
Evolutionary MCMC Sampling and Optimization in Discrete Spaces

Malcolm J A Strens mjstrens@QinetiQ.com

Future Systems Technology Division, QinetiQ, Cody Technology Park, Farnborough, Hampshire, GU14 0LX,
United Kingdom.

Abstract

The links between genetic algorithms and
population-based Markov Chain Monte Carlo
(MCMC) methods are explored. Genetic
algorithms (GAs) are well-known for their
capability to optimize functions of discrete-
valued variables, but the MCMC interpre-
tation allows GA variants to be used for
sampling discrete spaces (e.g. in Bayesian
inference for machine learning). The GA
crossover and mutation operators are mod-
ified to provide valid MCMC samples, and a
new “exclusive-or” operator is introduced as
an alternative way to recombine population
members. This is shown to improve sampling
performance in a medical diagnostic problem
domain. The sampler can also be used within
simulated annealing to provide a global opti-
mizer that is similar to a GA in structure but
has known convergence properties.

1. Introduction

Machine learning methods often generate sampling
problems that must be solved efficiently. This is par-
ticularly true of Bayesian inference approaches to ‘ex-
plaining’ observed data using compact models. Exam-
ples of such models are decision trees, Bayesian net-
works, and sets of logic statements. In this paper the
focus is on the discrete-valued parts of these models,
rather than any continuous parameters that must also
be inferred. The discrete-valued parts might be struc-
tural information about the architecture of the model
(dependency arcs in a Bayesian net, for example) or
assignments of boolean-valued states in the model. In
different domains this information might be called the
structure, hidden states or the chromosome. Through-
out this paper, a medical diagnosis problem is used as
an example: the hidden state defines the presence or
absence of a set of diseases in the patient.

The requirement is often not just to find the the maxi-
mum likelihood structure, but instead to assign a prob-
ability to every possible structure that could explain
a set of observations. This provides a much richer
source of information for subsequent stages of process-
ing (e.g. decision-making or data fusion). When the
space of structures is very large or infinite, it becomes
necessary to sample rather than enumerate this space.

1.1. Sampling for Bayesian Inference

Let B be the set of unique bit-strings that describe
possible structures. For simplicity, assume that their
lengths are all equal to some constant m. There-
fore the set can be indexed using a natural number
1 ≤ i ≤ 2m. In Bayesian inference, a model P (D|b)
is assumed for observations D given structure b ∈ B.
The observations in the medical application are the
findings of a series of tests, indicating the presence or
absence of disease symptoms. There is also a prior dis-
tribution P (b) for the likelihood of each structure: this
assigns low probabilities to rare diseases, for example.
Then the posterior distribution on b is given by Bayes
rule:

P (b|D) =
P (D|b)P (b)

P (D))

If the observations (D) are given, this becomes a target

function πD(b). The maximum a posteriori solution

for b is then given by b̂ ≡ arg maxb πD(b). This solution
can be found by discrete optimization techniques such
as genetic algorithms, random search, tree searches,
etc. However, it is often the case that b̂ is of little
use for decision-making or subsequent processing: the
most-likely cause of the observations is not necessarily
the correct one.

Suppose that the Bayesian inference task is to inter-
pret observations in a decision-making system. The
decision u will lead to a set of outcomes or payoffs
given by a function R(b, u). Then the optimal deci-

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

sion is given by:

û ≡ arg max
u

∑

b

π(b)R(b, u) ≡ Eπ(b)[R(b, u)]

If the expectation cannot be obtained by exhaustive
evaluation of π(b) over b ∈ B, then an estimate can be
obtained by sampling N independent hypotheses H ≡
{b(1), . . . b(N)} from π(b) and evaluating the average:

∑

b(j)∈H

R(b(j), u)/N

Alternatively, assume that Bayesian inference is to be
used to provide information from a single source of
data (e.g. a sensor) that will later be fused with other
sources, before attempting to infer the hidden state.
Again, the optimal solution can be approximated using
sets of samples. If each source k yields a sample set
Hk of size N , an estimate for the probability of some
hidden state b is given by:

∏

k

count(k, b)

N

where count(k, b) is the number of occurrences of b
within Hk.

2. Genetic Algorithms

Genetic algorithms (Holland, 1975) are introduced
here to identify a source of proposal mechanisms that
can be used in the sampling algorithm. The GA
searches through the set B of fixed-size binary strings
(“chromosomes”), to maximize some “fitness” func-
tion1 f(b). At any given time, the state of the GA is
a population of chromosomes (b1, . . . , bN).The popula-
tion is modified by creating new proposals in batches.
The next generation (also of size N) is then generated
from the new proposals (and the existing population)
according to a selection mechanism which prefers fit-
ter individuals. The genetic algorithm may be run for
a fixed number of generations, or until some condition
on the average population fitness (or its rate of change)
is met.

Each proposal is obtained by selecting two parent chro-
mosomes and applying crossover to create a new chro-
mosome. An example is standard 2-point crossover:

b′l =

{

bi,l, {(l− n+ L)modL} < s;
bj,l, otherwise.

1For maximum likelihood estimation, the fitness func-
tion might be f(b) ≡ exp(−E(b)) where E(b) is a measure
of the prediction error on observed data, given model pa-
rameters b.

where bi and bj are the parent chromosomes and
the offset n and length s are chosen uniformly from
{1, . . . ,m}. Each proposal is then subject to muta-
tion:

bl ←

{

1− bl, with probability ρ;
bl, otherwise.

where ρ is some small constant mutation probability.
While crossover allows fit substrings to grow in fre-
quency within the population, mutation enables the
population to move out of local minima.

This paper focusses on fixed size chromosomes of bi-
nary digits, but the broader field of evolutionary algo-
rithms addresses problems in which the chromosome
is a vector of real numbers2, or has variable size (e.g.
genetic programming).

Evolutionary algorithms can benefit from estimating
the structure of the current population, in order to
obtain new proposals that are predicted to have a
high fitness. Population-based incremental learning
(PBIL) (Baluja & Caruana, 1995) uses an adaptive
probability vector (learnt on-line from the population)
to control the likelihood of selecting 0 or 1 in each
string position. Higher-order estimation methods, for
example the Bayesian network used in the Bayesian

Optimization Algorithm (BOA), can capture multi-
dimensional structure in the existing population (Pe-
likan et al., 1999). We will adapt proposals to the
high-order structure of the current population by us-
ing the difference between two members of the popu-
lation, combined with a third, to obtain a proposal3.
Therefore our approach may have the benefits of these
“estimation of distribution” approaches while avoiding
the process of parametric model-fitting. It can oper-
ate with arbitrarily complex (e.g. multi-modal) pop-
ulations whereas estimation-based approaches will be
limited by the chosen class of models.

3. Population-based MCMC Sampling

Markov Chain Monte Carlo (MCMC) is a means of
sampling hypotheses from some target density π(b)
that is known up to some normalizing constant4 Z.
MCMC can be interpreted as a form of importance
sampling in which the proposal distribution depends

on the current state of the chain (e.g. by making a

2e.g. differential evolution; Storn and Price (1995)
3Strictly, the difference between the first two population

members captures the first-order of relational structure;
the third population member accounts for absolute high-
order structure because it is a sample from the population

4For Bayesian inference problems this means that P (D)
need not be known.

random change). Each proposal is accepted or rejected
according to the usual importance sampling rule. Sev-
eral MCMC chains can be run in parallel, to obtain
evolutionary or “population-based” methods that ap-
pear similar in structure to a genetic algorithm but
perform sampling rather than optimization.

3.1. Markov Chain Monte Carlo

MCMC works by constructing a Markov chain over
B that has π as its invariant distribution. A Markov
chain on B is defined by a transition matrix T of size
|B|×|B| which determines the time-evolution of a state
variable Xt:

Tij ≡ P (Xt+1 = bj |Xt = bi)

A necessary condition is that the vector of probabilities
Π with elements Πi = π(bi) be a fixed point of the
transition function (Π = TΠ). An appropriate choice
is given by:

Tij ≡

{

1, (π(bj) > π(bi));
π(bj)
π(bi)

, otherwise.

Another requirement is ergodicity of the Markov chain:
there must be a finite path with non-zero transition
probability from every state to every other state. Sam-
pling from π is achieved by simulating the Markov
chain, and outputting its states at irregular intervals
of mean duration τ . If each interval is sufficiently
large, successive states will be independent. Indepen-
dence is not a requirement for evaluating expectations
such as the decision evaluation Eπ [R(b, u)], but chains
which mix (achieve independence) more rapidly re-
quire shorter sequences to provide accurate estimates.

To design an effective MCMC sampler requires an ap-
propriate proposal mechanism. The proposal mech-
anism, together with an acceptance rule define the
transition function of the Markov chain. Specifically,
a proposal distribution P (b′|b) is used to generate a
proposal b′ for the next state of the chain, given the
current state is Xt = b. The proposal distribution is
symmetric if P (b′|b) = P (b|b′) for all (b, b′). An accep-

tance rule decides whether the next state of the chain
(Xt+1) will be b′ or b. The Metropolis acceptance rule
(Metropolis et al., 1953) is given by:

P (Xt+1 = b′) =

{

1, (π(b′) > π(b));
π(b′)
π(b) , otherwise.

For a symmetric proposal distribution, the Metropo-
lis acceptance rule ensures that the transition ma-
trix has Π as a fixed point. The more general
Metropolis-Hastings rule can be used to account for

non-symmetric proposal distributions. Most MCMC
methods (including those that use the Metropolis-
Hastings rule) have a transition function that satis-
fies the reversibility property (also called “detailed bal-
ance”): TijΠi = TjiΠj .

3.2. The Mutation Proposal

A simple mutation proposal is sufficient to meet the
above requirements. Mutation constructs b′ by ran-
domly inverting each bit in b according to some prob-
ability ρ. Therefore:

P (b′|b) = ρ∆(b,b′)(1− ρ)(m−∆(b,b′))

where ∆(b, b′) is the number of bits that differ between
the strings b and b′ and m is the size of the strings.
Symmetry of the mutation proposal density follows
from observing that ∆(b, b′) = ∆(b′, b) for all (b, b′).
The resulting chain is ergodic because P (b′, b) ≥ ρm

for all (b′, b).

The key to effective sampling performance is to design
the proposal distribution to minimize mixing time.
Where possible, prior knowledge about the problem
should be incorporated into the proposals. For ex-
ample, if b represents the structure of a decision tree,
natural proposals would be common tree operations
such as splits, merges and rotations.

3.3. Evolutionary Monte Carlo

It is possible to run multiple MCMC sampling chains
in parallel. One benefit is that each chain can be
started with a different (random) state, and so reason-
able samples may be obtained even when the chains
have not “mixed”. However, even when running mul-
tiple chains, a “burn-in” time must be allowed for each
chain to move from its random starting state to a high-
probability region of the target distribution. There-
fore, for any given problem there is some (finite) op-
timal number of chains N . However, there is another
potential advantage of running multiple MCMC sam-
pling chains: interaction. At any one time, the set of
chains provide a population that is spread across dif-
ferent regions of the target distribution. It is reason-
able to expect that the population as a whole contains
useful information about the direction in which any
particular population member could explore to find
regions of higher probability. That is, the proposal dis-
tribution for one population member can exploit the
information contained in the others. The evolutionary
Monte Carlo (EMC) method was introduced recently
(Liang & Wong, 2001). Much previous work in the evo-
lutionary computation field proposed algorithms with
stochastic acceptance of proposals that could be used

for robust optimization, but were not valid MCMC
sampling algorithms (Lozano et al., 1999; Mahfoud &
Goldberg, 1995).

The algorithm described here differs significantly from
EMC. We do not run each sampling chain at a different
temperature (parallel tempering; see Geyer (1992)).
Strens et al. (2002) showed that a suitable proposal
operator capable of adapting to the shape of the pop-
ulation enabled very effective sampling in real spaces
at a single temperature. This “differential evolution
sampler” (DES) simplifies the implementation greatly,
and allow outputs to be taken from any one of the sam-
pling chains. It also provides a closer resemblance to
conventional evolutionary algorithms because all the
individuals have the same fitness criterion. Here, we
attempt an analogous approach in the discrete-state
case, where we must find a similarly adaptive proposal
operator that acts on bit-strings.

When using a population it is again important to have
a proposal distribution of a form that ensures valid
sampling. Let β ≡ (b1, . . . , bN) be the joint state of
the whole population, drawn from the product-space
BN . We construct a Markov chain on this space that
has as its invariant distribution:

φ(β) = π(b1)π(b2) . . . π(bN)

Sampling from π is achieved by sampling β from φ,
then returning any one of the members {bi : 1 ≤ i ≤
N}.

Proposals in this new Markov chain are defined in
terms of the joint population state β. However, con-
sider firstly a proposal that would alter only one mem-
ber (bi) of the population (with i chosen at random).
A transition matrix T satisfying the invariance and er-
godicity requirements for sampling from π also ensures
the population’s invariant distribution is φ. Therefore
any combination of proposal distribution and accep-
tance rule that is valid for a single chain sampler can
be applied to a randomly chosen member of the pop-
ulation. Furthermore, in constructing such a proposal
the states of all other population members {bj : j 6= i}
can be exploited.

3.4. A New Proposal

We now introduce a new proposal of this kind:

b′ = bi ⊗ (bj ⊗ bk)

where i, j, k are mutually unique population members.
The ⊗ symbol indicates bit-wise exclusive or:

(b⊗ b′)l =

{

1, bl 6= b′l;
0, bl = b′l.

where l indexes the individual bits of the strings b and
b′. The proposal distribution is symmetrical because
b′ ⊗ (bj ⊗ bk) regenerates bi.

Why should this “xor” proposal be useful? A similar
proposal mechanism was introduced recently for sam-
pling in continuous state spaces (Strens et al., 2002).
In that case the proposal was of the form:

x′ = xi + F (xj − xk)

where xi, xj , xk are real-valued state vectors and F is
a scalar constant. With F = 1 the effect is to generate
a proposal x′ that differs from its parent x in the same
way that xj differs from xk (in terms of vector arith-
metic). This type of proposal allows the population to
explore non-isotropic structures such as ridges in the
target function, because the vector differences are typ-
ically aligned with the direction of the ridge. The aim
here is the same, but to obtain a proposal mechanism
that is applicable to binary vectors; therefore the “+”
and “-” are replaced by ⊗. Observe that:

{b′ = bi ⊗ (bj ⊗ bk)} ⇒ {(b′ ⊗ b) = (bj ⊗ bk)}

Reading (A⊗B) as “the difference between A and B”
the effect is to generate a proposal b′ that differs from
its parent b in the same way that bj differs from bk. We
expect this to provide a proposal density that adapts
to typical variability of the population: an experimen-
tal evaluation will be performed to determine whether
this is true.

3.5. The Crossover Proposal

Unlike the mutation and xor proposals introduced
above, the crossover operation that is often used in
genetic algorithms must be adapted carefully to meet
the requirements for population-based MCMC propos-
als. Crossover works by selecting two parents bi and
bj from the population and constructing a child that
consists of some genetic material from each. For ex-
ample:

b′l = choose(bi,l, bj,l)

where “choose” selects randomly between its two in-
puts according to some fixed probability. If the pro-
posal is accepted then bi, bj or some other member
of the population is replaced (overwritten) by b′.To
ensure reversibility of the population chain, it is nec-
essary for the proposal to select two parent strings and
replace them both with child strings, preserving every
bit of each parent within one of the children. There-
fore if child 2 receives bit bi,l, child 1 must receive bj,l.
Suppose that a crossover proposal generates children
(c1, c2) from parents (bi, bj). Then the Metropolis rule

on the joint population state has acceptance probabil-
ity:

{

1, π(c1)π(c2) ≥ π(bi)π(bj);
π(c1)π(c2)
π(bi)π(bj)

, otherwise.

If the proposal is accepted, both parents are replaced;
otherwise there is no change to the population. The
chain is reversible because a proposal that regenerates
the parents is equally likely to be chosen at the next
step. Note that the crossover proposal requires two
evaluations of the target distribution π (at c1 and c2;
the values at bi and bj will already be stored). This
additional computational cost is taken into account in
determining whether crossover can be beneficial in a
sampling context. An interesting property of this form
of crossover is that there is a special form of π where
π(c1)π(c2) = π(bi)π(bj) always. This is true if the
bits of b are independent in terms of their influence on
π. (i.e. π(b) is of the form

∏

l fl(bl).) In this case,
crossover proposals will always be accepted because
they cannot increase or decrease the joint probability
of the population, φ(β).

4. The Sampling Algorithm

The 3 types of proposal (mutation, crossover and
xor) can be used within a population-based MCMC
method, and can together meet the requirements for
valid sampling. Given an initial population β of ran-
dom bit-strings, and the value of π for each, proposals
are repeatedly accepted/rejected until the budget of
function evaluations is exhausted. The proposal type
is selected according to the probabilities (pM , pC and
pX), then the following steps are applied:

Mutation

1. Select a random parent bi and apply mutation to
generate proposal b′.

2. Accept or reject b′ using the Metropolis rule, re-
placing bi accordingly. (Consumes 1 target distri-
bution evaluation.)

Crossover

1. Select two mutually exclusive parents (bi, bj) uni-
formly and randomly. Generate two children ci, cj
by choosing to swap each bit with probability 1/2.

2. Accept or reject both children together using the
Metropolis rule, replacing (bi, bj) accordingly.
(Consumes 2 target distribution evaluations.)

Table 1. Choices of proposal probabilities for experimental
evaluation.

Experiment name pM pC pX

mut 1 0 0
mut + crx 2/3 1/3 0
mut + xor 1/2 0 1/2

Xor proposal

1. Select three mutually exclusive parents (bi, bj and
bk) uniformly and randomly. Generate b′ = bi ⊗
(bj ⊗ bk).

2. Accept or reject b′ using the Metropolis rule, re-
placing bi accordingly. (Consumes 1 target distri-
bution evaluation.)

To ensure that the Markov chain is ergodic requires
that pM > 0. Otherwise the only constraint is pM +
pC + pX = 1. Table 1 shows the choices used in the
experimental evaluation. These are chosen to balance
the budget of evaluations of π equally between the
selected proposal types.

A random member of the population can be provided
as output on every time step. Although these outputs
are highly correlated from one step to the next, the
resulting expectation (or any other statistics computed
from the samples) will be asymptotically unbiased.

5. Evaluation

In order to demonstrate the effectiveness of the new
sampling algorithm, we introduce an application prob-
lem from medical diagnostics that offers a difficult
discrete sampling problem. A comparison of sam-
pling performance for different proposal combinations
is then presented. The effect of population size is also
evaluated.

5.1. The QMR-DT architecture

Consider the problem of diagnosing which diseases
are present in a patient, given a set of measurements
(“findings”). Each patient may have zero, one or many
diseases. The QMR-DT network architecture (Figure
1) specifies a statistical model for the relationship be-
tween diseases and findings, that can be calibrated
using recorded data (Shwe et al., 1991; Jaakkola &
Jordan, 1999). The model is of the form:

P (fi = 1|b) = 1− (1− qi0)
∏

l

(1− qil)
bl

b1 b2 bm

f1 f2 fm

diseases

findings

Figure 1. The QMR-DT architecture.

fi is the binary value of finding i. qi0 is the leak prob-

ability for that finding. If qi0 is close to 1 then the
finding is common even when no disease is present. qil

is the association between disease l and finding i. If qil

is large then the finding i often results from disease l;
if qil = 0 disease l does not influence finding i and the
corresponding arc can be omitted from the network
diagram.

In order to perform inference, a prior P (b) must also
be specified. The simplest approach is to assume that
the diseases are independent:

P (b) =
∏

l

pbl

l (1− pl)
(1−bl)

where pl is the prior probability for disease l. Random
instances of this architecture were generated according
to:

1. Number of diseases m = 20

2. Number of findings n = 80

3. Disease prior pl ∼ U [0, 0.5]

4. Leak probability qi0 ∼ U [0, 1]

5. Association between disease l and finding i:

qil ∼

{

0, with probability 0.9;
U [0, 1], otherwise.

40 such instances were generated, and for each a sam-
pling test problem was created as follows. Firstly, a
plausible hidden disease state btruth was created by
sampling from the disease prior. Then a set of find-
ings were sampled according to P (f |b) for that in-
stance. The sampling problem is to obtain the dis-
tribution of possible diseases given the findings; i.e. to
perform a diagnosis. Therefore the target distribution
is π(b) ≡ P (b|f). For any give proposal b it is possible
to evaluate π(b) up to an unknown constant (equal to
P (f)) because P (b|f) = P (b, f)/P (f) and P (b, f) is
easily computed in the architecture.

0

2

4

6

8

10

12

14

100 1,000 10,000 100,000
steps

er
ro

r

mutation only
mutation + crossover
mutation + xor

Figure 2. Sampling performance for differing proposal
combinations.

5.2. Measuring Sampling Accuracy

Samples are generated by applying the algorithm de-
scribed in section 4, and outputting a random popula-
tion member after every step. (One step corresponds
to one evaluation of the target distribution.) For each
disease l the empirical proportion of samples for which
bl = 1 is computed by exhaustive evaluation. This
gives a vector of probabilities5 ψ. The true value of
µl ≡ P (bl = 1|f) was also computed by exhaustive
evaluation of the 2m disease combinations. In an ef-
fective sampler, we should find that ψ → µ. A measure
of the difference between these vectors is given by:

∑

l

(µl − ψl)(log2(µl)− log2(ψl))

This symmetrical measure is zero when µ = ψ and
positive otherwise. This measure is much more infor-
mative than the full KL-divergence (between the true
probability distribution of diseases and the set of sam-
ples) because the latter is infinite if any state that has
non-zero probability is not present in the set of sam-
ples.

Figure 2 shows the sampling accuracy over 100,000
steps for each of the proposal combinations in Table
1. The standard errors indicated by error bars were
computed from the set of performance measures ob-
tained over the 40 random problem instances. There
are significant differences in performance between the
three experiments. The crossover operator makes per-
formance worse rather than better, which suggests
that the extra cost (two target distribution evalua-
tions) outweighs any benefit. In contrast, the xor
proposal mechanism shows a significant improvement
(reducing error by 38% at 1024 steps). In this eval-
uation we have limited the size of the state space to

5NB It is not the case that ‖ψ‖ = 1 because the patient
may not have exactly one disease.

0.001

0.01

0.1

1

10

100

100 1,000 10,000 100,000 1,000,000
steps

er
ro

r

exhaustive
mutation only
mutation + xor

Figure 3. Long-term performance compared with exhaus-
tive evaluation.

220 in order to be able to evaluate it exhaustively (to
validate performance). Greater performance improve-
ments might be possible on larger and more complex
spaces in which the “local search” performed by mu-
tation is inadequate. (Conversely, the rejection rate
within the Metropolis rule for the xor-proposal is likely
to rise as dimensionality grows, potentially reducing
performance.)

Figure 3 shows sampling performance over a much
longer period (log-log scale). We observe that perfor-
mance continues to improve at the same rate. Given
enough time, the performance of the mutation mech-
anism approaches that of the xor-operator. This sug-
gests that both populations have become adequately
spread across the high probability regions of the tar-
get density and are essentially in equilibrium. The
“exhaustive” performance line indicates the result of
systematically visiting every state (in a random or-
der). This verifies that the problem is non-trivial and
that the sampling approaches offers some benefit over
a “brute-force” method. The error associated with this
method only becomes zero after 220 (about a million)
steps. Exhaustive evaluation rapidly becomes infeasi-
ble as the dimensionality of the state space increases.

Figure 4 shows the effect of population size on perfor-
mance of the xor-proposal sampler. Population size
is important until about 10000 steps, with a moder-
ate population size (12) giving the best performance.
This probably offers the best trade-off between diver-
sity (number of individuals) and the rate at which each
state in the chain is being updated. After this initial
“exploration” phase, the performance of all the pop-
ulation sizes becomes similar, although larger popula-
tions become slightly better. This is probably because
the larger populations provide more consistent cover-
age of the whole target distribution.

0.001

0.01

0.1

1

10

100

100 1,000 10,000 100,000 1,000,000
steps

er
ro

r

3
6
12
24
48
96

Figure 4. Sampling performance for differing population
sizes.

6. Simulated Annealing Variant

We have taken proposal operators that would nor-
mally be used for evolutionary optimization and ap-
plied them to accelerate sampling. However simulated
annealing (SA) (Neal, 1998) is a means of using a sam-
pler to perform global optimization. It works by sam-
pling from πT /ZT while gradually reducing the tem-
perature parameter T . (ZT is the normalizing con-
stant

∑

b π
T (b).) As T decreases towards zero, the

distribution becomes “sharper”; i.e. probability mass
moves towards the global maximum (or maxima) of π.
Therefore simulated annealing allows us to obtain a
global optimizer from the new sampling method. This
is particularly useful in difficult integer programming
or SAT (satisfiability) problems where the aim may be
to find any solution rather than every solution.

For example, we tested the SA variant of the sampling
algorithm on the “8-queens” problem. The aim is to
place 8 queen chess pieces on an 8-by-8 board so that
none share a common rank, file of diagonal. By encod-
ing the position of each in its file as a 3-digit binary
number, a 24-bit optimization problem was obtained.
The target density was π(b) ∝ exp(−hits(b)/T) where
hits(b) was the number of constraints broken in board
configuration b. 216 sampling steps were sufficient for
the SA algorithm to find a solution (with probability
> 0.99). This was using a population size of 24, and
a uniform linear reduction in temperature from 1 to
0. (All three proposal options gave this level of per-
formance.)

7. Conclusions and Future Work

We have developed an evolutionary Monte Carlo algo-
rithm for sampling in discrete spaces. The population
is not only used as a means to obtain independent
sampling chains: it is exploited by a proposal mech-

anism that uses relational information (between ex-
isting population members) to move about the state
space more effectively. Our experimental evaluation
showed a significant improvement in sampling perfor-
mance for a representative machine learning problem.
The algorithm has a simple implementation compared
with existing methods for exploiting population struc-
ture (“estimation of distribution” approaches such as
BOA); but a comparative evaluation should be per-
formed.

We also showed that simulated annealing can make
use of the sampler to obtain a global optimizer. This
has an advantage over conventional genetic algorithms
in that the rate of cooling can be used to control the
trade-off between the risk of becoming trapped in a
local minimum and the total computational cost.

The capability to sample from discrete spaces has wide
applicability in machine learning, particularly in the
convergence between statistical and symbolic learning.
Often it will be necessary to be able to work with
probability distributions over strings of symbols and
graphical model structures. The method described
here works solely with binary strings of fixed length,
complementing previous work that focussed on real-
valued states (Strens et al., 2002), but it could be
naturally extended to work with mixed real/discrete
state-spaces within the EMC framework, and to spaces
of variable dimension using reversible jump MCMC
methods (Green, 1995).

The general purpose proposal mechanisms we have de-
scribed may work well for the test problems presented,
but better performance is likely to be achieved by mak-
ing use of domain knowledge. If the problem is to find
a graphical structure that best explains some data,
standard operations for working with that structure
(e.g. node and arc deletion/insertion in a graph) can
be modified to act as suitable proposal mechanisms.

Acknowledgements

This research was funded by the UK Ministry of De-
fence Corporate Research Program.

References

Baluja, S., & Caruana, R. (1995). Removing the ge-
netics from the standard genetic algorithm. Proceed-

ings of the Twelth International Conference on Ma-

chine Learning (pp. 38–46). San Mateo, CA: Morgan
Kaufmann Publishers.

Geyer, C. (1992). Practical Markov chain Monte Carlo
(with discussion). Statistical Science, 7, 473–511.

Green, P. J. (1995). Reversible jump markov chain
monte carlo computation and bayesian model deter-
mination. Biometrika, 82, 711–732.

Holland, J. H. (1975). Adaptation in natural and ar-

tifical systems. MI: University of Michigan Press.

Jaakkola, T., & Jordan, M. I. (1999). Variational prob-
abilistic inference and the QMR-DT network. Jour-

nal of Artificial Intelligence Research, 10, 291–322.

Liang, F., & Wong, W. H. (2001). Real-parameter evo-
lutionary Monte Carlo with applications to Bayesian
mixture models. Journal of the American Statistical

Association, 96, 653.

Lozano, J. A., Larrañaga, P., Graña, M., & Albizuri,
F. X. (1999). Genetic algorithms: bridging the con-
vergence gap. Theoretical Computer Science, 229,
11–22.

Mahfoud, S. W., & Goldberg, D. E. (1995). Parallel
recombinative simulated annealing: a genetic algo-
rithm. Parallel Computing, 21, 1–28.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N.,
Teller, A. H., & Teller, E. (1953). Equation of state
calculations by fast computing machines. Journal of

Chemical Physics, 21, 1087–1092.

Neal, R. (1998). Annealed importance sampling (Tech-
nical Report 9805 (revised)). Department of Statis-
tics, University of Toronto.

Pelikan, M., Goldberg, D. E., & Cantu-Paz, E. (1999).
BOA: The bayesian optimization algorithm. Pro-

ceedings of the Genetic and Evolutionary Computa-

tion Conference (pp. 525–532). Orlando, Florida,
USA: Morgan Kaufmann.

Shwe, M., Middleton, B., Heckerman, D., Henrion, M.,
Horvitz, E., Lehmann, H., & Cooper, G. (1991).
Probabilistic diagnosis using a reformulation of the
INTERNIST-1/QMR knowledge base: Part I. The
probabilistic model and inference algorithms. SIAM

Journal on Computing, 30, 241–250.

Storn, R., & Price, K. (1995). Differential evolution -

a simple and efficient adaptive scheme for global op-

timization over continuous spaces (Technical Report
TR-95-012). Berkeley, CA.

Strens, M., Bernhardt, M., & Everett, N. (2002).
Markov chain monte carlo sampling using direct
search optimization. Proceedings of the Nineteenth

International Conference on Machine Learning. San
Francisco: Morgan Kaufmann.

c© QinetiQ Ltd 2003

