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Abstract

The structures of nearly a thousand sequence-unique
proteins represent only 300 different 3D shapes, ls
structural resemblance between proteins with little sequence
similarity the result of physical convergence to favourable
folding patterns, or does it reflect a memory of common
evolutionary history? Separating these two processes is
important for organizing genome data in terms of protein
families and for theoretical approaches to protein structure
prediction by fold recognition techniques. Achieving
separation requires a combination of structure, sequence and
functional analysis of proteins. For this purpose, we are
developing a decision support system that scans
heterogeneous protein sequence and structure related
databases, and collects or calculates characters indicative of
common functional constraints. The criteria include
sequence homology, analysis of 3D clusters of conserved
residues, conservation of active sites, and keyword analysis
of biological function. Even without extensive refinement,
application of a combination of these criteria to a test set
representing all currently known protein structures yields
87% coverage with 7 % false positives, compared to 53 %
coverage by only 1D sequence criteria. Thus, the
semiautomatic prototype system significantly enhances the
efficiency of unifying families of functionally related
proteins in spite of long evolutionary distances.

Introduction

Taxonomic classification has long traditions in biology.
Classic work by Linnd, Darwin, Wallace organized species
of plants and animals in a hierarchy based on common
morphological characters. Access to the genotype has
allowed molecular phylogenies to be constructed not only
of species of organisms but also within and between
protein families. The concept of evolution in which
gradual changes to protein phenotype (structure and
function) result from amino acid replacements, has made
searching databases for significant sequence similarities a
standard technique of functional characterization of newly
determined genes.

In constructing moleular phylogenies, the use of
sequence information has two limitations. First, the
accuracy of predicted biological function is different
between orthologous (e.g., myoglobins in the muscle of
whales and humans) and paralogous genes (e.g., myoglobin
and leghemobin in the roots of plants). Second, protein
folds appear to be compatible with a very wide range of
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amino acid substitutions, making detection of homology
difficult at long ew)lutionary distances. Fortunately,
comparison of 3D structures has led to the discovery of
many distant evolutionary relationships that are not easily
captured even by the most sophisticated ID models of
sequence evolution [2-3]. We have previously developed
the Dali/FSSP structure alignment database and fold
classification to automatically monitor where new
structures map in fold space in terms of a geometrical
similarity measure [4].

Figure 1. Functional residues are conserved and

cluster in 3D.

Adenosine deaminase, phosphotriesterase and urease
share a conserved active site with four invariant histidines
and an aspartic acid supporting metal binding and a
common biochemical mechanism [5]. The conserved
residues were identified by structural alignment expanded
by sequence homologs. Here, tire clustering of the
invariant residues (dark spaeefilling representation) 
shown mapped onto tire structure of adenosine deaminase
[18]. A purine nucleoside ligand is shown in light
spacefilling representation. A number of peripheral
residues are conserved between only two proteins of the
triplet (ball-and-stick ret~resentation ).
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Figure 1 illustrates one case of remote evolutionary
relatives discovered by structure comparison. Urease,
phosphotriesterase and adenosine deaminase not only have
a conserved structural core but support a conserved active
site constrained to perform metal-assisted hydrolysis of
amide bonds. The active site is made up of four histidines
and an aspartie acid; these are the only residues which are
invariantly conserved in all three families. Although the
active site residues are widely dispersed along the
polypeptide chain, they cluster together in the folded
structure. They are invariantly conserved between the
respective protein families, defining a sharp sequence
signature for the superfamily that led to the evolutionary
unification of a large set of distinct amidohydrolase
families [5].

Here, we examine computational criteria for verifying
hypotheses of functional homology between proteins with
very low sequence similarity. Computationally, we work
in a decision support system framework, using intelligent
agents to access heterogeneous databases (Figure 2). 
calibrate the selectivity and sensitivity of quantitative
criteria related to biological function against a balanced,
comprehensive test set. We discuss the potential of a
composite criterion as the basis for an automatic expert
system, assisting or replacing human experts [6-7], that
tackles the problem of evolutionary classification of
protein structures based on more than mere sequence and
structure criteria.

Test set

The notion of a biologically significant relationship
between proteins is intuitive and therefore rather imprecise.
In this work, we formulate a number of quantitative criteria
and test how well they correspond to human intuition. The
test set was composed of 458 evolutionarily unrelated and
482 related pairs (classified manually by L.H.). The test
set is available electronically over the Internet at the URL
http://www2.embl-ebi.ac.uk/dali/testset.

Our basic assumption in constructing a test set was that
remote homologs are detected in structure comparison and
are positioned in structure space as near neighbours. The
test set consisted of 941 proteins which have known 3D
structures and less than 25 % mutual sequence identity. In
order to obtain a balanced sample of pairs in terms of fold
types and protein families, a minimal spanning tree with
940 links was constructed. Linkage was by Z-scores
reported in the FSSP database. Each protein is linked to its
closest structural neighbour, and the whole set is
connected. As the FSSP database only reports pairs with
Z-scores higher than 2, 103 arbitrary links were created to
merge isolated branches into one connected set. One
section of the tree is graphically presented in Figure 3.

Figure 2. Flowchart.
The decision support system addresses the question
whether two proteins are fimctionally homologous by
collecting and combining infornu2tion from heterogeneous
databases. The query proteins are first mapped to their
respective families, defined using a 25 % sequence identity
cutoff [2], so that the computation of ’characters’ can
make use of all infornuTtion attached to auy family member
and of family properties such as residue conservation.
Primary databases for structures and sequences are the
Protein Data Bank (PDB [19]) and Swissprot [20],
respectively. The FSSP [21] and HSSP [2] databases
contain derived multiple alignments of structures and
sequences, respectively, and provide equivalence litdcs
between different entries in the primary databases at the
protein level (families), at the residue level (columns 
multiple alignments), and at the 3D site level (clusters 
residues in spatial proximity).

Conservative characters

This section explains the biological background and
computational details of six criteria related to evolutionary
constraints on protein families.

1. Structure similarity

Protein structure is conserved over much longer
evolutionary distances than amino acid sequences, in terms
of being distinguishable from database background. The
quantitative criterion of overall structure similarity between
two proteins was the statistical significance (Z-scores) 
the Dali method of distance matrix alignment [4].

2. Sequence family overlap
The alphabet of 20 natural amino acids generates a vast
sequence space. Empirically, sequence identity above 25 %
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between two proteins is a reliable indicator of common
evolutionary descent [2]. This threshold is used in the
HSSP database in listing members of the protein family
centred around a protein of known 3D structure. We
define that there is overlap between two protein families
centred around proteins A and C, if there exists a bridging
sequence B that is listed both in the HSSP dataset for
protein A and in that for protein C , even though A and C
may be less than 25 % identical.

3, Enzyme class

The biochemical reactions catalyzed by enzymes are
codified in the E.C. numbers [8]. At the top level, there are
six broad groups of oxidoreductases, transferases,
hydrolases, lyases, isomerases, and ligases. We used
identity of the first numbers of the E.C. codes as a criterion
of functional similarity.

It should be noted that even though biochemical function
tends to be conserved in the evolution of protein families,
the E.C. numbers are not a phylogenetic classification.
Unrelated protein families may catalyze the same
biochemical reactions, and members of one and the same
protein family may be assigned several E.C. numbers. For
example, the family known as class-Ill aminotransferases
uses covalently bound pyridoxal-phosphate as a cofactor to
catalyze reactions with E.C. numbers
2.6.I.(11,13,18,19,62), 4.1.1.64, and 5.4.3.8 [9].

4. Common functional sites (experimental)

We used two sources of experimental information about
functional sites in proteins: sequence annotations in the
Swissprot database, and crystal structures of protein-ligand
complexes.

From Swissprot feature fields, we used sites spanning a
single residue (excluding e.g. DNA-binding regions) and
containing the words THIOLEST, METAL, *_BIND,
ZN_F/NG, ACT_SITE or MUTAGEN but not ALLELE or
NO EFFECT. Annotations of homologous family
members were translated via sequence alignment to the
sequence coordinates of the HSSP master sequence (i.e.,
the structurally known protein).

To extract information from crystal structures in the
Protein Data Bank, we defined ligands as molecules given
in HETATM records excluding sulfate, water, bromine,
chloride, sodium, beta-merkaptoethanol, methyl, ethanol,
acetic acid, nitrate, potassium, acetyl groups, methanol, and
ammonium. The FSSP database linked 6377 Protein Data
Bank entries to the 941 representatives by unambiguous
sequence homology (>25 % sequence identity). 
simplify contact calculations, the 3D superimposition of
the protein chains was used to project the positions of
known ligands in the crystal structure of any homologous
protein onto the representative structure.

The requirements of common functional residues in a
pair of proteins were evolutionarily conservation in both
protein families (HSSP variability<10) and identity 
amino acid type. A pair of proteins was defined to share a
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functional site if identically conserved residues in the
structural alignment either (i) included any that had active
site annotation in Swissprot, or (ii) included at least two
residues in contact with a ligand molecule (at less than 4.0

atom-atom distance).

5. Common functional sites (predicted)
In cases where sequence annotation or structures of ligand
complexes is not available, functional sites may be
predicted based on sequence conservation and clustering of
conserved residues in the 3D structure. The difficulty is
that there are two types of conservation. Conserved
hydrophobic residues typically have a structural role in the
solvent-inaccessible core of the protein, whereas the active
site is typically made up of conserved polar residues.
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Figure 3. Resolution of clusters of functionally
related protein families in the region of ([3~)8
barrel folds.
Superfamilies are marked by thick linl6v. Dotted lines
denote linl6~ to non-(fl~)8-barrel proteins. The bit-patterns
(square: z-score, circles:sequence family, E.C., sites,
function preference, keywords) next to each link depict the
6 criteria (black: above; white: below cutoffdefined in
Table I). The lay’out was created manually.



These prejudices were cast in numerical terms through the
derivation of the following preference parameters for each
amino acid type r. Let us define:

( I a) Ntot = Z Nr = total number of residues,

( I b) Ctot = y- Cr = total number of conserved residues,

(lc) Ftot = y. Fr = total number of functional residues,

where the summation is over all residues in the test set of
941 sequence-unique structures. The data set had a total of
Ntot = 190978 residues, C tot = 70791 conserved residues
(HSSP variability < 10), and F tot = 11834 functional
residues within the conserved subset which are in contact
with ligands (<4 A atomic distance). Factoring out the
general preference of being conserved from the preference
of being functional, the log-odds ratio of observed over
expected counts gives the preferences (Figure 4):

(2a) Conservation preference(r)=log[(Cr/Nr)/(Ctot/Ntot)],

(2b) Functional preference(r) = log[(Fr / Cr )/(Ftot / Ctot)].

In principle similar though more elaborate functional
residue preferences have been derived earlier by Ouzounis,
Sander and Valencia ( pers. comnL) . The preferences
should be useful in predicting active sites from multiple
alignments of protein families which do not yet have a
known structure. For illustration, we here apply the
preferences to the same set of proteins from which the
parameters were derived which, strictly speaking, is
circular (but we do not think overlearning is severe in this
particular case).

As with criterion 4, putative functional residues must
have low variability in both protein families and identical
sequence. We identified clusters of conserved residues and
evaluated the functional potential of each cluster. Clusters
of conserved residues were defined by single linkage
clustering of residues in contact (atom-atom distances less
than 4/k). The functional preferences were summed over
the residues in each cluster, and the highest preference
score retained.

For example, comparison of adenosine deaminase and
phosphotriesterase resulted in seven clusters with the
compositions L, HHHGHD, N, A, G, E and G; comparison
of adenosine deaminase and urease resulted in eight
clusters with the compositions HHHHD, IN, G, E, D, A, E
and A (see Figure 1). In both cases, the histidine-rich
cluster at the active site has the highest functional
preference.

6. Keyword overlap
The most fuzzy criterion is based on the subjective
keyword annotation of the sequence entries in Swissprot.
In this work, we restricted ourselves to keyword identity
and crude elimination of noninformative keywords (3D-
structure, acetylafion, alternative initiation, alternative
splicing, amidation, chloroplast, disease mutation,

duplication, fusion protein, glycoprotein, hypothetical
protein, membrane, mitochondrion, multigene family,
nuclear protein, plasmid, polyprotein, polymorphism,
repeat, signal, structural protein, transit peptide,
transmembrane) which convey structural or genetic rather
than functional information. A protein was represented by
a vector in keyword space. The magnitude of each
component was the relative frequency of a keyword in the
family. The relative frequency of a keyword is the number
of times it occurs with a homolog sequence listed in the
family (HSSP dataset), divided by the number of sequences
in the family. Keyword overlap between two proteins was
quantified as the dot product of their keyword vectors.

Implementation
The current prototype of the decision support system is
based on Perl scripts [11], using relational tables for storing
intermediate results and HTML-viewers for display. Perl
scripts parse information from the heterogeneous databases
(Figure 2), do simple data manipulations, and keep track
of equivalence links between residues in multiple sequence
and structure alignments. The atomic contact calculations
were programmed in Fortran.
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Figure 4: Functional residue preferences by
amino acid type
Statistical preferences show that histidine is the favourite
functional residue, followed by cysteine and serine. The
large aromatic residues and glycine tend to be conserved,
but for structural and not functional reasons. In general,
the tendency to be conserved (hydrophobic residues) 
opposite to the tenden~’ to be functional (polar residues).
The exception is cysteine, which has strong preference both
for structural conservation (disulphide bridges) atut for
functional conservation (metal binding).
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Figure 5. How well do the criteria discriminate?
The histograms sho.’ the selectivity and coverage of each
of six computational criteria (functiotually related pairs are
white and unrelated gray).
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Results

Figure 5 shows the calibration of the criteria against the
test set of 940 pair relationships.

The distribution of structural similarities shows a broad
range of overlap between divergently and convergently
related proteins. On the one hand, there are popular fold
classes such as parallel if/J3 domains and ( [~¢x)8 barrels
which contain many superfamilies. On the other hand,
structural divergence within a superfamily can proceed
surprisingly far, as exemplified by glycogen phosphorylase
and beta-glucosyltransferase [ 12] or different types of
lysozymes [ 13].

Sequence family overlap proves to be a remarkably
efficient criterion. The test set consists of proteins that
have low mutual sequence similarity, but more than half of
the pairs of proteins which are related by evolution have
bridging sequences between them which are above the
HSSP threshold to both test set proteins.

The Enzyme Classification and function preferences are
quite selective but have low coverage. The present
implementation of criteria involving overlap of functional
sites in 3D has a relatively high number of false positives,
which should be reduced by stricter comparison, for
example requiring a match of the chemical types of the
ligand compounds.

A number of false positives with the Swissprot keyword
criterion were due to nonspecific keywords such as
’transcription regulation’ and ’DNA binding’. Weighting
keywords inversely to their frequency in the database
would be an obvious remedy to this problem.

No single criterion has both high coverage and high
selectivity. Encouragingly, a combined criterion that aims
to minimize the sum of the numbers of false positives and
false negatives yields reasonable coverage and selectivity
(Table I).

Table I: Coverage and selectivity

criterion coverage I false positivesz

structure similarity Z>__ 4.5 9O % 28 %
sequence family overlap 53 % 3 %
same E.C. class 13 % 6 %
site overlap 54 % 14 %
function preference > 0.16 44 % 8 %
keyword overla_p _> 0.9 82 % 13 %
bit-score > 3.3. 87 % 7 %
! Percentage of true-and-positive of all true pairs defined
in the test set.
2 Percentage of false-but-positive of all positive pairs

identified by the criterion.
3 The bit-score is a linear combination of the six criteria at
the top, with weights 1, 2, 1, I, 1 atul 2, respectively.

Discussion

Conserved functional sites are useful indicators of
common evolutionary ancestry between proteins with little
sequence similarity but similar 3D structure. Conservation
was analyzed both at the level of sequences (columns in
multiple alignment) and structural equivalence (3D
superimposition). Conceptually, the application of uniform
criteria to a large test set leads to a calibration of the weight
for different characters in assessing hypotheses of
homology (for controversial views regarding one case, see
[14] and [15]).

Technically, the prototype decision support system
solves mainly syntactic problems associated with reading
heterogeneous databases and bookkeeping of homology
links. Future improvements must add more semantic
understanding to the system, preferably by unsupervised
machine learning techniques. For example, there is a small
number of false positive homologs at the bottom of HSSP
datasets, which should be detected and eliminated.
Information theoretical approaches could be used to
investigate whether a proposed family is better described
by separate models for subfamilies. Furthermore, most
larger proteins are composed of functionally distinct
domains, which causes problems in associating keywords
to entire sequences.

The present analysis centred on identifying common
conserved biochemical functions. More detailed analysis
of superfamilies and multiple alignments can account for
adaptations of specificity in different subfamilies [ 16]. Let
us take two examples. The active site of plant
endochitinase was identified by structural homology to
lysozymes from animals and phage [ 13]. In this case, there
is hardly any overall sequence similarity, yet both are
functionally related enzymes. On the other hand, alpha-
lactalbumin has recently diverged from mammalian
lysozymes which is evident from sequence identities
around 30 % but the active site residues are not conserved.

The rapid increase in structure and sequence data will
allow testing the criteria developed here on independent
new data. The long-term goal is to refine the criteria
introduced here for an expert system that would
automatically resolve functional protein superfamilies in
the Protein Data Bank. For example, a neural network
could be trained on bit patterns (Figure 4) or on real-
valued criteria (Figure 3). Automatic classification would
not only give molecular biologists an overview of the
evolution of protein families, but would, as a byproduct,
also provide the fold recognition ("threading") [171
community with a clean test set of physically convergent
protein structures.
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