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Abstract.

This work demonstrates new techniques developed for
the prediction of protein folding class in the context
of the most comprehensive Structural Classification
of Proteins (SCOP). The prediction method uses
global descriptors of a protein in terms of the
physical, chemical and structural properties of its
constituent amino acids. Neural networks are utilized
to combine these descriptors in a specific way to
discriminate members of a given folding class from
members of all other classes. It is shown that a
specific amino acid's properties work completely
differently on different folding classes. This creates
the possibility of finding an individual set of
descriptors that works best on a particular folding
class.

Introduction

The direct prediction of a protein three dimensional
structure from the sequence alone remains elusive, however
considerable progress has been made in assigning a
sequence to a folding class. There have been two general
approaches to this problem. Threading algorithms attempt
to solve the inverse protein folding problem: given a group
of structures and a sequence, identify the structure that is
most compatible with this sequence.

The second approach has been taxonometric. This
approach attempts to bring order to the concept that the
number of 3D folds is restricted by providing a set of
distinct 3D folds which span all known 3D structures. The
most recent classifications are fine-grained, providing ~80
to ~350 folding classes describing 3D protein structure
(Pascarella & Argos 1992; Orengo et al. 1993; Murzin ct
al. 1995). Availability of fine-grained classifications has
encouraged us to work on the development of the
comprehensive scheme for predicting the protein folding
class for a target sequence whose structure is unknown. The
information derived from such a class assignment is
substantial, guaranteed by the similarity between the 3D
structures and the functions of class members. The
advantages of this approach are also substantial, since the
existence of several representatives within the classes
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allows one to extract common features of class members
which can be used to assert or exclude the membership
within the class.

We previously developed the protein folding class
prediction method (Dubchak et al. 1995) that used machine
learning applied to the intermediate (83 folding classes)
3D_ALI classification scheme (Pascarella & Argos 1992).
This method: 1) introduced a global description of a
protein sequence in terms of biochemical and structural
properties of amino acids; 2) used computer simulated
neural networks (NN) to combine these descriptors in
specific ways to discriminate members of a given folding
class from members of all other classes; 3) used a voting
procedure among predictions based on different descriptors
to decide on the final assignment.

We concentirate our current efforts on the extensive
SCOP classification that provides a good target for the
development of prediction algorithms. It is obvious that
the complexity of the folding pattern prediction grows
rapidly with the number of classes; that is why it was
necessary to develop new techniques to complement the
existing prediction scheme.

Materials and Methods

General prediction scheme.

All protein sequences in the chosen database are transformed
into the inputs for the learning system in two steps:

(a) The sequence of amino acids is transformed into a
sequence expressed in terms of a particular local attribute,
for example, in terms of hydrophobicity each amino acid is
replaced by one of three letters - H (hydrophobic), N
(neutral), or P (polar).

(b) The descriptors (C, T, D - see below) are calculated and
the vector of the combination of the descriptors is
constructed for use as an input to the learning system.

A separate training set is built for each class in the
database. Each set consists of two groups of proteins, one
contains the proteins from the class (group A), the second,
the proteins from all other classes (group B, or 'others").
One NN would allow one to distinguish between proteins
of group A and B. After a training series is performed for
all classes, NN weights for each class in the database are
found. This strategy results in a highly flexible modular
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system for recognition where adding more classes to the
classification does not require an extensive retraining of the
whole system.

Database

The database for protein fold recognition that did not
contain highly homologous proteins and adequately
represented SCOP classification was created on the basis of
35% cutoff PDB_select set (Hobohm & Sander 1994).
These sets are non-redundant lists of PDB sequences each at
a different cutoff of pairwise protein similarity. After
removing SCOP classes represented by only one protein
and the classes of designed polypeptides the database for all
our calculations contained 607 proteins from those listed in
the 35% PDB_select file. These proteins represented 128
folding classes of SCOP (as of 09/1996 (Murzin et al.
1995)).

Global sequence descriptors.

Our approach consists in using the association of local and
global information about amino acid sequences. We
developed the representation for a protein sequence that
includes a small number of descriptors based on various
physico-chemical and structural properties of amino acids.
We used three descriptors, "composition” (C), "transition”
(T), and "distribution" (D), to describe the global
composition of a given local amino acid property in a
protein, the frequencies with which the property changes
along the entire length of the protein, and the distribution
pattern of the property along the sequence, respectively. It
was shown (Dubchak et al. 1995) that the introduction of
new 'transition’ and ‘'distribution’ characteristics
significantly enhanced protein folding class prediction.

In this study the vectors of descriptors for all
attributes described in the next section contained 21 scalar
components. The 20 - dimensional vectors of amino acid
composition were also used as descriptors of protein

sequences.

Amino Acid Attributes

The 20 amino acids have different physical, chemical and
biochemical properties such that the same segment of the
protein chain can be described by a variety of property
patterns. It is shown (Selbig, Kaden & Koch 1992) that
structurally meaningful properties are often not explicit and
intermingle with other properties. That is why it is critical
to study as many amino acid properties and their mutual
combinations as possible. We selected properties from all
the main clusters of amino acid indices (Tomii & Kanehisa
1996).

The most accurate-to-date protein secondary structure
prediction by Rost and Sander (Rost & Sander 1993)
obtained by PHD E-mail server (Rost, 1996) was utilized
in our study. This method gives predicted secondary
structures (PHD_SS) as three-state models: helix, strand,
and coil. Grouping of amino acids based on the other
properties was arbitrary. We used the numerical scale of a
particular property and separated the 20 amino acids into
three groups of approximately equal size according to their
numerical values on this scale. The ranges of these
numerical values for all selected groups of amino acids
taken from the original papers are shown in Table 1.

Neural Networks

Three layer feed forward NN with weights adjusted by the
conjugate gradient minimization technique using the
BIOPROP software (Muskal & Kim 1992) were used. Ninp
was equal to 20 for percent composition of amino acids
and 21 for all other attributes, Nhid was equal to 1 and
Nout was equal to 2. High activity output to one node
indicated assignment to a particular class, and high activity
to another node - inclusion to the group of 'others'.

Table 1. Amino acid attributes and the classification of amino acids into three groups according to the attribute.

Property Group 1 Group 2 Group 3
Hyrophobicity Polar Neutral Hydrophobic
(Chothia & Finkelstein, 1990) R,K,E.D,Q.N G,AST,P.HY C,V,LIMFW
Normalized van der Waals volume 0-2.78 295-40 4.43- 8.08
(Fauchere, 1988) G,AS,C.T.P.D N.VEQ,LL MHKFRYW
Polarity (Grantham, 1974) 49-62 80-92 104 - 130
LILFW,CMVY P,A,T,G,S H,Q.R.K,N.E.D
Polarizability (Charton & Charton,1982) 0 - 0.108 0.128 - 0.186 0.219 - 0.409
G,AS.D,T C,PN.VE QAL KMHFRY,W
Normalized frequency of alpha-helix 0.57 - 0.83 0.98 - 1.08 1.11 - 1.51
(Chou & Fasman, 1978) G,PN,Y,CS,T R,H,D, VW, QF.K.L AME
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Results and discussion

Testing new attributes

In order to build testing sets, each of 128 classes was
shuffled by a random permutation and divided into two
equal parts. One half of its sequences was included in the
training set, the other half was involved in testing, and vice
versa. Thus, the testing was performed on the proteins

which did not participated in training. Two training sets and
two corresponding testing sets were assembled for the
prediction of each class in terms of every attribute, and
accordingly two neural networks were trained. In total 128
* 2 = 256 training-testing sessions were performed to
estimate a performance of a particular attribute. Both
training and testing set contained N/2 (N-number of
proteins in a particular class) proteins of the class and (607-
N)/2 proteins in the group 'others'.

Table 2. Predictions at a 60% and higher accuracy for different amino acid attributes.

Attribute Name of the folding class Number of Correct Correct
in SCOP proteins positive  negative
in the class
% %
PHD_SS Alpha; Globin-like 13 84.6 100.0
Alpha; Long alpha-hairpin 3 667 99.7
Alpha; lambda repressor-like DNA bind. 5 600 995
Alpha; Oligomers of long helices 3 66.7 100.0
Beta; Immunoglobulin-like 30 66.7 85.4
A/B; beta/alpha (TIM)-barrel 29 69.0 80.2
A/B; FAD ( NAD)-binding motif 11 63.6 85.2
A+B; Ribonuclease A-like 3 66.7 993
A+B; SH2-like 3 100.0 995
A+B; Histidine-containing 2 1000 995
Multi; Sugar phosphatases 3 1000 99.7
Small; Small inhibitors, toxins, lectins 14 71.4 91.4
Small; BPTI-like 3 66.7  99.7
Small; EGF-like module 4 75.0 997
Percent Composition Alpha; DNA-binding 3-helical bundle 12 66.7 997
of amino acids Alpha; lambda repressor-like DNA bind. 5 60.0 99.7
Alpha; EF-hand 6 100.0 100.0
Beta; Immunoglobulin-like 30 66.7 88.6
Beta; Viral coat and capsid proteins 16 75.0 97.6
A/B; Periplasmic bind. protein-like 11 63.6 92.4
Small; Metallothionein 3 100.0 100.0
Hydrophobicity A/B; PLP-dependent transferases 3 66.7  98.7
A/B; Periplasmic binding protein-like 11 727 93.1
Small; Small inhibitors, toxins, lectins 14 71.4 94.8
Van der Waals Alpha; DNA-binding 3-helical bundle 2 66.7 929
volume Alpha; Pheromone proteins 3 66.7 97.0
Alpha; Ferritin like 5 60.0 985
Polarizability Alpha; Pheromone proteins 7 66.7 99.7
A/B; beta/alpha (TIM)-barrel 29 62.1 82.5
Polarity A/B; beta/alpha (TIM)-barrel 29 62.1 85.6
Small; Classic zinc finger 3 66.7 99.7
Small; Metallothionein 3 100.0 983
Alpha-frequency Alpha; lambda repressor-like DNA bind. 5 60.0 99.7
Beta; Viral coat and capsid proteins 16 62.5 89.8
Small; Small inhibitors, toxins, lectins 14 71.4 96.5
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After testing two numbers were calculated for
combined testing sets - 1) the percentage of correct positive
predictions (number of class members correctly assigned to
its class) and 2) the percentage of correct negative
predictions or rejection accuracy (the number of proteins
from the group 'others' correctly not assigned to the class).
This procedure was repeated for each class in terms of each
attribute.

The number of classes predicted at a 60% and higher
accuracy level totaled 25 for all attributes (Table 2).
Among them 18 classes were predicted by only one
attribute, four classes by two attributes, and three classes
by three attributes.

The largest number of classes (14) were predicted by
PHD_SS. Among larger classes the best prediction was
made for the class of Globins, with a high positive
accuracy (84.6 %) and 100 % rejection accuracy . Classes
with a small number of proteins (2 - 5) also demonstrate an
extremely high level of rejection accuracy (99.3 - 100%).
Other bigger classes - Immunoglobulin-like beta-sandwich,
(TIM)-barrel, FAD - binding motif, and Small inhibitors -
have a much lower rejection accuracy (80,2 - 91.4%), and a
positive accuracy in the range of 63.6 - 71.4%.

The percent composition of amino acids provides a
significant correlation with the broad structural class of
proteins (Chou 1989). Our earlier work (Mayoraz,
Dubchak & Muchnik 1995) showed that percent
composition of amino acids possesses certain predictive
power for much more detailed classification . As seen from
the Table 2, the percent composition of amino acids
performed well on 7 classes, 6 of them having 5 or more
proteins.

The hydrophobicity attribute worked satisfactorily on
three classes. Two of them were alpha/beta classes (PLP-
dependent transferases and Periplasmic binding protein-like)
not predicted by any other attribute. Four other attributes
(the normalized van der Waals volume, polarity,
polarizability of amino acid, and alpha frequency) worked
satisfactorily on eleven classes altogether, among them
three - Pheromone proteins, Classic zinc finger, and
Ferritin were also uniquely predicted.

This work demonstrates that a specific attribute works
differently on different classes. It is necessary to emphasize
the importance of finding an individual set of descriptors
which works best among all others on a particular folding
class in the comprehensive classification. The study shows
a possibility of such a solution. A number of new
physical, chemical, and structural properties including
various hydrophobicity scales, as well as different types of
protein sequence descriptors should be studied in order to
increase the number of classes for the recognition. Cross-
validation and blind testing will be necessary to develop a
final prediction scheme.
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