresponding change in the relative sizes of the

P and N-axes. ROC analysis, on the other hand, would
3 PN dl tri rescale the new dimensions to the rafi@e], which has
: -Spaces and ISometncs the effect of changing the slope of all lines that depend on

We will visualize the behavior of a search heurigtiby ~ the relative sizes gi andn. Therefore, the PN-graph for a

plotting it in a rectangular window with two axes repre- subset of a training set can be drawn directly into the PN-
senting the positive and negative examples covered by _graph of the entire set. In particular, the_sequence of train-
rule. In thisPN-space a point(n,p) € [0,N] x [0, P] ing sets that are produced by the recurswe_cz_ills of the cov-
represents a rule coveripgpositive and and negative ex-  €ring strategy—after each new rule all training examples
amplesl With each such point, we associate its heuristicthat are covered by this rule are removed from the training

valueh(p, n) and draw the isometrics of the functién set and the learner calls itself on the remaining examples—

L ) ) , , L can be visualized by a nested sequence of PN-graphs (see
Definition 3.1 (isometric) Anisometricof a heuristich is Figure 6).

a line (or curve) in PN-space that connects, for some value
¢, all points(n, p) for whichh(p,n) = c. i
(n-) (.m) 4. Analysis
The importance of isometrics is reflected in the definitionsT
in the previous section: Equality-preserving search heuris-
tics can be recognized by examining their isometrics an

establishing that for each isometric line fhg there is rarely ever be achieved in a single step, but a set of rules

an identical isometric linés,. Compaible (antagonistic) will be needed to meet this objective. The purpose of a rule

search heuristics can be recognized by investigating COMM&syaluation metric is to estimate how close a rule takes you

sponding isometrics and establishing that their associateg this ideal point
heuristic values are in the same (the opposite) order. '

he ultimate goal of learning is to reach pofat P) in PN-
pace, i.e., to learn a correct theory that covers all positive
xamples, but none of the negative examples. This will

. ) In the following, we analyze the most commonly used met-
Note that PN-graphs are essentially equivalent to the grap}"ﬁ v y y

. . c¢s for evaluating the quality of a rule in covering algo-
that are used in ROC analysis (e.g., Provost & I:a\’\'(:mtrithms. Because of space restrictions, we cannot reference

2001): A PN-graph can be turned into a ROC graph by Sim'each occurrence in the literature, but we have to refer the

1n all figures, we will assum® < N. This choice was made reader to the survey (ffnkranz, 1999) to the longer version
for esthetic reasons and does not affect our results. of the paper (Brnkranz & Flach, 2003).
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Figure 1. Isometrics for minimizing false positives and for maxi- Figure 2. Isometrics for accuracy and weighted relative accuracy
mizing true positives.

ample. There are cases where this choice is arbitrary, for
example when misclassification costs are not known in ad-
Clearly, each rule in a correct theory has to cover a subsétance or when the samples of the two classes are not rep-
of the positive examp|es but none of the negative examresentative. In such cases, it may be advisable to normalize
ples. This property can simply be measured by countingVith sample size:

the number of covered negative examples for each individ-

ual rule. Alternatively, one can also try to cover all positive hwra = P _rpr_FPR

examples “at all costs”, i.e., regardless of how many neg- PN

ative examples are covered. This is equivalenetmllin - The jsometrics of this heuristic are shown in the right half
information retrieval. Two heuristics that implement theseq¢ Figure 2. The main difference to accuracy is that the iso-
strategies are metrics are now parallel to the diagonal, which reflects that
we now give equal weight to increasing the true positive
rate (TPR) or to decreasing the false positive rate (FPR).

4.1. Basic Heuristics

hn=—n hp=rp

Figure 1 shows their isometrics: vertical and horizontalNote that hwra may be viewed as a simplification of

lines. All rules that cover the same number of negativeweighted relative accuracf.avrat et al., 1999).
(positive) examples are evaluated equally, irrespective oi_

the number of positive (negative) examples they cover. heorem 4.2 hwra is equivalent to weighted relative ac-

curacy.
4.2. Accuracy, WRA, General Costs Proof: Weighted relative accuracy is defined/gg g =
pi;(,(p%n — 54 Using equivalence-preserving trans-

Bolth basic heu“St'tCS have the d|s§iQVantage ihat they fi)Cd rmations (multiplications with constant values like
only on one aspect: covering positive examples or excludp Ay we obtain. oo — L (p—p-P —nP ) ~

ing negative examples. Ideally, one would like to achieve ) wra' = PN (PPPEN N
both goals simultaneously. A straight-forward solution isP PN
to simply add uphn andhp:

—n=L_ ~ _ ~ P _n_
nNprN pN —nP 5 N = hwra. O

The two PN-graphs of Figure 2 are special cases of a func-
tion that allows to incorporate arbitrary cost ratios between
false negatives and false positives. The general form of this

The isometrics for this function are shown on the left graphlinear cost metrids
of Figure 2. Note that the isometrics all have® angle,
which means that this heuristic optimizes accuracy: hcosts=ap —bn ~cp— (1 —c)n ~p —dn

hacc=p—n

Theorem 4.1 haccis equivalent to accuracy. Obviously, the accuracy isometrics can be obtained with
Proof: The accuracy of a theory (which may be a singleq = 5 = d = 1 or ¢ = 1/2, and the isometrics of weighted
rule) is the proportion of correctly explained examples, i.e. relative accuracy can be obtained by setting 1/P and
positive examples that are covergq &nd negative exam- = 1/N orc = N/(P + N) ord = P/N. In general, the
ples that are not coveredV(—n), in all examples £+ N).  slope of the parallel isometrics in the PN-grapl$is .

Thus the isometrics are of the forf Y™ = c. As P

andN are constant, these can be transformed into the is4.3. Precision

metrics ofhacc p — n = cacc= ¢(P + N) — N. a o ) )
The most commonly used heuristic for evaluating single

rules is to look at the proportion of positive examples in all
Optimizing accuracy gives equal weight to covering a sin-examples covered by the rule. This metric is known under
gle positive example and excluding a single negative exmany different names, e.gconfidencen association rule



Figure 3. Isometrics for precision and entropy

mining, orprecisionin information retrieval. We will
the latter term:

use

__P
p+n

hpr

Figure 3 shows the isometrics for this heuristic. Like,

Entropy is not equivalent to information content and preci-
sion, even though it seems to have the same isometrics as
these heuristics (see Figure 3). The difference is that the
isometrics of entropy go through the undefined poino)

and continue on the other side of thg° diagonal. The
motivation for this is that the original version of CN2 did
not assume a positive class, but labeled its rules with the
majority class (i.e., it learned decision lists). Thus rules
r = (n,p) ands = (p,n) are considered to be of equal
quality because if one of them can be used for predicting
the positive class, the other can be used for predicting the
negative class.

Based on this, we can, however, prove the following

Theorem 4.5 hentandhpr are antagonistic fop > n and
compatible fop < n. .

Proof:  hent= —hprlogy hpr — (1 —hpr)logy (1 — hpr)

precision considers all rules that cover only positive examwith hpr € [0,1]. This function has its maximum at

ples to be equally good (th-axis), and likehp, it consid-

hpr = 1/2 < p = n. From the fact that it is strictly

ers all rules that only cover negative examples as equallynonotonically increasing fgs < » follows thathpr(z) <

bad (theN-axis). All other isometrics are obtained by ro-
tation around the origif0, 0), for which the heuristic value
is undefined.

Several other, seemingly more complex heuristics can b

hpr(y) = hent(x) < hpr(y) in this region. Analogously,
hpr(z) < hpr(y) = hent(z) > hpr(y) for p > n, where
hentis monotonically decreasing frpr. |

th decision tree learning, the Gini index is also a very pop-

shown to be equivalent to precision. For example, theyjar heuristic. To our knowledge, it has not been used in

heuristic that is used for pruning Ripper (Cohen, 1995):

n

Theorem 4.3 Ripper’s pruning heuristichrip = f);—n is
equivalent to precision.
Proof:  hrjp = ;2. — (1= ;20) = 2hpr — 1 ]

In subsequent sections, we will see that more comple

heuristics, like entropy and Gini index, are also equivalenﬂ

to precision. On the other hand, seemingly minor modifi-
cations like the Laplace on-estimates are not.

4.4. Information Content, Entropy and Gini index

Some algorithms measure the information content

hinfo = — lo
info 82 n

Theorem 4.4 hjnso and hpr are antagonistic and thus
equivalent.

Proof:  hjnfg = — logs hpr, thushjnio(r) > hipfo(s) <
hpr(T‘) < hpr(S). O

The use of entropy (in the form of information gain) is very
common in decision tree learning (Quinlan, 1986), but ha

also been suggested for rule learning in the original version

of CN2 (Clark & Niblett, 1989).

n
2p+n

p
2p—|—n

+

lo lo
g ptn g

hent= —
ent (p+n

rule learning, but we list it for completeness:

) - Gis)

n
p+n

p
p+n

pn
p+n)?

hgini =1- <

Q’he Gini index has the same isometric structure as entropy,

t only differs in the distribution of the values (hence the
ines of the contour plot are little denser near the axes and
less dense near the diagonal). This, however, does not

change the ordering of the rules.
Theorem 4.6 hgjnj andhentare equivalent.

Proof: Like entropy, the Gini index can be formulated in
terms ofhpr (hgini = hpr(1 — hpr)) and both functions
have essentially the same shape. |

4.5, Information Gain

Next, we will look atFoil's version of information gain
(Quinlan, 1990), which, unlikéD3's and C4.5's version
(Quinlan, 1986), is tailored to rule learning, where one only
needs to optimize one successor branch as opposed to the
multiple successor nodes in decision tree learning. It dif-
ers from the heuristics mentioned so far in that it does not
evaluate an entire rule, but only the effect of specializing a
rule by adding a condition. More precisely, it computes the
difference in information content of the current rule and its
predecessar’, weighted by the number of covered positive
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Figure 5. Isometrics for then-estimate

Figure 4. Isometrics for information gain as used fwil. The Conjecture 4.7 For p > 1=:n: htoj| IS equivalent to

curves show different valuesfor the precision of the parent rule. costs(Wherec € [0, 1] is the precision of the parent clause
in hfoj| @nd1 — cis the cost parameter ifcosty.

examples (as a bias for generality). The exact formdlais 4.6, Laplace andm-estimates

hesit — p(l p 1 The Laplace andn-estimates (Cestnik, 1990) are very
foil = p(log ptn 82 °) common modifications ofipr.

wherec = hpr(r’) is the precision of the parent rule. For
the following analysis, we will view as a parameter taking h ap=
values in the interveD, 1]. p+n+2

Figure 4 shows the isometrics éfq; for four different 1 pagic idea of these estimates is to assume that each
settings ofc. Although the isometrics are non-linear, they (e covers a certain number of examptegriori. They
appear to be linear in the region above the isometric thagompute a precision estimate, but start to count covered
goes through(0,0). Note that this isometric, which we hqsitive or negative examples at a numben. With the

will call the base line has a slope of=;: Inthe firstgraph | gpjace estimate, both the positive and negative coverage
(c= HLN) itis the diagonal, in the second grapt 1/2)  of arule are initialized with 1 (thus assuming an equal prior

it has a45° slope, and in the lower two graphs£ 1 and  distribution), while them-estimate assumes a prior total

¢ = 107%) it coincides with the vertical and horizontal axes coverage ofn examples which are distributed according

respectively. From these graphs, it can be seen that above the distribution of positive and negative examples in the
the base line, information gain is equivalent to the lineartraining set.

cost metrichcosts

P
p+1 hm:ermm
p+n+m

In the PN-graphs, this modification results in a shift of the
It is hard to explain the non-linear isometrics below theorigin of the precision isometrics to the po{tn,,, —pm ),
base line. However, note that this region corresponds tevheren,, = p,, = 1 in the case of the Laplace heuris-
the cases where the precision of the rule is smaller than tic, andp,, = m * P/(P + N) andn,, = m — p,, for
i.e., smaller than the precision of its parent rule. Such a rethe m-estimate (see Figure 5). The resulting pattern of
finement of a rule is usually not considered to be relevantisometrics is symmetric around the line that goes through
In fact, this is also the region where the information gain is(—n,,,, —p,,) and (0,0). Thus, the Laplace estimate is
negative, i.e., an information loss. The base line has inforsymmetric around thd5° line, while the m-estimate is
mation gain 0, and the linear isometrics above it all have asymmetric around the diagonal of the PN-graph.
increasingly positive gain. Another noticeable effect of the transformation is that the
These graphs lead us to formulate the following isometrics in the relevant windoyo, 0) — (P, N) become

- [ [ allel to the symmetry line, the farther the
This formulation assumes that we are learning in a propo-mcr%ISIngly par y y

sitional setting. For relational learningoil does not estimate qngm moves away fron0,0). Form — oo, the |som§t-
the precision from the number of covered instances, but from théiCS Of them-estimate converge towards the isometrics of

number ofproofsfor those instances. relative weighted accuracy (see theorem 4.8 below).



4.7. The Generalizedn-Estimate

The above discussion leads us to the following straight- P .
forward generalization of the:-estimate, which takes the A
rotation point of the precision isometrics as a parameter: ’

P+ me p+a R1///
p+n+m (p+a)+(n+b)

The second version of the heuristic basically defines the

rotation point by specifying its co-ordinaté¢s-b, —a) in = .
PN-spaced,b € [0,00]). The first version uses: as a
measure of how far from the origin the rotation point lies N

i i . PNO PNT PNZ T RNE S i e
using the sum of the co-ordinates as a distance measure. e

Hence, all points with distance lie on the line that con-
nects(0, —m) with (—m, 0), andc specifies where on this
line the rotation point lies. For example,= 0 denotes
(0,—m), whereasc = 1 means(—m,0). The line that
connects the rotation point ar{d, 0) has a slope of==.
Obviously, both versions oigm can be transformed into

each other by choosing = a+bandc = ;45 ora = mc o

andb = m(1 — c). " N
Theorem 4.8 For m = 0, hgmis equivalent tdipr, while
for m — oo, its isometrics converge tocosts Figure 6. Accuracy and precision in nested PN-spaces.

Proof: m = 0: trivial.
m — oo: By construction, an isometric dfgm through

the point(n, p) connects this point with the rotation point PN-space with parallel lines. We have also seen A

y be used for trading off between the two basic models.
—(1—¢)m, —em) and has the slope2+<™_  For can | ; 2 . O
(=(1 = ¢)m, —em) m+(1—c)m me In this section, we will discuss a few interesting differences

oo,_this slqpe converges tp= for all pOin.tS(n,p.). Thus betweenpr andhcosts
all isometrics converge towards parallel lines with the slope
=, ] A property that makedcosts attractive for covering al-

gorithms is that a local optimum in the subspa@éy;,
Theorem 4.8 shows thagm may be considered as a gen- which corresponds to the examples that remain after reach-
eral model of heuristic functions with linear isometrics thating point R;, is also optimal in the global PN-space. This
has two parameters: € [0, 1] for trading off the misclas- is because all isometrics are parallel lines with the same
sification costs between the two classes, and [0,00]  angle, and nested PN-spaces (unlike nested ROC-spaces)
for trading off between precisiohpr and the linear cost |eave angles invariant. Precision, on the other hand, cannot
metric heosts® Therefore, all heuristics discussed in this be nested in this way. The evaluation of a given rule de-
paper may (at least in their relevant regions) be viewed apends on its location relative to the origi, 0) of the cur-
equivalent to some instantiation of this general model.  rent subspacéN;. This is illustrated in Figure 6, where

the subspaceBN; correspond to the situation after remov-
5. Discussion ing all examples covered by the rule §6t;|j < i}.

In the previous section we have identified two fundamentafz‘ISO n;)te thf‘t St e?]Ch lpow(h,fpa], fi_pr is equivalent to
types of rule learning heuristics: precisiépr, which ro- costsfor ¢ = 72 (the slope of the line connectir(g, 0)

tates around the origifd, 0), andheostswhich covers the  With (n,p) is +2¢ = p/n). Thus, one may say thaipr
- assumes a different cost model for each point in the space,

*The reader may have noted that for— oo, hgm — c¢for  depending on the relative frequencies of the covered posi-
all p andn. Thus form = oo, the function does not have isomet- tive and negative examples.

rics because all evaluations are constant. However, this is not a
problem for the above construction because we are not concernag/hy such locally changing costs may nevertheless be a rea-
with the isometrics of the functiogm at the pointm = co, but - g4naple strategy becomes clear when we look at how suc-
with the convergence of the isometrics/agm for m — oo. In . I | d Fi d b

other words, the isometrics bt gstsare not equivalent to the iso- cessive rules are. earned (see Figure @f needs to be
metrics ofhgm for m = oo, but they are equivalent to the limits €valuated locally in the PN-spaé&V; that results from re-

to which the isometrics dfgm converge ifm — oo. moving all examples already covered by previously learned



rulesR;. The metric then picks the rule; ., that promises ways find a rule that covers a single positive example and
the steepest ascent for a continuation of the ROC curve thato negative example, and such a rule has an optimal value
already leads from the origin t&;. However, whilehpr hpr = 1. For large example setécostscan be expected
makes a locally optimal choice for a continuation of theto be less prone to overfitting because it will typically be
ROC curve, this choice need not be globally optimal be-easy to find a general rule that has a higher evaluation than
cause a rule with a slightly worse local evaluation may leadh rule that fits a single example (e.g., there will usually be
to a much better situation for learning the next rule, andmany rules that havégcc = p — n > 1). In fact, one
thus eventually to a better overall thedry. of the main reasons why the Laplace aneestimates are
favored over precision was because they are less sensitive
to noise. Our interpretation of these estimates as ways of
trading off between precision and linear costs supports this
yiew. However, for small example sets, each rule will only
cover a few examples, causing the same type of problems.
aﬁs small training sets are typically bound to happen at the

end of the covering phaskggstswill eventually also over-

fit. Typically, the problem of overfitting is addressed with

a separate set of heuristics, so-cakopping criteria In
An interesting phenomenon is that several heuristics modprinciple, stopping criteria decide which point of a ROC-
ify their cost model based on the properties of the PN-curve should be selected. We plan a separate analysis of
space. For example, relative weighted accuracy always ashis issue in forthcoming work.
sumes costs that are parallel to the main diagonal. Sim- . . .
. o . . In accordance with most rule learning algorithms, we also
ilarly, we have seen thdtoil's information gain assumes

costs that are parallel to the distribution of examples tha{acItIy made the assumption that mcomplete rules (or in-
complete rule sets) should be evaluated in the same way as
are covered by the parent rule of the current rule. In effect

such approaches mav be seen as normalizing the exam tfgmplete rules (or complete theories). However, it should
P y 9 H3& noted that this is not necessarily the case: the value

distribution and assuming equal costs for positive and neg- : . s - o
. . e . .. ~of an incomplete rule lies not in its ability to discriminate
ative misclassificationates(as opposed to the misclassifi-

: : . between positive and negative examples, but in its poten-
cations themselves like accuracy does). As the successive . ' . : :
. ; 1al of being refined into a high-quality rule. For example,
removal of covered examples will necessarily skew the ex- . )
A . : . Gamberger and Lavéa(2002) argued that for incomplete
ample distribution, this seems to be a particularly good idea

for covering approaches. On the other hand, if fewer anéwes’ itis more important to cover many positives (hence

S . . a flatter slope is acceptable), while for complete rules it is
fewer positive and negative examples remain, the resolu-

) o : : : ._more important to cover as few negatives as possible (hence
tion on the positive axis becomes increasingly problematic e

: - o ... “a steeper slope). A similar argument has been made by
with the limiting case where the true positive rate is either

. o Bradley (1996) who argued that the non-linear isometrics

1 or 0 because there is only one positive example left to 9 e . L

o . of the x* statistic should be used in order to discriminate

cover. It is still largely an open question whether such a P » o .

o - classifiers that do “little work” from classifiers that achieve
normalization is beneficial or not.

the same accuracy but are preferable in terms of other met-
We have also ignored the fact that a learner typically eval+ics like sensitivity and specificity.

uates a large number of candidate rules, which makes rEligth related is the work of Vilalta and Oblinger (2000)

quite likely that one of them fits the characteristics of the . ! . : .
. o ._.-who analyzed evaluation metrics by proposing a bias sim-
training set by chance. One of the objectives of a heuristic,_ . : T
: . . llarity measure based on the area between isometric lines
function should be to counter this phenomenon by giving,

. . : rough a fixed point in ROC-space, and tried to relate the
lower evaluations to rules in regions that can be expected. "."~. . o
. . . " Similarity between metrics to the performance of classifiers
to be particularly sensitive to this overfitting problem. In

) " that use these metrics. The main difference to our work is
particular,hpr suffers from overfitting because one can al- - .
that they focused on decision-tree metrics, where the aver-
“A similar idea is used by (Ferri et al., 2002): they suggestde impurity over all successor nod.es is measured, whereas
to maximize the area under the ROC curve by sorting all rulesve focus on a rule learning scenario where only the impu-

that correspond to the leaves of a decision tree accordihgito  rity of a single node (the rule) is of interest.
The main difference is that in their setting the set of rules is N )
fixed, while in the covering approach rules are added incremenin addition to the above-mentioned works, we refer to

tally, and thus a different choice for one rule may lead to a com-(Flach, 2003) for a systematic treatment of the importance

pletely different theory. However, one could use their method asyf yjsualizing evaluation metrics and their isometrics in
a post-processor for re-ordering and finding the right subset of th??OC-space

learned rules.

In brief we may say thakpr aims at optimizing under un-
known costs by (locally) maximizing the area under the
ROC curve, whereabcgststries to directly find a (global)
optimum under known (or assumed) costs. For example, i
the pointR; in Figure 6 could be reached in one stégec
would directly go there because it has the better glob
value, whereagpr would nevertheless first learR; be-
cause it promises a greater area under the ROC curve.
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