
Automatic Derivation of Substructures Yields Novel
Structural Building Blocks in Globular Proteins

Xiru Zhang*, Jacquelyn S. Fetrowt, William A. Rennie~, David L. Waltz*

and George Berg~

*Thinking Machines Corp.

245 First Street
Cambridge, MA

Abstract

Because the general problem of predicting the ter-
tiary structure of a globular protein from its se-
quence is so difficult, researchers have tried to
predict regular substructures, known as secondary
structures, of proteins. Knowledge of the posi-
tion of these structures in the sequence can signif-
icantly constrain the possible conformations of the
protein. Traditional protein secondary structures
are a-helices, ~sheets, and coil. Secondary struc-
ture prediction programs have been developed,
based upon several different algorithms. Such
systems, despite their varied natures, are noted
for their universal limit on prediction accuracy of
about 65%. A possible cause for this limit is that
traditional secondary structure classes are only a
coarse characterization of local structure in pro-
teins. This work presents the results of an alterna-
tive approach where local structure classes in pro-
teins are derived using neural network and clus-
tering techniques. These give a set of local struc-
ture categories, which we call Structural Building
Blocks (SBBs), based upon the data itself, rather
than a pr/or/categories imposed upon the data.
Analysis of SBBs shows that these categories are
general classifications, and that they account for
recognized helical and strand regions, as well as
novel categories such as N- and C-caps of helices
and strands.

Introduction

Traditionally, protein structure has been classified
into continuous segments of amino acids called sec-
ondary structures. The existence of the regular sec-
ondary structures, a-helices and ~sheets, was hypoth-
esized even before the first protein structure had been
solved at atomic resolution [Pauling and Corey, 1951;
Panling et ai., 1951]. These structures have regular
patterns of hydrogen bonding and repeating backbone
dihedral angles and are easy to locate in protein crys-
tal structures. Following the solution of a few pro-
tein structures, Venkatachalam suggested the existence
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of a third class of structure, the ~-turn [Venkatacha-
lain, 1968]. Often, the remainder of protein structure
is called "coil" or "other"; however, attempts have
been made to identify other structures such as ~t-loops
[Leszczynski and Rose, 1986] or f/, straps, and ~-loops
[Ring et al., 1992] in these regions.

Because the classical secondary structures were pre-
dicted before any protein structures were solved and
because these regular structures are so easy to iden-
tify by eye in visualized protein structures, these cat-
egories have traditionally been used in protein struc-
ture prediction routines. From the earliest prediction
algorithms [Chou and Fasman, 1974], through artificial
neural network models [Qian and Sejnowski, 1988], to
current hybrid systems using multiple prediction al-
gorithms [Zhang et al., 1992], these systems consis-
tently used the traditional secondary structures, usu-
ally the categories provided by the DSSP program
[Kabsch and Sander, 1983]. Despite the variety of
algorithms used, the best prediction rates for these
programs consistently classify only about 65% of the
residues’ secondary structures correctly. This rate of
accuracy is too low to be of practical use in constrain-
ing the conformation for tertiary structure prediction.
Re-categorization of protein structure may be one way
of increasing prediction accuracy

One indication that these classical secondary struc-
tures may not be suitable is that attempts to define sec-
ondary structures in proteins of known structure pro-
duce inconsistent results. Such programs may use the
criteria of hydrogen bonding [Presta and Rose, 1988],
alpha carbon dihedral angles [Richards and Kun-
drot, 1988], backbone dihedral angles or some com-
bination of these criteria [Kabsch and Sander, 1983;
Richardson and Richardson, 1988]. When compar-
ing output from these programs which use proteins
of known structure, there is a great deal of disagree-
ment in their secondary structure assignments (Fetrow
and Berg, unpublished observations). It thus seems
reasonable to hypothesize that the classical categories
of secondary structures are too coarse and attempts
to predict such artificial categories will ultimately fail
[Zhang et al., 1992l.
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Figure I: The bond and dihedral angles used for residue-feature-vector representations. For simplicity, a window size of
four is displayed. A bond angle 0~_~,~+I is the virtual angle formed by the three Ca atoms centered at residue i. The dihedral
,ingle ~b~,~÷s is defined as the angle between the virtual bond between C~j and Ca,,+1 and the virtual bond between Caj+2
and Caj+s in the plane perpendicu]ax to the virtual bond formed between Ca,~+1 and Ca,~+~.

The purpose of this research, therefore, is to at-
tempt an objective re-classification of protein sec-
ondary structure. Here we present the results of a cat-
egorization system combining artificial neural network
and clustering techniques. The first part of the system
is an auto-associative artificial neural network, called
GENEREP (GENErator of REPresentations), which
can generate structural representations for a protein
given its three-dimensional residue coordinates. Clus-
tering techniques are then used on these representa-
tions to produce a set of six categories which represent
local structure in proteins. These categories, called
Structural Building Bloclcs (SBBs), axe general, as in-
dicated by the fact that the categories produced us-
ing two disjoint sets of proteins are highly correlated.
SBBs can account for helices and strands, acknowl-
edged local structures such as N- and C-caps for he-
lices, as well as novel structures such as N- and C-caps
for strands.

Methods and Materials
The initial goal of this work was to find a low-level
representation of local protein structure that could be
used as the basis for finding general categories of lo-
cal structure. These low-level representations of local
regions were used as input to an auto-associative neu-
ral network. The hidden layer activations produced
by this network for each local region were then fed to
a clustering algorithm, which grouped the activation
patterns into a specified number of categories, which
was allowed to vary from three to ten. Patterns and
category groupings were generated by networks trained
on two disjoint sets of proteins. The correlations be-
tween the categories generated by the two networks
were compared to test the generality of the categories
and the relative quality of the categories found using
different cluster sizes.

The structural categories found along protein se-
quences were then analyzed using pattern recognition
software in order to find frequently occurring group-
ings of categories. Molecular modeling software was
also used to characterize and visualize both the cate-

gories themselves and the groupings found by the pat-
tern recognizer.

In contrast to earlier work on GENEKEP [Zhang
and Waltz, 1993], in which a measure of residue
solvent-accessibility was used, a purely structural de-
scription of the protein was employed in this study, as
well as a more general input/output encoding scheme
for the neural network. Each protein was analyzed as
a series of seven-residue "windows". The residues were
represented by the seven a-carbon (Ca) atoms of the
adjacent residues. The structure of the atoms in the
window was represented by several geometric proper-
ties. For all except adjacent Ca atoms, the distances
between each pair of Ca atoms in the window were
measured. The distance between adjacent atoms was
not utilized because it is relatively invariant. There
were fifteen such distances per window. The four dihe-
dral and five bond angles which specify the geometry
of the seven Ca atoms in each window were used as
well (Figure I).

Because these measurements were used as input to
an artificial neural network, they had to be represented
in a form that was consistent with the values of the
network’s units, while also preserving information im-
plicit in the measurements. The following encoding
was used. Each dihedral angle was represented using
two units, one each for the sine and cosine of the an-
gle. These were normalized to the value range [0, 1]
of the input units. This representation preserved the
continuity and similarity of similar angles, even across
thresholds such as 3600 to 0°. The distances were rep-
resented using two units. Analysis of the distances
showed a rough bi-modal distribution of distance val-
ues. The units were arranged so that the activation
level of the first unit represented a distance from the
minimum distance value found to a point mid-way he-
tween the two "humps" of the distribution. If the dis-
tance was greater than the value of the mid-way point,
the first unit was fully activated, and the second unit
activated in proportion to how much the distance was
between the mid-way point and the maximum distance
value. The bond angles were each represented using
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Figure 2: The auto-associative neural network used in this study to find the residue-state-vectors. This network was
trained using the residue-feature-vectors described in Methods as both the input and output patterns. The learning method
used was error backpropagation [Rumelhaxt et a/., 1986].

one unit, with the values representing the angles in
the range [0°, 180°] normalized to [0, 1]. The represen-
tations of these Ca distances, dihedral and bond angles
in a window constituted the residue-feature-vector for
a window.

The residue-feature-vectors were calculated for ev-
ery window for each of the proteins in Table 1. The
protein list, consisting of 74 globular proteins of known
structure, with 75 distinct sequence chains and a to-
tal of 13,114 residues, was chosen such that all protein
structures had a resolution of 2.5~ or better and a re-
finement R-factor of 0.3 or less. These limits excluded
proteins which were not resolved well enough to de-
termine their backbone structure satisfactorily. Using
a standard sequence alignment algorithm [Smith and
Waterman, 1981], the list was also tested to ensure
that the amount of sequence similarity between pro-
teins was below 50%. This list of proteins was then
divided into two disjoint sets, Data Set One and Data
Set Two (Table 1). Subsequent work was done using
the proteins in one data set and verified against the
other. Data Set One consisted of 38 sequences con-
taining a total of 6650 residues. As defined by DSSP
[Kabsch and Sander, 1983], 30.1% of the residues in
this set were defined to he in a-helices and 18.9% in
f~-strands. Data Set Two consisted of 37 sequences
with a total 6464 residues. For this set, 30.896 of the
residues were in a-helices and 18.2% were in ~-strands.

For each protein, a residue-feature-vector was calcu-
lated at each position along the sequence for which
there was aa amino acid present in all slots of the
window. Since they do not have residues in all of
the window locations, the first three positions at both
the N- and C-termini did not have residue-feature~
vectors associated with them. Thus, a protein sequence
with n residues will provide n- 6 residue-feature-
vectors. Data Set One provided 6422 residue-feature-
vectors and Data Set Two provided 6242 residue-
feature-vectors.

The residue-feature-vectors for a given data set were
used as both input and output patterns for an auto-
associative backpropagation neural network [Rumel-
hart ef al., 1986]. Using the representation for the
residue-feature-vectors described above, both the input
and output layers of the network contained 43 units.
The hidden layer contained eight units (Figure 2). The
hidden layer size was determined empirically as the
smallest size which produced the network most likely
to succeed at the auto-association task (where the root
mean squared error of the network eventually went be-
low 0.01).

The goal of an auto-associative network is to learn
to reproduce the pattern of each input to the network
at the output layer of the network. Each residue-
feature-vector pattern is presented individually to the
network as a set of activations to the input layer.
By multiplying each input unit’s activation by the
value of the weight connecting it to the hidden units,
summing them at the hidden units, and then scaling
them into [0, 1] with an exponentiation function, the
hidden units’ activation values are calculated. This
same process is then used to calculate the output
units’ activations from the hidden units’ activation
values. The output units’ activation values are then
compared to those of the corresponding input units.
These differences (the errors) are used to change the
value of the weights between the layers, using error-
backpropagation [Rumelhart et al., 1986], a gradient
descent technique. This process is repeated for each
pattern in the data set, which constitutes an epoch of
training.

In this study, the auto-associative networks were
trained for some number of epochs (approximately
1500) on a Connection Machine CM5 until the RMS
error at the output layer was at most 0.01. At this
point, the networks were run one additional epoch on
the residue-feature-vector patterns, without changing
the weights. For each pattern, the values of the hid-
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N&Ine Chains Residues Set Resolution Refinement Description
155C 134 1 2.aA -
1ACX 107 1 2.0A -
1BP2 123 1 1.7Pk 0.171
1CCR 111 1 1.5)k 0.19
1CRN 46 1 1.5J~ -
1CTF 68 1 1.7A 0.174
1ECD 136 1 1.4A -
1FX1 147 1 2.0A -
1HIP 85 1 2.0A 0.24
1HMQ A 113 1 2.0A 0.173
1LH1 153 1 2.0A -
1MLT A 26 1 2.5A -
1NXB 62 1 1.38)~ 0.24
1PAZ 120 1 1.55A 0.18
1PCY 99 1 1.6A 0.17
1RNT 104 1 1.9A 0.18
1UBQ 76 1 1.8A 0.176
2ACT 218 1 1.7A 0.171
2APP 323 1 1.8)~ 0.136
2AZA B 128 1 1.8A 0.188
2CAB 256 1 2.0A 0.193
2CNA 237 1 2.0A -
2CPP 405 1 1.63A 0.19
2CYP 287 1 1.7~ 0.202
2HHB A 141 1 1.74A 0.16
2LZM 164 1 1.7A 0.193
2PRK 279 1 1.5A 0.167

2SOD B 151 1 2.0A 0.256
3ADK 194 1 2.1A 0.193
3ICB 75 1 2.3~ 0.178
3PGK 415 1 2.5A -
3RXN 52 1 1.5A -
4ADH 374 1 2.4A 0.26
4DFR B 159 1 I.TA 0.155
4PTI 58 1 1.5A 0.162
5CPA 307 1 1.54A -
7CAT A 498 1 2.5A 0.212
9PAP 212 1 1.65A 0.161
1ABP 306 2 2.4A -
1CPV 108 2 1.85A 0.4
1FB4 H,L 445 2 1.9A 0.189
1FDX 54 2 2.0A -
1GCR 174 2 1.6A 0.23
1LZ1 130 2 1.5A 0.177
1MBD 153 2 1.4A -
1PHH 394 2 2.3A 0.193
1PPT 36 2 1.37A -
1RHD 293 2 2.5)~ -
1RN3 124 2 1.45A 0.26
1SBT 275 2 2.5A -
1SN3 65 2 1.8A 1.3

P. Denltriticans Cytochrome C550
Actinoxanthin
Bovine phospholipase A2
Rice Cytochrome C
Crambin
Ribosomal Protein (C terminal fragment)
Deoxy hemoglobin (etTthrocruorin)
Flavodoxin (D. Vulgaxis)
Oxidized High Potential Iron Protein
Hemerythrin
Leghemoglobin (Acetate, Met)
Melittin
Neuroto~in
A. faecafis Pseudoazurin
Plastoryanin
Ribonuclease T1 complex
Human Ubiquitin
Actinidin
Acid proteinase

Azurin (oxidized)
Caxbonic anhy&ase
Jack Bean Concan&valin
Cytochrome P450
Yeast Cytochrome C peroxidase
Human deoxyhemoglobin
T4 Lysozyme
Fungus Proteinase K
Cu Zn Superoxide dismutase (bovine)
Porcine adenylate kinase
Bovine Calcium-binding protein
Yeast Phosphoglycerate kinase
Rubredoxin
Equine Aim-liver alcohol dehydrogen~se
Dihyd~ofolate reductase complex
T~ypsin inhibitor
Bovine caxboxypeptida~e
Beef catalase
Papain CYS-25 (oxidized)
L-axabinose binding protein E.Coli
Ca-binding Paxvalbumin
Human Immunoglobulln FAB
Ferredoxin
Calf 7-crystallin
Human Lysozyme
Deoxymyoglobin (Sperm Whale)
hydroxybenzoate hydroxylase
A~an Pancreatic Polypeptide
Bovine rhodanese
Bovine Ribonuclease A
Subtilisin
Scorpion Neurotoxin

Table I: The protein structures used in this work.
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Name Chains Residues Set Resolution Refinement Description
2ABX A 74 2 2.5A 0.24
2APR 325 2 1.8.~ 0.143
2B5C 85 2 2.0A -
2COY A 127 2 1.67~, 0.188
2CDV 107 2 1.8~ 0.176
2CGA A 245 2 1.8]k 0.173
2CI2 I 65 2 2.0A 0.198
2CTS 437 2 2.0)[ 0.161
2GN5 87 2 2.3A 0.217
2HHB B 141 2 1.74A 0.16
2LHB 149 2 2.0A 0.142
2OVO 56 2 1.5A. 0.199
2PAB A 114 2 1.8~ 0.29
2SNS 141 2 1.5A. -
3510 82 2 1.6A 0.195
3C2C 112 2 1.68A 0.175
3GAP A 208 2 2.5A 0.25
3GRS 461 2 2.0~ 0.161
3WGA B 171 2 1.8]k 0.179
3WRP 101 2 1.8/k 0.204
4FXN 136 2 1.8A 0.2
4TLN 316 2 2.3A 0.169
4TNC 160 2 2.0A 0.172

a bungaxotoxin
Acid Proteinase (R. chinensis)
Bovine Cytochrome B5 (oxidized)
R. Milischianum Cytochrome C’
Cytochrome C3 (D. Vulgar[s)
Bovine Chymotrypsinogen
Chymotrypsin inhibitor
Pig citrate synthase
Viral DNA Binding Protein
Human deoxyhemoglobin
Hemoglobin V (Cyanomet, lamprey)
Ovomucoid third domain (protease inh.)
Human prealbumin
S. Nudease complex
Cytochrome C 551 (oxidized)
R. Rubrum Cytochrome C
E. Coli catabolite gene a~tivator protein
Human glutathione reductase
Wheat Germ Agglutinin
TRP aporepressor
Flavodoxin (Semiquinone form)
Thermolysin (B. thermoproteolyticus)
Chicken Troponin C

Table 1: The Protein Structures used in this work. The columns contain the following information: Name: The name
of the protein as assigned by the Brookhaven database. Chains: If the protein contains multiple chains, the chain used is
indicated. Residues: The number of residues in the sequence, as indicated by DSSP. Set: 1 corresponds to Data Set One and
2 to Data Set Two in this study. Resolution: The resolution of the structure, as given in the Brookhaven entry. Refinement:
when available, the refinement as given in the Brookhaven entry. Description: A short description of the protein, based upon
the information in the Brookhaven entry.

den layer units were recorded. This pattern of activa-
tion was the residue.state-vector associated with each
residue-feature-vector pattern.

One auto-associative network was trained on the
protein sequences in Data Set One and one on the pro-
tein sequences in Data Set Two. After training, the
residue-state-vectors for Data Set Two were calculated
by both the network trained on Data Set One and the
network trained on Data Set Two. The residue-state-
vectors produced by each of the two networks were
then separately grouped using a k-means clustering al-
gorithm [Hartigan and Wong, 1975]. Cluster sizes of
three through ten were tested. Each residue-feature-
vector was then assigned the category found for it in
the residue-state-vector clustering for each network.
The category assignments assigned by the clustering
algorithm are the Structural Building Blocks (SBBs),
and are the categories of local structure which form
the basis for this study.

To facilitate the location of interesting structural re-
gions along the protein sequence, the patterns of SBBs
along the protein sequences were analyzed using sim-
ple pattern recognition software. For pattern sizes of
three through seven, all of the patterns of SBBs oc-
curring along the protein sequence which occurred in
the protein Data Set Two were tabulated. Frequency

counts for these patterns were also calculated. For each
SBB category, the most frequently occurring patterns
were examined using molecular modeling and visual-
ization software (from Biosym Technologies, Inc.). The
regions in proteins exhibiting the frequently occurring
patterns of SBBs were displayed in order to analyze
what structural properties they exhibited.

Results
In a network which masters the auto-association task
of reproducing its input at its output layer, the activa-
tion levels of the hidden layer units must he an encod-
ing of the input pattern, because all information from
the input to the output layers passes through the hid-
den layer in this architecture. Since the hidden layer
constitutes a "narrow channel", the encoding the net-
work develops must be an efficient one, where each
unit corresponds to important properties necessary to
reproduce the input and where there are minimal ac-
tivation value correlations among the units. We thus
hypothesize that the encoding provided by the hidden
layer activations provides the basis for general catego-
rization of the local structure of a protein.

The most appropriate cluster size for producing
meaningful SBBs was determined empirically. For
each cluster size used in k-means clustering (i.e. three
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Figure 3: A comparison of the categorization results for different cluster sizes. For each cluster size used in k-means
clustering (i.e. three through ten), the best correlations between the categories found in Datffi Set Two by the two networks
were compared, separately trained on Data Set One and Data Set Two. The mean, median, best (highest) and worst (lowest)
of these category correlations were then determined.

through ten), the best correlations between the cat-
egories found in Data Set Two by the two networks
trained separately on Data Set One and Data Set Two
were compared. The mean, median, best and worst
of these category correlations were then calculated.
There exists a steep relative dropoff in the mean and
median correlations from clusterings using a category
size of six to those using a category size of seven (Fig-
ure 3), indicating that for these data sets category se-
lection becomes much less reproducible at a category
size of seven, and further suggesting that the network
is able to generalize at a category size of six. Thus, a
clustering of the data into six structural categories was
used throughout the remainder of this work.

For a clustering using a category set of six, the cat-
egories are general, rather than reflecting properties
specific to the data set on which a network was trained.
The categories found by the two networks were highly
correlated, even though the two networks were trained
on disjoint sets of proteins (Table 2).

To compare the SBBs and the traditional secondary
structure classifications, the overlap between the clas-
sification and standard secondary structure was calcu-
lated. For each SBB category, the number of times
the central residue in an SBB was specified as a-helix,
#-strand or one of the other secondary structure cat-
egories by the DSSP program [Kabsch and Sander,
1983] was calculated (Figure 4). For the network
trained on Data Set One, SBB category 0 clearly ac-
counts for most of the a-helix secondary structure in

A B C D E F
0 -.21 -.35 -.23 -.26 -.21 0.94
1 -.09 -.15 0.87 -.10 -.13 -.22
2 -.19 0.84 -.10 -.04 -.20 -.36
3 0.87 -.16 -.11 -.12 -.09 -.23
4 -.12 -.19 -.12 -.II 0.86 -.22
5 -.11 -.07 -.09 0.75 -.13 -.25

Table 2: A comparison of the categories found in Data Set
Two by a network trained on the protein sequences in that
data set and a network trained on the protein sequences in
Data Set One. Results shown are for the categories found
with a cluster set of six. The columns are the categories (A
through F) found in Data Set Two by the network trained
on Data Set One. The rows are the categories (0 through
5) found by the network trained on Data Set Two. For
each pair of categories the correlation between the cate-
gory found by the network trained on Data Set One and
the network trained on Data Set Two is given for their cat-
egorization of the sequences in Data Set Two. The best
matches axe indicated in bold type.
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Figure 4: An analysis of the overlap between Structural Building Block categories and secondary structure classlncauons.
For each occurrence of a SBB in the proteins Data Set Two, the DSSP [Kabsch and Sander, 1983] classifications of the
central residue in the SBBs are tabulated. Frequencies are given for the SBB categories of both the network trained on Data
Set One and the network trained on Data Set Two.

the sequences. SBB category 2 accounts for most of
the ~-strand, although it is almost as often identified
with regions of "coil". Other SBB categories all have
clearly delimited distributions with respect to the three
secondary structure types. The generality of the cate-
gories is also shown. The SBBs found by each of the
two networks which are most closely correlated (Ta-
ble 2) show essentially identical frequency distributions
for the related categories. (Figure 4).

In addition, there are strong amino acid preferences
for the central residue in the SBBs (Table 3). For each
amino acid in each SBB, the relative frequency, F, was
calculated by

F, = X,/X,gJg,
where Xa is the number of residues of amino acid
type X in SBB category a. No is the total number
of residues in SBB category a in the protein database
used in this project. X, is the total number of residues
of amino acid type X in the protein database. Nt is
the total number of residues of all amino acid types
in the entire database. For this calculation, the cen-
tral residue in each window was the residue considered.
Amino acid preferences found for these six SBBs are
stronger than the preferences for traditional secondary
structures in these data sets (data not shown).

To illustrate that the SBBs are significant structural
elements, and not an artifact of the clustering tech-
nique, various classes of SBBs were visualized. One
example is shown in Figure 5, where the 40 instances
of SBB 4 along the sequence of the protein thermolysin
(4tin) found with the network trained on Data Set 2 axe
superimposed. SBB 4 is clearly a cohesive structure,
which can be characterized as having a "fish-hook"
shape. Upon visualization, this structure occurs most

A C D E F G H
0 1.47 0.67 0.90 1.47 I.I0 0.53 0.99
1 0.69 1.32 2.07 0.48 0.39 1.25 1.62
2 0.83 1.33 0.45 0.71 I.II 0.69 0.68
3 0.92 0.46 1.43 1.27 0.73 0.80 0.43
4 0.59 0.94 1.32 0.87 1.32 2.62 1.38
5 0.81 1.62 0.69 0.55 0.92 1.12 1.27

I K L M N P Q
0 1.00 1.18 1.44 1.42 0.82 0.34 1.17
1 0.60 0.57 0.51 0.73 1.91 1.50 0.77
2 1.67 0.77 1.13 1.03 0.59 I.II 0.80
3 0.50 1.24 0.40 0.53 1.08 2.95 1.03
4 0.23 1.03 0.56 0.49 2.00 0.37 0.83
5 1.38 1.01 1.02 1.01 0.40 0.99 1.24

R S T V W Y
0 1.18 0.67 0.71 0.91 1.33 0.84
1 0.47 1.73 1.65 0.45 0.55 0.73
2 1.01 0.80 1.28 1.89 1.06 1.35
3 0.99 1.54 1.01 0.57 0.64 0.79
4 0.87 0.99 0.66 0.46 0.75 1.02
5 1.04 1.15 1.11 1.04 0.95 1.21

Table 3: The relative frequency of each of the amino acids
for the central residue position in each of the Structural
Building Block classes, found by the network trained on
Data Set One. The frequency counts axe for that network’s
categorizations of the proteins in Data Set Two. Standard
one-letter codes axe used to represent the amino acids.
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Figure 5: The StructurM Building Block 4 for thermolysin. For the 40 instances of SBB 4 in thermolysin, the renderings of
the backbone structurM were Migned to minimize the RMS difference in the backbone store displacement (Insight II, Biosym
Technologies, Inc.). Only the backbone conformations are shown.

often at the C-terminal ends of a-helices (Figure 4)
and in some loop regions.

By using molecular modeling and visualization soft-
ware, several clear correlations between SBBs and pro-
tein structure were found. One class of SBB corre-
sponds to the internal residues in helices and and one
to the internal residues in strands. Also, different SBBs
which correspond in many instances to N-terminal and
C-terminal "caps" of helices were found [Richardson
and Richardson, 1988; Presta and Rose, 1988]. In ad-
dition, SBBs which correspond to cap structures for
strands were identified in many cases, a structural pat-
tern which has not yet been described, to the authors’
knowledge. Comparing these results to the frequency
counts for the corresponding SBB sequence patterns
confirms that the various cap-structure and structure-
cap pa~terns are frequently occurring ones in the pro-
tein database.

Discussion
Based upon simple structural measurements, auto-
associative networks axe able to induce a representa-
tion scheme, the major classifications of which prove to
be Structural Building Blocks: general local structures
of protein residue conformation. SBBs can be used
to identify regions traditionally identified as helical or
strand. Other SBBs are strongly associated with the
N- and C-termini of helical regions. Perhaps most in-
teresting is that there are also SBBs clearly associated
with the N- and C-termini of strand regions. Further, it
is interesting to note that all structure, even that in the

"random coil" parts of the protein, are well classified
by these six SBBs. All of these results have been found
both visually, using molecular modeling software and
in the frequency results of the pattern generation soft-
ware for the patterns of SBBs associated with these
structures. Further quantification of these results is
underway.

On the basis of these results, it is possible that SBBs
are a useful way of representing local structure, one
that is much more objective than the "traditional"
model based upon a-helix and ~-strand. The value of
these more flexible structural representations may well
be that they provide the basis for prediction and mod-
eling algorithms which surpass the performance and
usefulness of current ones.

Previous researchers have attempted novel recate-
gorizations of local protein structure [Rooman et al.,
1990; Unger et al., 1989]. However, the work described
here differs from theirs in at least one important re-
spect. They cluster directly on their one-dimensional
structural criteria (e.g. Ca distances) and then subse-
quently do other processing (e.g. examination of Ra-
machandran plots) to refine their categories. SBBs are
created by clustering on the hidden unit activation vec-
tors created when our more extensive structural crite-
ria (Ca distances, dihedral and bond angles) are pre-
sented to the neural network. By using the tendency of
autoassociative networks to learn similar hidden unit
activation vectors for similar patterns, SBBs are de-
rived directly from multidimensional criteria without
worrying about disparate dimensional extents distort-
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ing the clustering, and without post-processing to re-
fine the classifications. We hypothesize that the rep-
resentations for the hidden unit vectors developed by
the network also reduce the effect of spatial distortion
and other "noise" in the data. This would yield cleaner
data for the clustering algorithm, and more meaning-
ful classifications. Analyses are underway to test this
hypothesis, and to compare the SBB classifications to
those derived from these different methods.

The results of the project described here can he read-
ily extended. Pattern recognition techniques can be
used to provide more sophisticated induction mecha-
nisms to recognize the groupings of categories into reg-
ular expressions, and of the regular expressions into
even higher-level groupings. Using molecular model-
ing software, the correspondence between the current
categories, any higher-level structures found and the
actual protein structures can he further investigated.
The categories found in this research can be used as
the basis for predictive algorithms. If successful, the
results of such a predictive algorithm could be more
easily used for full tertiary structure prediction than
predictions of secondary structure. Because SBBs can
be predicted for entire protein sequences, each SBB
overlaps with neighboring SBBs and each SBB is a full
description of the local backbone structure of that re-
gion of protein, SBB based predictions contain enough
information that they can be used as input to standard
distance geometry programs to predict the complete
backbone structure of globular proteins.
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