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Abstract

Translation in eukaryotes does not always start at the
first AUG in an mRNA, implying that context infor-
mation also plays a role. This makes prediction of
translation initiation sites a non-trivial task, especially
when analysing EST and genome data where the entire
mature mRNA sequence is not known. In this paper,
we employ artificial neural networks to predict which
AUG triplet in an mRNA sequence is the start codon.
The trained networks correctly classified 88 % of Ara-
bidopsis and 85 % of vertebrate AUG triplets. We find
that our trained neural networks use a combination
of local start eodon context and global sequence in-
formation. Furthermore, analysis of false predictions
shows that AUGs in frame with the actual start codon
are more frequently selected than out-of-frame AUGs,
suggesting that our networks use reading frame detec-
tion. A number of conflicts between neural network
predictions and database annotations are analysed in
detail, leading to identification of possible database
errors.
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Introduction
The choice of start codon in eukaryotes depends on po-
sition as well as on context. Usually, translational ini-
tiation takes place at the first occurrence of the triplet
AUG in an mRNA, but in some cases an AUG further
downstream is selected. This is explained by the so-
called scanning hypothesis, which states that the small
subunit of the ribosome binds at the capped 5’-end of
the mRNA and subsequently scans the sequence un-
til the first start codon in a suitable context is found
(Kozak 1983; 1984; Cigan & Donahue 1987; Joshi 1987;
Kozak 1989). It has been reported that downstream
AUGs are used as start codons in less than 10 ~, of
investigated eukaryotic mRNAs (Kozak 1989; Yoon
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& Donahue 1992). Previous analyses of starL codon
contexts found the consensus of eukaryotic transla-
tion initiation sites to be GCCACCaugG (Kozak 198,1;
1987), but further analyses has demonstrated that
the pattern varies between different groups of eukary-
otes (Cavener 1987; Liitcke et al. 1987; Joshi 1987;
Cigan & Donahue 1987; Yamauchi 1991; Cavener &
Ray 1991) and that these differences are statistically
significant (Pedersen &: Nielsen 1997). Specifically, all
vertebrates that have been investigated have similar
start codon contexts, as do the two monocots rice and
corn, while several other eukaryotic species have sig-
nificantly different signals (Pedersen & Nielsen 1997).

Since less than 10 % of all eukaryotic mRNAs re-
portedly utilize downstream AUGs as start codons, it
should be possible to perform prediction of transla-
tion initiation sites at more than 90 ¢7¢: accuracy sinl-
ply by selecting the first AUG, given that complete
and error-free mRNA sequences are available. This,
however, is very rarely the case in sequence analysis.
Thus, we find that even when great care is taken to
extract GenBank nucleotide data that is annotated as
being equivalent to mature mRNA, almost 40 % of the
sequences contain upstream AUGs. ’]?his problem is
enhanced when using unannotated genome data, and
when analysing expressed sequence tags (ESTs). ESTs
are partial, single-pass, eDNA sequences, that gener-
ally represent the complement of mRNAs in the (’ell,
but that due to the very nature of the technology usu-
ally contain more errors (Boguski, Lowe, & Tolstoshev
1993; Boguski & Tolstoshev 1994; Cooke et al. 1996;
Benson et al. 1997). Thus, uncertainties can exist re-
garding which end of an mRNA the EST corresponds
to, it is not always known whether the entire 5’ (or 3’)
end is represented in the EST, the sequence can poten-
tially be contaminated with vector sequence, and th(~
automated single pass sequencing results in a higher
error rate than is found in normal genome data.

’l’hese problems make the prediction of translation
initiation sites a non-trivial task. In this paper we

226 ISMB-97 G’,p:,’right "i.~ 1997, ;,,mencan Association for Artificial Intelligence (w~w aaa ,,rg) A r gh s reserved.

From: ISMB-97 Proceedings. Copyright © 1997, AAAI (www.aaai.org). All rights reserved. 



present a method for prediction of start codons, that
is based on the use of artificial neural networks. The
results presented here are preliminary and we are still
in the process of developing the method, but we find
the current performance to be convincing. The method
does not require any knowledge of the position of AUGs
in relation to mRNA 5’ ends, and we believe it can be
useful in connection with analysis of EST data and
incompletely annotated genome sequences.

Methods
Data
Extraction All data were extracted from GenBank,
release 95 (Benson et hi. 1997). We extracted a ver-
tebrate group consisting of sequences from Bos taurus
(cow), Gallus gallus (chicken), Homo sapiens (man),
Mus musculus (mouse), Oryctolagus cunicnlus (rab-
bit), Rat$us norvegicus (rat), Sns scrofa (pig), and
Xenopns laevis (African clawed frog). We have pre-
viously shown that these vertebrates have similar start
codon contexts (Pedersen & Nielsen 1997). Addition-
ally, we have chosen a data set showing large deviation
from vertebrates, Arabidopsis thaliana (thale cress, 
dicot plant).

Nuclear genes with an annotated start codon were
selected. The sequences were processed in the follow-
ing way: all sequences were "spliced" by removing pos-
sible introns, and joining the remaining exon parts.
From the resulting data set, sequences containing at
least 10 nucleotides upstream of the initiation point
and at least 150 nucleotides downstream (relative to
the A in AUG) were selected. All sequences contain-
lag non-nucleotide symbols in the interval mentioned
above (typically due to incomplete sequencing) were
excluded.

Redundancy All sequence databases are redundant
due to the presence of genes belonging to gene fami-
lies, homologous genes from different organisms, and
sequences submitted to the database more than once.
Unless this redundancy is reduced before performing
statistical analysis, the result will be biased for the
over-represented sequences, and the performance of
prediction methods will be overestimated (Sander 
Schneider 1991; Hobohm et al. 1992). We performed
very thorough reduction of redundancy using algo-
rithm 2 from (Hobohm et hi. 1992) and a novel method
for finding a similarity cut-off, that we have described
elsewhere (Pedersen & Nielsen 1997). Briefly, this
method is based on performing all pairwise alignments
for a data set, fitting the resulting Smith-Waterman
scores to an extreme value distribution (Altschul et al.
1994), and choosing a value above which there are more
observations than expected from the distribution.

The sizes of the redundancy reduced data sets
were: 3312 vertebrate sequences, and 523 Arabidop-
sis thaliana sequences. These data sets are available
from the authors upon request.

Neural Networks
The neural networks used in this study were of the feed-
forward type, and had three layers of neurons (Hertz,
Krogh, & Palmer 1991). They were written in the
FORTRAN programming language by Stren Brunak,
and has previously been used for several other predic-
tion purposes [e.g., (Brunak, Engelbrecht, & Knurl-
sen 1990; 1991; Hansen et hi. 1995)]. Inputs were
presented to the networks by encoding the DNA se-
quence into a binary string, using a coding scheme
where each nucleotide is represented by 4 binary dig-
its: A=0001, C=0010, G=0100, and T=1000 (sparse
encoding). The output layer consisted of two neurons
-- one predicting whether the central position in the
window was the A in a start codon AUG, the other
predicting whether it was the A in a non-start codon
AUG. The output of the network was interpreted by
believing the output neuron with the highest score (the
"winner takes all" approach). Neural network perfor-
mance was estimated using the Mathews correlation
coefficient (Mathews 1975).

Prediction of Signal Peptides
In order to test our method for prediction of start
codons, we have combined it with a method for predic-
tion of signal peptides in amino acid sequences: The
SignalP server (Nielsen el hi. 1997). This method
uses a combination of neural networks to predict the
presence of signal peptides and the location of their
cleavage sites.

SignalP returns three scores from every position in
the sequence: a cleavage site score (C-score) from net-
works trained to recognise cleavage sites, a signal pep-
tide score (S-score) from networks trained to distin-
guish between signal peptide and non-signal peptide
positions, and a combined cleavage site score (Y-score),
which optimises the prediction of cleavage site location
by combining the C-score with the derivative of the
S-score. Discrimination between signal peptides and
N-terminals of non-secretory proteins is performed us-
ing the maximal value of one of the three scores or
the mean value of the S-score (from the N-terminus to
the position with maximal Y-score). Each network en-
semble has a specific threshold value for each of these
measures.

Results and Discussion

As mentioned, it should be possible to predict trans-
lation initiation start sites at better than 90 % accu-
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racy, if one has access to entire error-free mRNA se-
quences. However, when we analysed our data sets
with the purpose of extracting sequences correspond-
ing to mature mRNAs, we found that only about 10 70
(387 out of 3312) of the sequences in the vertebrate
set had sufficient annotation for this purpose. (In the
remaining cases the exact in vivo transcriptional start-
points and upstream splice sites have not been deter-
mined). Further analysis of the resulting vertebrate
mRNAs demonstrated that almost 40 % (150 out of
387) contained one or more upstream AUGs. Thus, it
was only possible to use the simple "first-AUG" rule
in the remaining 237 sequences, corresponding to ap-
proximately 7 % of the entire vertebrate set. In the
case of genome or EST data the situation is going to
be even worse.

Hence, we thought it could be interesting to con-
struct a method for prediction of translation initiation
sites that was not dependent on knowledge of the posi-
t.ion of an AUG in relation to mRNA 5’ ends. To this
end, we trained artificial neural networks on the en-
tire non-redundant data sets. Specifically, we trained
on 80 % of a sequence set and tested the predictive
performance on the remaining 20 %. Only AUGs were
examined and predicted to be either start AUGs or
non-start AUGs. The vertebrate data set contained
2684 AUGs of which 660 (25 %) are start codons. The
A. thaliana set consisted of 412 AUGs, 105 (25%) 
which are start codons. Several different network ar-
chitectures were investigated in order to find one that
performed well on the problem at hand. Specifically,
we examined all combinations of the following ranges
of parameter values:

¯ Number of neurons in the hidden layer: 0, 1, 2, 5,
10, 20, 30, 50

¯ Input window size (nucleotides): 13, 33, 53, 73, 93,
113, 133, 153, 173, 203

Among these architectures the optimal performance
was observed with a 203 nucleotide input window and
30 hidden units. Generally, we found that performance
varied only slightly with different numbers of hidden
units, while the size of the input window was very im-
portant. Thus, the predictive performance was found
to get significantly better with bigger input windows
(data not shown), suggesting that the network is using
global information. This could be either the nucleotide
composition, which is known to be different between
coding and non-coding regions, or reading frame char-
acteristics such as the presence of stop codons, and
nucleotide frequencies at the three codon positions.

The best networks that were obtained on the verte-
brate set showed a Mathews correlation coefficient of

0.6208 and were able to predict 85 % of the AUGs cor-
rectly (corresponding to 78 %: of start codons, and 87 %:
of non-start AUGs). The best Arabidopsis fhafiana
network reached a Mathews correlation coefficient of
0.7122, meaning that they were able to predict 88 %.
of all AUGs correctly (90 % of start codons and 87 
of non-start AUGs). For the purpose of analysing the
predictive performance of these preliminary networks
we used only one partition of the data into training
and test sets. It is, however, important to note that
the very low redundancy of our data sets, means that
the predictive performance we observe is unlikely to be
overestimated.

In order to investigate whether the networks uti-
lized local sequence information (such as the start
codon context signals) we performed the following ex-
periment: neural networks were presented with input
windows which covered the aforementioned 203 nu-
cleotides, except for one position (a "hole") from which
the input was disregarded. In a series of runs, the po-
sition of the hole was shifted along the input window,
and the maximum correlation coefficient-values (C,,~)
for the test set were determined. In this way it should
be possible to detect areas of the input window that
are particularly important by looking for positions of
the hole that causes the prediction ability of the net-
work to be partly destroyed. Specifically, these posi-
tions can be seen as local minima in the plot of C,T,~,
vs. position of the hole (figure 1). This method has
previously been used to analyse Escherichia coli pro-
rooters with regard to localisation of regions important
for transcriptional initiation (Pedersen & Engelbrecht
1995). As it can be seen, there is a clear effect, on the
prediction ability of the network when the hole cov-
ers positions close to the start codon, indicating that
local information is indeed also important for predic-
tion of translational initiation sites. Furthermore it
can be seen that by far the most important position
is 3 nucleotides upstream of the start codon. This
is in accordance with previous sequence COlnpilations
and systematic mutagenesis showing that the presence
of a purine (A or G) at position -3 is very impor-
tant for efficient initiation of translation (Kozak 1986;
1987).

We further analysed the erroneously predicted posi-
tions in order to see whether the prediction was depen-
dent on the reading frame and the position relatiw:- to
start codon. The error rate (percent incorrectly pre-
dicted AUGs of each class) are shown in table 1, to-
gether with the average neural network output score for
the AUGs in each class. For all the non-start AUGs.
these two measures are correlated; when tile avorage
score is closer to that of the start codons, the possih-
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0.64

Category Vertebrates Arabidopsis
(total: 2684) (total: 412)

number ] error rate score mean number error rate I score mean
Start codons 660 22% 0.609 105 10% 0.703
Upstream, in frame 105 34% 0.426 14 50% 0.510
Upstream, out of frame 301 15% 0.350 28 18% 0.340
Downstream, in frame 612 20% 0.263 87 24% 0.294
Downstream, out of frame 1006 5% 0.169 178 4% 0.157

I I

c-
._o

O
O

E

0.635

0.63

0.625

0.62

0.615

0.61

0.605

0.6 ....... I n __ n ......... l n
-60 -40 -20 0 20 40 60

position of hole; 0 is A in AUG

Figure 1: Scanning the input window of the neural network with a one-nucleotide hole. The maximum correlation
coefficient Cm,z is shown as a function of the position of the hole (translation initiation site = 0). A network with
a window size of 203 and 30 hidden units was used. Notice the local minimum around position -3 which indicates
that local information is important for the prediction performance of the network, and that this nucleotide is one
of the most important.

Table 1: The error rates and neural network scores for five classes of AUG codons: start codons (correct initiation
sites), and 4 distinct classes of non-start AUGs. The non-start AUGs are divided into 4 classes based on whether
they are upstream (5’) or downstream (3’) of the start codon and whether they are in or out of the reading frame
defined by the start codon. The total number in each set and each class is also shown.

Pedersen 229



O

1.0

0.8

0.6

0.4

0.2

0.0

I I I I I

,’, ....- -.,

! ’, /
I
I

iI
I
I

............. I ................................
I
I
I

r i r
f

/,,,] "-\, ,’l
ii

,,:

I

C score --
S score .....
Y score ......

..!..

t

:i

1( ,t lII1 ] I"T I,-"""--...... t I, .... ..........¯ .. "1" ..

IVIR~EtvIAPAG~SLRAT I LCL LAWAGLAAGDRVY I HPFHLV I HNESTCEQLAKANAGKPK

..... I.. I I I I I

0 10 20 30 40 50 60 70
Position

Figure 2: SignalP prediction of the sequence of AI~GT_ttOXAN, Human angiotensinogen. The S score (signal peptide
score) has a high value for residues within signal peptides, while the C and Y scores (cleavage site scores) are high
at position +1 immediately after possible cleavage sites. Note that the S score is comparatively low for the region
between the first Met and the second Met.

lity of errors increases.

It is clearly seen that the network is far more likely to
predict AUGs as start codons if they are in the correct
reading frame, both upstream and downstream of the
start codon. This suggests that the trained network is
able to recognize reading frames, and is in accordance
with the observation that global information is used.
Furthermore, errors are more frequent upstream than
downstream. This is somewhat surprising in light of
the scanning hypothesis: if the first good translation
initiation site from the 5’ end of the mRNA is used,
there should be no selective pressure against down-
stream AUGs being similar to initiation sites. How-
ever, this consideration applies to the local information
only; the reading frame detection, on the other hand,
is likely to be easier when a larger part of the input
window consists of coding sequence.

In order to further investigate the networks ability
to recognize start codons, we set out to investigate a

set of atypical signal peptides from the SWISS-PROT
database, version 29 (Bairoch &: Boeckmann 1994):
the average length of eukaryotic signal peptides is ’22.6
residues, and only approximately 6% are longer titan
30 residues. We wanted to investigate the longer sig-
ned peptides in order to see whether any of them could
be explained by mis-assigned start codons. Hence,
we selected the 32 vertebrate signal peptides longer
than 30 residues that had at least one Met between
the initiator Met and the proposed cleavage site. Wc
then applied SignedP to these sequences using both thc
upstream annotated and the alternative downstream
methionines. In 21 cases, a downstrcam Met gave a
better average S score than the one indicated in the
SWISS-PROT annotation. The S score was typically
low around the upstream start codon, and changed to
a high value around the alternative start codon (fig-
ure 2). We then extracted the corresponding GenBank
nucleotide sequences for these 21 signal peptides and
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Annotated
Predicted

initiation

Protein SWISSPROT GenBank SP {meanS { start I init.
name ID Locus length score codon score

Human ANGT_HUMAN¢0HA~ 33 0.707 4O 0.400
angiotensinogen 24 0.909 *67 0.700
Human acid ASH_HUMAN HUMASM 46 0.483 101 0.578
sphingomyelinase "14 0.956 197 0.671
Bactericidal perme,- BPI_HUNAN HUMBPIAA 31 0.738 31 0.613
ability-increasing protein 27 0.852 43 0.725
Human C4b-binding C4BP_HUNAN HUMPRPC4B 48 0.512 139 0.358
protein, c~ chain 13 0.897 244 0.755
Mouse C4b-binding C4BP_MOUSE ~JSBPC4B 56 0.440 203 0.494
protein, a chain 13 0.889 *332 0.748
Trout pro- CDLJ_ONCMY IMPOMCB 36 0.750 122 0.310
opiomelanocortin B 22 0.843 164 0.561
Bovine adrenal dopa- DDPO_BOVIN BOVADBM b32 0.624 8 0.738
mine fl-monooxygenase 019 0.884 47 0.822
Human GLCM_HUMANHUMGCBPRC 39 0.491 123 0.476
glucocerebrosidase 19 0.912 *’183 0.477
Human 7-interferon- INIP_IIUMAN BUMIIP 37 0.817 41 0.757
inducible protein IP-30 26 0.865 74 0.775
Human integrin ITA4_HUMAN HSINTAL4 39 0.290 25 0.410
c~-4 subunit 13 0.571 103 0.528
Human monocyte MCP3_HUMANT HSMCP3A 33 0.754 299 0.518
chemotactic protein 3 23 0.863 *329 0.803
Mouse meprin A MEPA_MOUSEMUSMEPRINA 33 0.860 16 0.192
~-subunit 2O 0.906 55 0.605
Human platelet PLFV_B-OMANHUMPF4VIA c34 0.767 281 0.657
factor 4, variant 1 ~18 0.882 329 0.746
Mouse BDNF / NT-3 TRKB_MOUSE MSTIh~B 31 0.919 512 0.401
growth factors receptor 2O 0.973 545 0.490

Table 2: Prediction of alternative start codons in connection with prediction of signal peptides.

a When the predicted initiation is used, SignalP predicts a cleavage site two positions downstream of the annoated,

resulting in a signal peptide of 16 residues.
b SignalP predicts a cleavage site four positions downstream.
c SignalP predicts a cleavage site two positions downstream.

The possibility that the downstream initiation site may be the correct one is acknowledged in database entry
remarks.
~* Both initiation sites are used.
t In newer versions of SWISS-PROT, MCP3_HUNAN has been replaced by MCPT_HUMAN with the initiation site suggested

by our prediction.
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tested them with our inititation prediction network.
For 14 of the 21 signal peptides, the downstream Met
yielded a higher start codon score, indicating that these
unusually long signal peptides are likely to be caused
by errors in the database asignment of start codon (ta-
ble 2).

Concluding Remarks
Upstream initiation codons are not infrequent in Gen-
Bank sequences. Regardless of whether these exist in
vivo or only in the database annotations, they comprise
a concrete problem facing the sequence analyst. This
problem will be encountered more frequently in the fu-
ture, as EST and unannotated genome data become
still more abundant.

In the present work, we have shown preliminary re-
sults indicating that neural networks are indeed capa-
ble of predicting start codons with some confidence.
However, our analysis of the trained networks suggest
that the local information present around the cleav-
age site (Pedersen & Nielsen 1997) is not optimally
utilized. A combination of networks trained specifi-
cally on local and global information might improve
the performance, and we are currently in the process
of implementing such a procedure and extending the
analysis to other eukaryotic groups.
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