
Compression of Strings with Approximate Repeats
L. Allison, T. Edgoose, T. I. Dix

School of Computer Science and Software Engineering,
Monash University,

AustrMia 3168.
eMail: {lloyd,time,trevor } @cs.monash.edu.au

http://www.cs.monash.edu.au/
tel: +61 3 9905 5200, fax: +61 3 9905 5146

Abstract

We describe a model for strings of characters that is
loosely based on the Lempel Ziv model with the addi-
tion that a repeated substring can be an approximate
match to the original substring; this is close to the
situation of DNA, for example. Typically there are
many explanations for a given string under the model,
some optimal and many suboptimal. Rather than com-
mit to one optimal explanation, we sum the probabili-
ties over all explanations under the model because this
gives the probability of the data under the model. The
model has a small number of parameters and these can
be estimated from the given string by an expectation-
maximization (EM) algorithm. Each iteration of the
EM algorithm takes O(n2) time and a few iterations
are typically sufficient. O(n2) complexity is impracti-
cal for strings of more than a few tens of thousands
of characters and a faster approximation algorithm is
also given. The model is further extended to include
approximate reverse complementary repeats when an-
alyzing DNA strings. Tests include the recovery of pa-
rameter estimates from known sources and applications
to real DNA strings.
Keywords: pattern discovery, repeats, sequence analy-
sis, hidden Markov model, DNA, data compression.

Introduction

We describe a model for strings of characters which is
loosely based on the Lempel Ziv (1976) model that
string consists of a mixture of "random" characters and
repeated substrings. The new model has the addition
that a repeated substring need not match the origi-
nal substring exactly but may match it approximately
due to the presence of variations, e.g. mutations, ex-
perimental error and noise. When modelling DNA se-
quences, we also allow approximate reverse complemen-
tary repeats. The model has a small number of param-
eters governing the probability of repeats, the probabil-
ity distribution of the lengths of repeats and the prob-
ability of differences within repeats. The parameters

aPartly supported by the Australian Research Council,
ARC grant A49800558

2Copyright (c) 1998, American Association for Artificial
Intelligence (www.aaal.org). All rights reserved.

8 ISMB-98

can be estimated from a given string by an expecta-
tion maximization (EM) algorithm (Baum and Eagon
1967) (Baum et al 1970) (Dempster, Laird, and Rubin
1977). Each iteration of the EM algorithm takes O(n2)

time and a few iterations are generally sufficient. An
approximation algorithm that runs in near linear time
is available for long strings where O(n2) complexity is
too great.

The primary purpose of the work is not to compress
strings, and in particular DNA strings, so as to save
computer storage space or to reduce data transmission
costs. Rather, the purpose is to model the statistical
properties of the data as accurately as possible and to
find patterns and structure within them. As such our
algorithms do not have to run as quickly as typical
file compression programs although they could act as
benchmarks for such programs in this application area.
in fact the final compression step is not carried out,
instead probabilities and the lengths of encodings are
calculated although actual encodings could be produced
in principle (Wallace and Freeman 1987).

Agarwal and States (1994), Grumbach and Tahi
(1994), and others have recognised the general impor-
tance of compression for pattern discovery in biological
(and other) sequences. One of the benefit.s of looking
at pattern in this way is a hypothesis test: the claimed
discovery of pattern, structure or repetition is only an
"acceptable hypothesis" if it. leads to genuine compres-
sion of the data. Using compression as the criterion
for what is variously known as inductive inference or
machine learning dates back at. least to the work of
Solomonoff (1964), Kolmogorov (1965), Chaitin (1966)
and Wallace and Boulton (1968). It is widely held that
the crucial part of compression is accurate modelling of
the data and that the degree of compression indicates
the accuracy of the models used. A practical advan-
tage of thinking about inductive inference in compres-
sion terms is that it becomes obvious that. all relevant
information, and in particular any inferred parameters
of a model, other than common knowledge, nmst be
included if the encoded data is to be decodable, i.e.
comprehensible. The large body of standard methods,
algorithms and heuristics from data compression can
also be used. Lastly, the scientific method expects the-

From: ISMB-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved.

ories and hypotheses to make testable predictions, and
only good predictions can be used to produce brief en-
codings.

Interestingly, common file compression programs per-
form poorly on DNA sequences; something more spe-
cialised is needed and any available prior knowledge or
expertise in the biological domain should be brought to
bear. Milosavljevic and Jurka (1993) applied a Lempel
Ziv type model to DNA and Powell et al (1998) ex-
amined the compression available in variations on that
work. Wootton (1997) directed attention to what was
termed the "compositional complexity" of strings, i.e.
the multistate distribution (Boulton and Wallace 1969)
of characters in sliding windows, and stopped short of
providing a figure for the overall information content
of a complete string. Loewenstern and Yianilos (1997)
extended a file compression algorithm to DNA by al-
lowing mismatches to occur in "contexts" with consid-
erable improvement over previous methods; the model
has several dozen parameters which are fitted to the
data but do not have direct biological interpretations.
Rivals and Duchet (1997) presented a heuristic which
can join exact repeats that are close together into clus-
ters or runs, i.e. it can make some allowance for ap-
proximate repeats.

In the following sections we recall the Lempel Ziv
model, extend it to allow approximate repeats, and
present an inference algorithm and tests on known
sources. A faster, approximate algorithm is described
for longer strings.

Exact Repeats
The basic Lempel Ziv model (1976) considers a string
to be made up of a mixture of random characters and
repeated substrings. For example, one possible expla-
nation of the string AAGTACACGTACAGT under the
model is AAGTACAC(3,5)GT where (3,5) indicates
repeat from position 3 of length 5, i.e. GTACA. Ran-
dom characters are drawn from an alphabet with some
probability distribution, in the simplest case a uniform
distribution. A repeated substring is a copy of a sub-
string that starts somewhere earlier in the string. The
statistical properties of repeats are the probability with
which repeats occur, the probability distribution on
starting points and the probability distribution on the
lengths of repeats.

Many variations on the Lempel Ziv model are possi-
ble but simple choices are for a fixed probability of re-
peats and a uniform distribution (from 1 to the current
position-l) on starting points. Ziv and Lempel (1977)
demonstrate that their model asymptotically converges,
in terms of compression, to the true model when the
data come from some fixed but unknown source. This
implies that theirs is a good model to use when the true
nature of the source is unknown.

To compress a string under the Lempel Ziv model,
one outputs code words describing either a character
or a repeat. Assuming a fixed probability of a re-
peat, P(start), and a uniform probability distribution

over characters, a random character has a code word
of length -log2(1 - P(start)) + log2([alphabet[) bits.
Assuming a uniform distribution on the source of re-
peats, a repeat into position i has a code word of length
-log2 (P(start))+log2 (i- 1)+log~ (P(length bits. The
usual objective is to find a single optimal explanation
for the given string, using this as the basis for compress-
ing it. Finding an optimal explanation is the search
problem. We know that in the related sequence align-
ment problem (Allison, Wallace, and Yee 1992), a single
optimal explanation underestimates the probability of
the data and gives biased estimates of parameter val-
ues. Therefore we sum over all explanations under the
new model which gives better compression, particularly
for "weak" or "statistical" structure.

The Lempel Ziv model inspired many file compres-
sion programs. To be practical, such programs must
run in linear time, and in fact linear time with a small
constant, so much of the work in file compression has
been on sophisticated algorithms and data structures,
such as hash-tables and suffix-trees, to achieve this end.
The current practice in general text compression is to
keep a data structure of "contexts" i.e. words of some
length k, that have occurred in the past, with statistics
on the frequencies of characters that followed instances
of each context. Major variations cover whether or not
there is a bound on context length (Cleary and Tea-
han 1997), and how to balance predictions from long
but rare contexts against those from short but more
frequent contexts.

When typical file compression programs, such as zip,
are run on DNA strings they often fail to compress the
DNA below the base-line figure of two bits per charac-
ter (Loewenstern and Yianilos 1997), i.e. they fail
compress the DNA at all. This is due to a combination
of factors: File compression programs are generally set
to deal with an alphabet of size 256, perhaps with some
expectation of the Ascii character set (about 100). Most
DNA seems to have rather little redundancy, with com-
pression to 1.9 or 1.8 bits per character being possible
with specialist programs. File compression programs
do gradually adapt to the DNA’s statistics but have of-
ten lost too much ground in doing so to make it up on
sequences such as HUMHBB (73 thousand characters).

Approximate Repeats
The current work uses a new model of strings where a
repeated substring can be an approximate, rather than
an exact, match to the original substring. There are two
prior reasons to believe that this could be useful. First,
it in effect increases the number of contexts that match
the last characters of the string, at least approximately
if not exactly, and therefore increases the amount of
available information about what could come next. Sec-
ond, for some data sets and notably for DNA there are
well known processes by which instances of repeats can
differ from each other.

Events in the replication of DNA strings can lead to
the duplication of substrings (repeats) and also dupli-

Allison 9

cation from the complementary strand in the reverse di-
rection (reverse complementary repeats). These events
can create repeats with lengths of hundreds or thou-
sands of characters. Once a substring has been dupli-
cated, the individual copies are subject to the usual
evolutionary processes of mutation by which characters
can be changed, inserted and deleted. The subsequent
mutation process is well modelled by variations on the
edit-distance problem which also model spelling errors
in text and errors and noise in many other kinds of
sequence.

Some substrings occur a great many times in DNA.
For example, the Alu sequences (Bains 1986), of length
about 300 characters, appear hundreds of thousands
of times in Human DNA with about 87% homology
to a consensus Alu string. Some short substrings
such as TATA-boxes, poly-A and (TG)* also appear
more often than by chance. Methods are known (Al-
lison and Yee 1990.) (Allison, Wallace, and Yee 1992)
for calculating the probability of two DNA strings,
S1 and $2, given the hypothesis that $1 and $2 are
related, P(Sl&S2lrelated), for some simple hidden
Markov models of mutation. The complementary hy-
pothesis is that S1 and $2 are unrelated and gives a
-log2 probability of about two bits per character for
random strings, P(Sl&S2[unrelated) = P(S1).P(S2),
i.e. -log2(P(Sl&S2lunrelated)) = -log2(P(S1))-
Iog2(P(S2)). If S1 and $2 are substrings of some
larger string, and it is assumed that $2 is an ap-
proximate repeat of Sl, we get P(Sl&S21related) =
P(S1),P(S2[Sl&related) and the -log2 of the last
part, -Iog2(P(S21Sl&related)), is the cost of encod-
ing the changes in Sl’s approximate copy, $2. This
encoding is compact if S1 and $2 are similar.

An alignment of S1 with $2 gives a way of editing
(mutating) S1 into $2. An encoding of these edit op-
erations can be taken as an upper bound of the -log2
probability of $2 given the related S1, e.g.

Alignment:

Sl: ACGTAC-T
I II I I

$2: A-GTTCGT

Edit SI~S2:

copy, delete, copy, copy,
change(T), copy, insert(G),

Typically there are a great many ways of editing
S1 into $2, some optimal and some sub-optimal; these
are mutually exclusive hypotheses and together exhaust
all the ways in which S1 and $2 can be related un-
der the model. If there are two optimal explanations,
adding their probabilities saves one bit in compression.
Each suboptimal explanation has a lower probability
but there are a great many more of them. For exam-
ple, if there are two options for a plausible alignment
early in the data shortly followed by two more options,

10 ISMB-98

A,

C.
G.
T

end

copy,change,
insert.
delete

copy,
change,
insert

delete

Figure 1: Simple Generating Model

these options muhiply together to give four options :
total - and this is just the start. Adding the probabil
tics of all such editing sequences yields the probabilit
under the model, of $2 given S1 and given $2 being r.
lated to S1. This calculation can still be carried out
O(n?’) time by a modified dynamic programming alg,
rithm (DPA) that sums probabilities (Allison, Wallac
and Yee 1992) rather than maximizing the probabi
ity of an alignment (edit sequence) which is cquivalo
to minimizing the edit-distance. We therefore use th
aligmnent algorithm, summing the probabilities of
alignments of possible repeats, within the string con
pression model. The algorithm actually works with tt
-1o92 of probabilities but. it is sometimes convenient 1
discuss it in terms of the probabilities directly.

Figure 1 shows a finite state machine for generatir
strings under the new model; it is a naathematical al
straction derived from the considerations above. Fro
the base state, B, the machine can generate "randon
characters, returning to the base state. It. can also st.a.
a repeat, moving to state R. From state R, characte:
can be copied from the source substring, but characte
can also be changed, inserted or deleted. Tim auxilial
states, R2 and R3, are simply there to ensure that il
visible events are prohibited, i.e. at least one charact,
must be output before returning to B. The repeat em
with a return to the base state. The base state is al,
the start and end state of the machine. Many vari;
tions on the "architecture" of the machine are possib
to incorporate prior knowledge while staying within tl
general framework.

A C

A

(~1~~.~
-- Row !

Figure 2: Repeat Graph

Figure 2 shows the "repeat graph" for a string be-
ginning ACA... under the new model; note that the
graph is acyclic. A node represents a machine state at
a particular time. The graph amounts to an unfolding
of all possible sequences of state transitions of the ma-
chine described above (figure 1), except that state
is merged into R2 for simplicity.

A path through the graph from the start node, B0, to
the end node, B,~, is an "explanation" of the string. The
paths form an exclusive and exhaustive set of explana-
tions under the model. Some explanations are plausible
and some are quite implausible, but all of their prob-
abilities are summed by the DPA. The left-hand col-
umn of the repeat graph contains state-transitions of
the base state that generate "random" characters. A
repeat may start from any point in this column. Once
within a repeat, the repeat may end or continue. If
the repeat continues, a character is copied or changed
(diagonal move), deleted (horizontal move) or inserted
(vertical move). The repeat’s origin must be encoded
when it starts. A new character must be encoded with
each insert or change but this is not necessary for a copy
or delete. The length of a repeat is effectively encoded
in a unary code, by repeatedly stating that the repeat
has not yet ended. A unary code corresponds to a ge-
ometric probability distribution. It is not claimed that
a geometric distribution is an optimal fit to the distri-
bution of repeat lengths; it is used because it has the

property of making the DPA’s incremental calculations
"local" which permits the summing of all explanation
probabilities in O(n~) time. This is discussed in a later
section.

Reverse complementary repeats were left out of the
discussion above but are included in the Inodel by a fur-
ther set of states R~, R2~ and R3’ in the machine, and
nodes and arcs in the repeat graph, similar to those for
forward repeats in figure 1 and figure 2. There is a cor-
responding set of probability parameters for the start,
continuation and mutation of reverse complementary
repeats.

The various probability parameters can be given
apriori if they are known. Alternately they can be
(re)estimated in an expectation maximization (EM)
process: Each node in the repeat graph (figure 2) con-
tains the average frequencies of transition types over all
paths leading to the node from the start node. When
two paths meet, a weighted average of their counts is
formed, weighted by the paths’ relative probabilitics.
The frequencies in the end-node are used to derive new
probability estimates for the next EM iteration. The
EM process is guaranteed to converge because the new
parameter values must be as good or better than the
old values for the current path weightings and, simi-
larly, the next set of path weightings will be as good or
better than the old ones for the new parameter values.
Convergence to a local optinmm is possible in princi-

Allison 11

02

0.18

0.16

0.14

0.12

0.1

0,08

0.06

0.04’

0.02 ’

°.o2

~ldmat,KI P(~rt) p(co p,/)=o.~),l~,~d)-O.~.,,,, ze-

10~. ---+---
*--x.---

rneddlm

~
..w

’~"’"N
........ ~..N._-° o~-

i i i ~ i L i
0.03 0.04 0.05 0.0~ 0.07 0.0~ 0.09 0.1

P(start)

Figure 3: Recovery of the P(start) model parameter
from a known source

ple but this is not a problem in practice. The process
terminates when the overall probability increase for an
iteration is less than some small limit. A few itera-
tions are sufficient if the initial values are "sensible".
The statement of the parameter values, to optimum ac-
curacy, must be included in the final -log probability
calculations for the string if one is to legitimately com-
pare simple and complex models; this is done using the
calculations of Boulton and Wallace (1969) for xnulti-
state distributions.

A further improvement is to use a first-order Markov
model in place of the random-character (uniform, zero-
order Markov model) part of the model for the base-
state transitions as this is found to give an improvement
of 0.03 bits per character on HUMHBB, for example.
In addition, characters involved in changes are assumed
to come from the underlying probability distribution
for the alphabet renormalised after the removal of the
character being changed.

There are clearly O(n~) nodes in the repeat graph but
the algorithm only needs to keep two rows, the previous
row and the current row, to operate in O(n) space. Tim
algorithm takes O(n~) time per EM step.

Reestimation Tests

hnportantly, the algorithm fails to compress truly ran-
dom, artificial DNA strings. The inferred value of
P(start) is close to zero for such data but nevertheless
the string requires more than two bits per character and
the hypothesis that it contains any pattern or structure
fails the significance test.

The ability of the algorithm to recover the param-
eter values of a known source was tested: A prograin
was written to generate random strings according to
the new model with specified parameter values. One pa-
rameter was varied systematically while the others were
held constant. For each parameter setting, 100 strings

12 ISMB-98

Model Accuracy =rid Speed Cu’r~deon

15

1.2

""4,
’k

",,
",,

I I I 11" "
2 4 8 8 10 12

k-rupee B=e

megL~n
cpqJ time .-x

.J

6O

5O

4O

2O

10

o
14

Figure 4: Comparison of model accuracy and speed

of length 500 were generated. For example, figure 3
shows a plot of the genuine versus estimated values of
P(start) for repeats. Although the generating parame-
ters were varied systematically there is naturally varia-
tion in transition frequencies in particular strings, as in-
dicated by the gap between the 10% and 90% percentile
estimates. The median shows good recovery of the gen-
erating value, for repeats with P(start) in the range
tested, between 0.02 and 0.1. For real DNA strings
P(start) is likely to be under 0.1. Similar tests show
good recovery of the other parameters of the model.

A Fast Approximation

The O(n2) algorithm previously described takes thirty
minutes per iteration on a Silicon Graphics "lndy"
work-station for Dromaster (six thousand characters)
and two days per iteration for human globin region
HUMttBB (73 thousand characters). A faster approx-
imation algorithm is available if greater speed is nec-
essary. This operates by summing the probabilities for
only those explanations in the most "important" areas
of the repeat graph (figure 2) to give an upper bound
on the string’s true -logs probability.

The idea is to find (most) good explanations and only
run the DPA in regions close (4-5 nodes) to a good ex-
planation. A hash-table is used to record all instances
of each k-tuple in the string where k is a constant, typ-
ically in the range 6 to 14. Most, significant repeats are
likely to contain exact matches of length k, from time
to time. A region is "turned on" at. a k-tuple match.
A region is left turned on so long as any of its nodes is
contributing a not insignificant amount, to the probabil-
ity of the string, currently assessed as having a -lo92
probability of no more than that, of the base-state mi-
nus the repeat start-up cost plus 4 bits. A region can
grow or shrink and eventually be turned off depend-
ing on the contributions within it. This approximation
gives a trade-off between accuracy and speed. Mak-

Sequence Length Bio- CDNA- New-

compress2 compress model
Dromaster 6.3K 1.853"
HUMHBB 73K 1.88 1.77 1.728
CHNTXX 155K 1.62 1.65 1.614
Yeast chr3 315K 1.92 1.94 1.913

Biocompress2 and CDNAcompress figures
from (Loewenstern and Yianilos 1997)
* Full O(n2) algorithm

Table 1 : Compression of DNA Sequences
(hits/nucleotide)

ing the regions wider, the value of k smaller, and the
threshold on probability contributions more lenient all
increase accuracy at the price of speed. Figure 4 plots
the relationship between calculated -log2 probability
and running-time for the approximation algorithm as k
is varied, the string being 6000 characters from position
23,000 of HUMHBB which contains one significant re-
peat. It is quite possible that continued tinkering with
this or different heuristics may lead to a better trade-off
between accuracy and speed.

DNA
The approximation algorithm and, where practical, the
exact algorithm were run on real DNA strings. Dro-
master is a gene, from drosophila melanogaster, for a
repetitive protein so the cDNA is also quite repetitive.
At 6.3K, the O(n2) algorithm can comfortably be run
on it. HUMHBB is the human globin region and con-
tains multiple globin genes. Tobacco chloroplast, CHN-
TXX, is notable for a 25K reverse complementary re-
peat. Yeast chromosome III was included as a long
string, 315K nucleotides.

Table 1 gives the coding figures for biocompress2
(Grumbach and Taji 1994) and CDNA-compress
(Loewenstern and Yianilos 1997), the first two colunms
coming from the latter paper, compared with the new
string model. The figures for IHUMHBB, CHNTXX and
Yeast chrIII are from the approximate algorithm set to
run in realistic times and are thus upper-bounds on the
true entropies under the model.

Figure 5 shows the code length per character as a
moving average over 100 positions for HUMHBB. For
example, the drop around position 40,000 corresponds
to a strong repeat from the gamma-globin genes, hbgg
and hbga.

Examining the inferred probability parameters tells
us something general about a string. Dromaster has
numerous forward repeats (P(start) 0.015) that ar
short (P(end) = 0.06) and similar (P(copy) 0. 94).
It has no reverse complementary repeats (P(start)
0.0001). CHNTXX has a few reverse complementary
repeats (P(start) = 0.00005) that are long (P(end)
0.0002) and high-fidelity (P(copy) = 0.9999); i.e. it is
dominated by the 25K example.

Variations
The length of a repeat in the new model is effectively
encoded by a unary code which corresponds to a ge-
ometric probability distribution, as mentioned previ-
ously. Ignoring the question of substring differences,
the code word for a repeat of a given length > 0 re-
quires -log2 (P(start)) + log2(length 1)) - (l ength -
1).log2(P(eontinue)) - Iog2(P(end)) bits. This is a lin-
ear function with a slope of -log2(P(continue)). It is
not claimed that a geometric distribution is the perfect
model for the lengths of repeats, indeed that is most un-
likely, but it does make the DPA’s calculations in the
repeat graph "local" because the incremental cost of
extending all repeats is the same. This allows an O(n2)

DPA to sum the probabilities of all paths through the
graph (figure 2). A mixture of two (or more) geomet-
ric distributions has the same property although at the
price of roughly doubling (etc.) the number of states
in the graph. In passing, note that it would be possi-
ble to change to arbitrary probability distributions hav-
ing concave negative logs by adapting the technique of
Miller and Myers (1988), provided that one wanted only
a single optimal explanation of the string. The result-
ing algorithm would have O(n2) complexity when a cer-
tain equation is solvable in O(1) time, and O(n21og(n))
complexity otherwise.

A model with a mixture of two types of forward re-
peats and two types of reverse complementary repeats
was run on HUMHBB: It marginally reduced the en-
tropy from 1.728 to 1.725 bits/character, covering the
cost of stating the extra sets of parameters so this is not
a case of over-fitting. The parameter estimates describe
mixtures of repeats: Low fidelity (P(copy) -- 0.78.} for-
ward repeats occur most often (P(star 0 = 0.0006).
High fidelity (P(copy) 0.96) fo rward repeats occur
less often and are shortest on average (P(end) 0.006).
Low fidelity (P(copy) 0.70) re verse complementary
repeats occur rarely (P(start) 0. 0002). Medium
fidelity (P(eopy) 0.86) re verse complementary re
peats occur rarely but are longest on average (P(end)
0.003). Over all types of repeat, changes are about ten
times more probab]e than inserts or deletes.

In a similar vein to the repeat-length distribution,
the present algorithms use the simplest possible model
of point-mutations on repeated substrings. As above,
this effectively codes the length of a run of inserts or
deletes with a unary code. This is not unreasonable
because inserts and deletes do seem to occur at fairly
low rates in repeats. However, one could use linear
gap-costs (Gotoh 1982), and even piecewise-linear gap-
costs, while still summing over all explanations as de-
scribed for aligning two strings (Allison, Wallace, and
Yee 1992). That technique could be used in the current
string model at the cost of increasing the number of
states in the repeat graph, leaving the exact algorithm’s
complexity at O(n2) but with a larger constant.

Note that the new model and its algorithms have an
association with Tichy’s (1984) block-moves model
string comparison. The latter involves a "source" string

Allison 13

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2
0 10000 20000 30000

DNA compression plot
I

O

I I I

40000 50000 60000 70000
symbol

80000

Figure 5: Compression plot for H UMHBB

and a "target" string, that is to say it is not symmet-
rical with respect to $1 and $2. A substring, i.e. a
block, can be copied from the source string and ap-
pended to the target string as the latter is being built
up; in fact this is the only way in which the target can
grow. Tichy’s objective was to find the explanation of
the target string that requires the smallest number of
these block-moves. This would be a most probable ex-
planation provided that all block-moves were equally
probable. The copies are exact and there is a linear-
time algorithm for the problem. In a parallel, our new
string model could be used to compare two strings $1
and $2 under "approximate block-moves’: append $1
and $2, now compress the result under the new model
but only allowing repeats from S1 into $2. In fact it
would make sense also to allow repeats from $1 into
S1 and from $2 into $2. We speculate that this might
be another useful way to look for relationships betweeu
biological sequences.

Conclusions

The new model of strings allows approximate repeated
substrings; a repeated substring need not be an exact
match to the original but may contain changes, inser-
tions and deletions. This allows more (approximate)
contexts from the past to play a part in predicting the
next character. It also directly models, to some extent,

actual events in the replication of DNA. Consequently
the method’s parameter estimates can be directly re-
lated to these events. Tests on known artificial sources
show good estimation of parameter values. There is a
natural significance test for any structure, pattern or
repetition claimed to have been found.

A dynamic programming algorithm calculates the
probability of a string under the model in O(n2) tinw
when the probability parameters governing repeats are
given in advance. The algorithm can bc used as the
step in an expectation maxinfization algorithm to est.i-
mate the parameters, if they are not known in advance,
and a few iterations arc usually sutficient. A faster ap-
proximation algorithm is available when greater speed
is necessary. The algorithms give good compression of
real DNA sequences indicating that the patterns tbund
are significant.

A two-dimensional plot, figure 6. using intensity to
show the level of contributions to the string’s proba-
bility gives a useful visualization of the identities and
significance of repeated substrings, here for HUMHBB.
The inset magnifies the structure of the reverse comple-
mentary repeats near the end of this string. Such plots
resemble familiar dot-matrix plots but with a formal
connection between significance and grey-scale level.

14 ISMB-98

.:...,..-.:... ~ .,.I?A.,.~ ~..:.... ~..’.. ¯ ~’~,...’.’..:" .! .-.... ¯ .;.,:....,....~.

Figure 6: Repeat plot for FIUMHBB

References

Agarwal, P.; and States, D. J. 1994. The repeat pat-
tern toolkit (RPT): analyzing the structure and evo-
lution of the C. elegans genome. In Proc. 2nd Conf.
on Intelligent Systems in Molec. Biol., 1-9.

Allison, L.; Wallace, C. S.; and Yee, C. N. 1992.
Finite-state models in the alignment of macro-
molecules. J. Molec. Evol. 35(1) 77-89.

Allison, L.; and Yee, C. N. 1990. Minimum mes-
sage length encoding and the comparison of macro-
molecules. Bull. Math. Biol. 52(3)431-453.

Bains, W. 1986. The multiple origins of the human
Alu sequences. J. Molec. Evol. 23 189-199.

Baum, L. E.; and Eagon, J. E. 1967. An inequality
with applications to statistical estimation for proba-
bilistic functions of Markov processes and to a model
of ecology. Bulletin AMS 73 360-363.

Baum, L. E.; Petrie, T.; Soules, G.; and Weiss, N.
1970. A maximization technique occurring in the sta-
tistical analysis of probabilistic functions of Markov
chains. Annals Math. Star. 41 164-171.

Boulton, D. M.; and Wallace, C. S. 1969. The informa-
tion content of a multistate distribution. J. Theor.
Biol. 23 269-278.

Chaitin, G. J. 1966. On the length of programs for
computing finite binary sequences. J. Assoc. Comp.

Mach. 13(4) 547-569.
Cleary, J.; and Teahan, W. J. 1997. Unbounded length
contexts for PPM. Comp. J~’nl. 40(2/3) 67-75.

Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977.
Maximum likelihood from incomplete data via the
EM algorithm. J. Royal Slat. Soc. B 39 1-38.

Gotoh, O. 1982. An improved algorithm for matching
biological sequences. J. Molec. Biol. 162 705-708.

Grumbach, S.; and Tahi, F. 1994. A new challenge
for compression algorithms: genetic sequences. Inf.
Proc. and Management 30(6) 875-886.

Kolmogorov, A. N. 1965. Three approaches to the
quantitative definition of information. Probl. hff.
Transmission 1(1) 1-7.

Lempel, A.; and Ziv, J. 1976. On the complexity of
finite sequences. IEEE Trans. Inf. Theory IT-22
783-795.

Loewenstern, D. M.; and Yianilos, P. N. 1997. Signif-
icantly lower entropy estimates for natural DNA se-
quences. In IEEE Data Compression Conf., DCC97,
151-160.

Miller, W.; and Myers, E. W. 1988. Sequence compar-
ison with concave weighting functions. Bull. Math.
Biol. 50(2) 97-120.

Milosavljevic, A.; and Jurka, J 1993. Discovering sim-
ple DNA sequences by the algorithmic significance

Allison 15

method. Comp. Appl. BioSci. 9(4)407-411.
Powell, D. R.; Dowe, D. L.; Allison, L.; and Dix, T.
I. 1998. Discovering simple DNA sequences by com-
pression. In Pacific Syrup. Biocomputing, Hawaii,
597-608.

Rivals, E.; and Dauchet, M. 1997. Fast discerning
repeats in DNA sequences with a compression al-
gorithm. In Proc. Genome Informatics Workshop,
Tokyo, 215-226.

Solomonoff, R. 1964. A formal theory of inductive
inference, I and II. Inf. Control 7 1-22 and 224-254.

Tichy, W. F. 1984. The string-to-string correction
problem with block moves. ACM 7Yans. Comp. Sys.
2(4) 309-321.

Wallace, C. S.; and Boulton D. M. 1968. An infor-
mation measure for classification. Computer J. 11(.2)
185-194.

Wallace, C. S.; and Freeman, P. R. 1987. Estimation
and inference by compact coding. J. Royal Star. Soc.
series B. 49(3) 240-265.

Wootton, J. C. 1997. Simple sequences of protein
and DNA. In DNA and Protein Sequence Analysis, a
Practical Approach, 169-183. Eds M. J. Bishop and
C. J. Rawlings, IRL Press.

Ziv, J.; and Lempel, A. 1977. A universal algorithm
for sequential data compression. IEEE Trans. Inf.
Theory IT-23 337-343.

16 ISMB-98

