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Abstract

Homologous proteins do not necessarily exhibit
identical biochemical function. Despite this fact, local
or global sequence similarity is widely used as an
indication of functional identity. Of the 1327 Enzyme
Commission defined functional classes with more than
one annotated example in the sequence databases,
similarity scores alone are inadequate in 251 (19%)
of the cases. We test the hypothesis that conserved
domains, as defined in the ProDom database, can be
used to discriminate between alternative functions for
homologous proteins in these cases. Using machine
learning methods, we were able to induce correct
discriminators for more than half of these 251 chal-
lenging functional classes. These results show that the
combination of modular representations of proteins
with sequence similarity improves the ability to infer
function from sequence over similarity scores alone.
Keywords: protein function; protein sequence; pro-
tein modules; protein function; Enzyme Commission;
representation; machine learning

Introduction
Homologous proteins do not necessarily exhibit iden-
tical biochemical function; in fact, functional diver-
gence is required for organismal evolution. Despite
this caveat, local or global sequence similarity between
proteins is widely used as an indication of functional
identity. In this paper, we describe the use of su-
pervised machine learning systems to induce sequence-
based methods for identification of divergent functions
in homologous proteins.

Background
Recently, we systematically assessed the reliability of
function imputation by pair-wise sequence alignment,
using the Enzyme Commission (EC) classification 
our definition of function (Shah & Hunter 1997). 
that work, we found that sequence similarity scores are
not sufficient to accurately assign protein sequences to
many EC functional classes, no matter whether gapped
or ungapped alignments are used, and regardless of
where similarity score thresholds may be set.
Copyright © 1998 American Association for Artificial Intelligence (www.aaai.org).
All rights reserved.

The most common problem we found in mapping
from sequence to functional class is that of false posi-
tives; that is, sequences which are similar to a query, but
have a different functional class. The dependence of en-
zymatic function on the fine details of three-dimensional
protein structure and associated chemistry suggests
that this problem may be intractable in general. How-
ever, inspection of specific errors suggested to us that
in some cases it may be possible to automatically iden-
tify regions of a sequence that must be conserved in
order that function also be conserved. This observation
is compatible with theories of modular protein evolu-
tion, e.g. (Doolittle 8z Bork 1993). On the basis of this
observation, we designed a series of machine learning
experiments to test the hypothesis.

Strategy
Our approach is to use supervised machine learning
to identify protein modules which can be used to dis-
criminate among EC functional classes of similar pro-
teins. First, we identified the set of proteins that were
the target of our study: those that had significant se-
quence similarity to at least one protein of another EC
class. Then we developed a simple vector represen-
tation of the modules present in each protein, based
on the ProDom database (Sonnhammer & Kahn 1994).
We applied both statistical and information theoretic
induction methods to these representations, and gen-
erated unbiased estimates of the ability of the induced
classifiers to assign the correct EC class to similar se-
quences, based on the modular structure of the proteins.

Methods

Definition of training sets

Our universe of sequences was defined by taking all
of the sequences from Swiss-Prot release 33 (Balroch
& Boeckmann 1992) that were labeled with an EC
classification from Enzyme release 21 (Bairoch 1994).
1

1We used the EC classification as a gold standard for
protein function. We recognize that this classification is
flawed in various ways, but because of its breadth and the
dearth of reasonable alternatives, we feel it is appropriate
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Figure 1: Representing protein sequences on conserved modules. (i) A set of (hypothetical) homologous proteins
with conserved modules shown as boxes. There are a total of five modules: a,b,c,d and e. (ii) A representation 
the proteins on the basis of the modular attributes. Each protein is shown as a vector of attribute values. Modules
which occur more than once in a sequence are called repeats. The second occurrence of module b is treated as a
separate attribute, b’.

Note that not all proteins in an EC class must
be homologous. Non-homologous subgroups within
EC classes may arise due to different evolutionary
origins of enzyme subunits, convergent evolution of
proteins catalyzing a particular reaction, or by vague
or generalized reaction definitions by the EC. Since
we are concerned with detecting proteins with similar
sequences but divergent functions, we needed to
control for the presence of non-homologous proteins
in EC classes. We did so by subdividing the EC
classes with non-homologous subgroups on the basis
of sequence similarity. We call these homologous
subsets of EC classes simgroups. If an EC class has no
non-homologous sequences, all of the sequences in that
class are assigned to a single simgroup. All members of
any simgroup have the same (EC) function and similar
sequences.

We defined sets of positive and negative examples for
learning from each simgroup. The positive examples
were taken to be all the members of a simgroup. The
negative examples were the union of all proteins in our
universe that had any significant sequence similarity to
any member of the simgroup, but were not themselves
members of the group. These proteins are probably
homologous to the members of the simgroup, but
exhibit different functions. We generate training sets of
positive and negative examples for each simgroup. The
goal of learning is to be able to discriminate among
these positive and negative examples for each set.

Our universe contained the 15,208 SwissProt pro-
teins (out of 52,205 total) which are labeled with one
of 1,327 EC classes. From this universe, we were able
to define 251 training sets (simgroups and homologous
proteins with different functions) containing at least
ten or more positive examples, and at least one

to use it for this study.
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negative example.

Representing Proteins
Homologous proteins with divergent functions may
exhibit differences at many levels of description,
ranging from point mutations (say, in an active site)
to large-scale rearrangements. Unfortunately, it is
not possible to test all possible descriptions, since the
number of training examples for most functional classes
is small, and learning algorithms require a number
of training example proportional to the number of
possible discriminators tested. For this reason, we had
to carefully identify types of descriptions that we felt
had a reasonable chance of being able to make the
discriminations a priori.

Based on modular theories of protein evolution,
and on our observations in the systematic study, we
decided to test if the presence and arrangement of
conserved subregions of sequence ("domains") could 
used to discriminate among functions. Although using
a multiple sequence alignment to identify differences at
the level of individual amino acids might be desirable,
there are far too many differences at this level of
description for effective induction.

The ProDom database (Sonnhammer &: Kahn 1994)
is one attempt to systematically define protein do-
mains, done on the basis of local sequence alignments
within a large set of sequences. Since all of our training
sets consisted entirely of homologous proteins, we were
able to define a simple attribute vector identifying the
presence or absence of all domains that are observed
anywhere in the training set (figure 1).

Induction
We tested two approaches to inducing discriminators
able to segregate the positive from the negative



L P
Accuracy range

<0.9 I >0.9 I >0.95 I 1
p...t- 71 (28%) 180 (72%) 155 (62%) 140 (56%)

NB p m
8 (3%) 243 (97%) 225 (90%) 160 (64%)

Pt 11 (4%) 240 (96%) 223 (89%) 132 (53%)
p+ 85 (34%) 166 (66%) 145 (58%) 129 (51%)

C4.5 p m
1 (0%) 250 (100%) 236 (94%) 177 (71%)

Pt 10 (4%) 241 (96%) 227 (9o%) 134 (53%)

Table 1: Summary of learning performance for 251 data sets. The performance results are summarized by learners
from top to bottom, and accuracy range from left to right. The first column, labeled L shows the learners: naive
Bayes (NB) and C4.5. The next column shows performance (P): Pt (total), P+ (same function), and P- (different
function). Each cell shows the number of datasets with performance P, for a given measure and learner, and the
percentage of datasets that represents.

examples: information-theoretic decision trees and
naive Bayesian discrimination (NB). The information
theoretic method we used, C4.5 (Quinlan 1993),
recursively looks for an attribute (in this case, presence
or absence of a particular domain) which allows the
training examples to be divided such that there is
an information gain (Shannon 1948) after the split.
This method is widely used, and makes minimal
assumptions about the data. The alternative method,
naive Bayes (e.g. see (Mitchell 1997)) makes 
stronger assumptions about the data, namely that
each attribute is statistically independent of all of
the others. Under that assumption, NB provides the
best possible discriminator. When the assumption
is not true (as it is clearly not in this case), 
may nevertheless generate a powerful discriminator.
Although many other supervised induction methods
exist (e.g. artificial neural networks), these two
methods represent quite different approaches, so that
if there were going to be differences in performance
attributable to induction method, it is likely to be
apparent here. Also, these two methods are very quick
to train, which is important given our 251 datasets.
Our experience suggests that neural networks would
perform at about the same level as these two methods,
and would have taken much longer to train.

We used 10-way cross-validation to generate unbiased
estimates of the accuracy of both of these methods on
each of our 251 training sets.

Results
Table 1 summarizes the results of induction on all
251 simgroups. Using either method, it is possible
to use ProDom domains to perfectly discriminate
between homologs with similar functions and homologs
whose function has diverged in more than half of
the simgroups. In more than two thirds of the sim-
groups, it is possible to identify both same-function
and different-function sequences at greater than 90%
accuracy.

Also note that, although there were some differences
between the induction methods in sensitivity and
specificity (P+ and P- in Table 1), overall accuracy (Pt
in Table 1) was remarkably similar for both methods.

Results for some representative simgroups are dis-
cussed below.

Short Chain Alcohol Dehydrogenases

The short chain alcohol dehydrogenases (SC-ADH)
data set consists of 210 examples all from the EC
sub-sub-class 1.1.1.*. The forty-five positive examples
in this set are from a single simgroup within EC 1.1.1.1
(this class has two non-homologous simgroups) and
the negative examples are all from other child nodes of
EC 1.1.1.*. Because the functions are closely related,
this is a somewhat difficult test. By visual inspection of
the conserved regions in this data set (see figure 2), 
appears that EC 1.1.1.1 members can be distinguished
from others on the basis of modules 238 and 237. The
negative instances possessing modules 238 and 237
also contain module 4870, which is not present in the
positive examples. Absent from the positive class and
present in the negative is module 36. The induction
methods made varying use of these observations.

The conditional probabilities computed by NB
are shown in table 2. The individual conditional
probabilities of the positive and negative classes, for
given feature values, contribute towards the calculation
of the posterior probability. The binary feature values
in this case convey the presence or absence of a
module. From row 3 it can be seen that the absence
of modules 36, 201 and 4870, and presence of modules
12, 237 and 238 are good predictors of the positive in-
stances. The converse is true for the negative instances.

The information theoretic test used in constructing
the decision tree gives a more succinct hypothesis for
discriminating positive and negative instances. The
decision tree in figure predicts the positive class if
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Figure 2: The figure shows conserved modules in the examples in dat~ set EC 1.1.1.1(3). Each protein sequence 
represented by line, and conserved modules as rectangular boxes of the same color. Each example is labeled on the
right with + or - and EC number, showing class membership. The similarity between the examples decreases from
top to bottom. A scale on the top of the figure shows the approximate length of the proteins; a legend at the bottom
shows the ProDom ID of the modules.
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Marginal probability of same function P(+) = 0.474
Marginal probability of different function P(-) = 0.526

Module 36 12 201 4870 237 238 36 201
Value - + - - + + + +
LP+ 0.778 0.778 0.778 0.778 0.778 0.778 8.444 8.499

Table 2: The probabilities used by the naive Bayesian classifier for EC 1.1.1.1. From top to bottom, the columns
show: the ProDom module ID; its value, present (+) or absent (-); negative logarithm of the conditional probability
that the function is the same, given the value LP+ = -loglo(P(+]x -= v)); and negative logarithm of the conditional
probability the function is different, given the value LP~- = -Ioglo(P(-Ix = v)).

different _/~+

same different

Figure 3: The decision tree for dataset EC 1.1.1.1 (sim-
group 3). The numbers at the nodes refer to ProDom
modules. The branches are labeled ’+’ for module
present and ’-’ for module absent. The leaves axe la-
beled ’same’ if the function is the same, and ’different’
if the function is different.

module 237 (or 238) is present and 4870 absent. This
tree is nearly correct, with the exception of one false
positive. This discriminator corresponds well with
our intuitions from visual inspection of the data set
(figure 2).

In this case, both induction methods were capable
of finding discriminators which successfully identified
functional differences among homologs. Although vi-
sual inspection suggests that this was not a particularly
difficult example, it does help validate the strategy.

Dihydrofolate reductase

Proteins which have multiple catalytic domains pose
a challenge to function prediction methods which
use sequence similarity alone. It is reasonable to
expect that in these cases the use of information about
conserved regions will greatly aid in discrimination.
Dihydrofolate reductase (EC 1.5.1.3) and thymidylate
synthase (EC 2.1.1.45) activities were found to occur
in multidomain enzymes with significant sequence
similarity. In this example, both induction methods
were able to find perfect discriminators.

Figure 4 shows conserved modules in the single and
multidomain examples of the enzymes. Module 375
only occurs in dihydrofolate reductase, while thymidy-
late synthase has module 504. The multidomain
examples have dihydrofolate reductase activity in

different same

Figure 5: Decision tree for data set EC 1.5.1.3(1)

the N-terminal and thymidylate synthase in the C-
terminal. The conditional probabilities for the binary
modular features in table agree with this. The first
two columns show a high probability for the presence
and absence of modules 375 and 504, respectively.

The decision tree (figure 5) embodies the simplest
hypothesis for discrimination. Hence, the presence of
module 375 predicts EC 1.5.1.3(1) and its absence,
EC 2.1.1.45(1).

L-lactate dehydrogenase
L-lactate dehydrogenase (EC 1.1.1.27) poses a some-
what greater challenge for our method. False positive
matches occur with malate dehydrogenase, which is
functionally quite similar to lactate dehydrogenase.
Both enzymes contain a central conserved region
(module 139, figure 6) but the remaining regions differ
to varying degrees. Although both induction methods
did reasonably well, two negative examples were not
differentiated by either discriminator. One of these
instances has only been assigned partial EC classifi-
cation 1.1.1 (DHL2_LACCO) and may in fact possess
lactate dehydrogenase activity. The other is an ar-
chaebacterial malate dehydrogenase (MDH__HALMA),
which genuinely cannot be distinguished on the basis
of domain structure.

Discussion and Conclusions
These results demonstrate that the presence or absence
of particular ProDom modules can often be used to
discriminate among functionally distinct homologs.
The induced discriminators can be used to detect
situations in which sequence similarity alone may
provide misleading suggestions of protein function, and
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Figure 4: Conserved modules in EC 1.5.1.3

Marginal probability of same function P(+) = 0.636
Marginal probability of different function P(-) = 0.364

IModule 375 504 1355 1369 913 913 1369 1355
value + - - - + - + +
LP+ 10.699 0.791 0.907 0.924 1.00011.000 1.092 ] 1.i18]
LPf 8.492 1.778 0.699 0.699 8.589 0.699 8.714 8.647]

Table 3: Probabilities for computing naive Bayesian for EC 1.5.1.3(1)
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Figure 6: Conserved modules in EC 1.1.1.27(1)

Marginal probability of same function P(+) = 0.575
Marginal probability of different function P(-) = 0.425

Module 322 326 210 1448 1441 1653 1633 1643
value + + + .....
LP+ 1.041 1.0411 1.041 1.041 1.041 ] 1.041 I 1.041 ] 1.041I
LP~- 2.232 2.232 1.419 1.357 1.357 1.302 1.232 1.232

Table 4: Probabilities for computing naive Bayesian for EC 1.1.1.27(1)
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Figure 7: Decision tree for data set EC 1.1.1.27

may therefore be useful in general sequence analysis.

However, there remain a large number of cases in
which even the combination of sequence similarity and
ProDom domains does not appear to be adequate to
induce discriminators among alternative functional
possibilities. This may be due to a number of factors.

First, the representation used in this work depends
on the assumptions underlying the construction of
the ProDom database. ProDom is constructed using
ungapped pair-wise sequence alignments and an iter-
ative strategy for identifying boundaries of conserved
regions. It is possible that an alternative representation
of domains might make possible the induction of more
accurate discriminators.

Second, differences in catalytic activity can result
from sequence changes as modest as a single amino
acid. Domain level representations are not sufficiently
expressive to capture these differences. However, more
expressive representations must be chosen with cau-
tion. Richer representations admit richer hypothesis
spaces, and the number of available examples may not
be adequate to select good discriminators among so
many possibilities.

Third, the definitions from the EC that allow us to
identify homologous proteins with different functions
may be flawed. The mechanism by which the EC
divides biochemical functions into classes, and the
mechanism by which individual proteins are assigned
to those classes are both subject to human error.
Furthermore, it may be the case that, especially in
eukaryotes, there simply is not a one-to-one mapping
between proteins and functions; e.g., an individual
protein may catalyze multiple reactions. Any errors
in assigning functions to proteins will make perfect
discrimination impossible.

Fourth, it may be the case that alternative induction
approaches may do significantly better than the two
that we tested. Since our methods are so different
from each other, we doubt that the application of,
for example, neural networks to the representation
we used will significantly improve total performance.
However, since NB did have better sensitivity than
C4.5 and C4.5 had better specificity, it may be the
case that a stacking or voting scheme may produce a
better combined classifier than either alone.

164 ISMB-98

In conclusion, we have demonstrated that it is possi-
ble to improve on the performance of simple similarity
scores in assigning function to protein sequences. It is
also clear that methods better than ours remain to be
discovered.
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