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Abstract

Many secondary prediction methods have been
studied, but the prediction accuracy is still un-
satisfactory, since /~-sheet prediction is difficult.
In this research, we gathered statistics of pairs
of three residue sub-sequences in/%sheets, calcu-
lated propensities for them. When a sequence is
given, all possible three residue sub-sequences are
examined whether they form E-sheets. A short-
coming is that many false predictions are made.
To exclude false predictions and improve the pre-
diction, we employed a tIopfield neural network,
in which the natural limitations on protein ter-
tiary structure and preference of chemically sta-
ble long/~-sheet axe expressed in a form of energy
functions. To clarify the prediction for heads and
tails of fl-sheets, special variables are introduced,
which are similar to the line process proposed by
Geman.

Introduction

Many secondary prediction methods use subsequences
from 7 to 21 consecutive residues, and guess secondary
structures of the center residues (Rost 93). These
methods work well for a-helices, because one turn of
an a-helix consists of 3.5 residues, thus 7 consecutive
residues suffices to guess the secondary structure of the
center residue. On the contrary, prediction for/~-sheets
are still difficult. In a/~-sheet, laterM residues which
are connected with hydrogen bonds are usually sepa-
rated by more than 10 residues and distances between
them are not constant. For this reason, predictions
based on consecutive residues are not for a fl-sheet it-
self, but for a strand. So strand prediction is necessary
for/?-sheet prediction, but is not sufficient.

A novel/%sheet prediction method

In the research presented here, I used a protein ter-
tiary structure database (PDB) to gather statistics 
pairs of three residue sub-sequences (will be abbrevi-
ated as TRS) in/~-sheets, and calculated the propen-
sities of TRS pairs (will be abbreviated as pTRSP).
These propensities are used to guess whether two sub-

sequences of a test sequence compose a TRS pair or
not.

An advantage of this method is that it examines
all possible residue combinations and finds almost all
residues in j3-sheets. In ~3-sheets, TRSs are packed
tightly together, therefore information on six residues
suffices to guess a TRS pair, like an a-helix is correctly
predicted using 7 packed residues. A shortcoming of
this method is that false predictions are also included,
particularly those which do not arise in nature due to
the limitations on a protein’s tertiary structure. There
are two kinds of erroneous guesses: the first erroneous
guesses lie in parallel to correct/?-sheets, and the sec-
ond erroneous guesses appear randomly.

Improvement using a Hopfield neural
network for a prediction result

In this research, a Hopfield neural network(Hopfield
86) is utilized for post-processing the result obtained
by pTRSP. In a Hopfield neural network, the natural
limitations on protein tertiary structure and preference
of chemically stable long /~-sheet are expressed in a
form of energy functions.

Classification of TItS pair and constraints
among them

To represent the natural limitations on protein tertiary
structure, TRS pairs are classified in four types, as
follows (see Fig. 1):

¯ Ah; a TRS pair which has one set of hydrogen
bonds between the center residue pairs in an anti-
parallel fl-sheet.

¯ An; a TItS pair which has two sets of hydrogen
bonds at each of the end residue pairs in an anti-
parallel ~-sheet.

¯ Ph; a TItS pair which has two hydrogen bonds
between residue-i and residue-x, and residue-i and
residue-z.

¯ Pn; a TRS pair which has two hydrogen bonds
between residue-h and residue-y, and residue-j and
residue-y.
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Figure 1: Four Types of TRS pair

This method is similar to the previous work (Hub-
bard 94) (Asogawa 96) (Krogh 96) (Mamitsuka 94). 
this work hydrogen bonds patterns are well considered,
which are essential for /3-sheet prediction from both
statistical and biological points of view (Asogawa).

Translation of the natural structure
limitations to energy functions
A sequence with N residues is expressed with
(N- 1)2/2 cells, each of with represents TRS pair.
Since four connection types are necessary, 4 x (N 
1)2/2 cells are used in total. To clarify heads and tails
of fl-sheets and improve prediction, special variables
are introduced for anti-parallel and parallel/~-sheets.
2 x (N - 1)2/2 cells are used for this purpose.

Ahij is a real value of [0.0, 1.0], representing that
TRS(ri-x,ri,ri+l) and TRS(rj_l,rj,rj+l) is 
nected with Ah. (TRS(r~_l,ri,ri+l) is abbreviated
as TRSi, in the following description). Similarly,
Ani,j, Phij, Pnij represent that TRSi and TRSj are
connected with An, Ph, Pn, respectively. In an anti-
parallel/~-sheet, there is no distinction between the
left and right strands, therefore following equivalences
hold.

Ahij dej Ahjj,
def

Ani,j = Anj,i.
Contrary, in a parallel/3-sheet, there is a distinction
between the left strand and the right strand, by con-
sidering figure 1, it is clear that following equivalence
holds.

P hl,j def Pnj,i.

By using Ah~j, Anij, Phi,j, Pni~i both the natural
limitations on protein tertiary structure and chemical
stability are expressed as follows.

1. Each TRSi can connect at most one Tits with Ah.

U, def Ern(EAhij-1).
i

m(.) is a function given as follows,

def f Z if Z > 0
gn(~)

----~ 0 otherwise .

The same equations hold for An,Ph,Pn.

2. The prediction should not diverge from the initial
prediction value, which is nearly correct.

1
U2 def ~E(Ahid_Ah!n.itial]2

t~J

Ah~]iuaz is the propensity of TRSi and TRSj hav-
ing connected with Ah. The same equations hold
for An,Ph,Pn.

3. When TRSi connects with Ah, r~ uses all its hydro-
gen bond potential with Ah. Therefore TRSi can
not connect with Ph, which requires two hydrogen
bond potential. In this case, TRSi can connect with
only An or Pn, which require no hydrogen bond po-
tential.

U3 clef Em((E(Ahid + Phial) 1) ).
i

4. Similarly, when TRSi connects with An, both
TRSi - 1 and TRSi + 1 use one hydrogen bond
potential. Therefore TRSi can not connect with
Pn, which requires one hydrogen bond potential for
both TRSi- 1 and TRSi + I. In this case, TRSi
can connect with only Ah or Ph.

U4 de__f E m((E(AniJ + Pni,i) - 1)).
i

5. Each residue can have at most two lateral residues
of any type.
Us d~ E m((E Ahi J + Ar~,j + Ph,z + Pnij) - 2).

i

6. For all TRS pair, at most one of Ah, An, Ph or
Pn can be chosen.

Us clef E m(Ahid + Amj + Ph~,j + Pni,j - 1).
ij

7. In nature, anti-parallel/3-sheets, Ah and An, line up
alternatively. Therefore, when TRS pair(i, j- 1)
of Ah adjoins TRS pair(/- 1, j) of An, an anti-
parallel/3-sheet gets longer and chemically stable.
This condition is expressed as follows,

, ( 1 ’rain - - g),
%3

1

However, this energy function tends to make longer
prediction than the actual/3-sheet and degrades pre-
diction as a result. Therefore I used special variable
SA to determine heads and tails of anti-parallel/3-
sheets. SA is closely related to the line process (Ge-
man 84). When SAij = 1.0, TRS pair(i,j - 1) and
TRS pair(/- 1, j) is discontinuous, one TRS pair
is in an anti-parallel/3-sheet and the other is not.
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When SAi,j = 0.0, either both TRS pairs are in an
anti-parallel fl-sheet or both are not. By using SA,
the chemical stability of an anti-parallel/3-sheet is
expressed as follows,

def I ~>-", ( 1 1
U7 = -~.z_f. rain (Ahid-x- ~)(Ani-l,j- ~),

1,3

8. Similarly, in natural parallel B-sheets, Ph and Pn
line up alternatively. By using a special variable SP,
which determines heads and tails of parallel B-sheets,
the chemical stability is expressed as follows,

de[ 1 ( f _ 1 _ 1),Us = -~E~min~(Phi,j¯. ~)(Pni-ld-1 2
s,3

9. In natural anti-parallel B-sheets, neither Ah nor An
can line up continuously.

clef IE(
U9 = ~

Ahi-lj+lAhid + AhidAhi+ld-1)
i,j

+1 ~ (Ani_l,j+lArti,j + Arti,jAni+l,j_l) 
1,2

10. Similarly, in natural parallel fl-sheets, neither Ph
nor Pn can line up continuously.

1
U10 de f ~ E (Phi-l,j+lPhid + PhijPhi+l,j-1)

$,J

+15 +
s,3

11. There are two other energies; one to limit the short-
est length of B-sheet and one to lessen the number
of heads and tails of of B-sheets.

An energy function of Hopfield neural network is
given as a weighted sum of these energies Ok.

def E
E = akU~.

k

Appropriate cm are very important for Hopfield neural
network work correctly. I roughly determined the as
and improved them using a learning method proposed
by Kawato (Kawato 88).

Derivation of Hopfleld neural network
formula

To make a Hopfield neural network converge to a min-
imum of the energy function E, the steepest decent

method is used. For this purpose, partial derivatives
of E with respect to Ahid, Ani,j,Phi,j and Pni,j are
calculated¯ The derivative coefficient is used to update
the membrane potential mAhi,j of the cell Ahid.

def O E
AmAhi,j (x

O Ahi,j

_ ~, akOUk
O Ahi,j

Here, E is almost linear in Ahij,Anij,Phi,j and
Pnij, so the derivation of their partial derivatives is
straight forward. The updated mAhij is used to de-
termine Ahij.

Ahid de f g(mAhi,y)

1
1 -~- e-mAh~,j

Similarly SP and SA are updated, following partial
derivatives.

Experiment

Creation of pTRSP

To obtain pTRSP, the HSSP database is utilized, de-
scribed in (Hubbard 94). The propensity for TRS pair
(rt, r2, r3) - (r4, rs, r6) of type X is calculated as 
lows,

pTRSP((rl, r2, r3), (r4, rs, re), X) 

where, p(ri) is the natural probability of rl appearing
in the HSSP. Assuming the Boltzmann distribution be-
tween chemical energy and probability, a pTRSP cor-
responds to its chemical stability energy.

/3-sheet prediction accuracy

256 test sequences are selected as test sequences¯
All test sequences have similarity less than 30% to
all sequences used to calculate pTl~P. There are
89,941 residues; 23,152 residues are in cr-helices, 22,704
residues are in B-sheets and 44,085 residues are in
coils. As for a tentative result, before applying the
hopfield neural network, Q2,p is 48¯60% on average
and SD(standard deviation) is 12.74%. After apply-
ing the hopfield neural network, Q~,~ is improved as
much as 87.68%(SD 7.90%) on average. This improve-
ment is due to recognizing non-B-sheet residues cor-
rectly by applying the hopfield neural network. Actu-
ally, Q~ improves from 31.55% (SD 14.71%) to 88.61%
(SD 8.45%). Since non-B-sheet residues are more than
77% of the test sequences, this improvement has sub-
stantial influence on Q2,# improvement. Although
Qa decreases from 96.74%(SD 9.46%) to 82.71%(SD
21.35%), it is still at a high level. Consequently, Cp
improved, from 0.2724 to 0.6709.
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Figure 2: Prediction Result Before Applying a Hopfield
Neural Network

Part of the initial prediction and converged state is
shown in figure 2 and 3, which are about lmce from first
residue to 80th residue. In these figures, characters in-
dicate predictions, rectangles indicate correct paixings,
and slant lines indicate an activated SA. Note that
where SAs are active, prediction for anti-parallel fl-
sheets are discontinuous and heads and tails of sheets
are clearly defined.

Conclusion
In this research, the propensities of three residues pairs
is used to predict ~-sheets. This method finds almost
all residues in a E-sheet if they are in it, and make many
false predictions at the same time, however. To pre-
clude those false predictions that are impossible due to
the natural limitations on protein tertiary structure, I
employed a Hopfield neural network to choose a predic-
tion which satisfies tertiary structure limitations and
which contains chemically stable long ~-sheets. In the
Hopfield neural network, the structure limitations and
the preference of chemical stability are expressed in
the form of energy functions. To clarify the prediction
of the head and tail of a ~-sheet, special variables are
introduced, which are similar to the sheet processes
proposed by Geman.
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