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Abstract
A data base of minimally frustrated alpha helical segments
is defined by filtering a set comprising 822 non redundant
proteins, which contain 4783 alpha helical structures. The
data base definition is performed using a neural network-
based alpha helix predictor, whose outputs are rated
according to an entropy criterion. A comparison with the
presently available experimental results indicates that a
subset of the data base contains the initiation sites of
protein folding experimentally detected and also protein
fragments which fold into stable isolated alpha helices.
This suggests the usage of the data base (and/or of the
predictor) to highlight patterns which govern the stability of
alpha helices in proteins and the helical behavior of isolated
protein fragments.
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Introduction

Proteins can be considered frustrated systems, namely
systems for which the simultaneous minimization of all
interaction energies is impossible (Bryngelson and
Wolynes, 1987; Frauenfelder and Wolynes, 1994;
Bryngelson et al., 1995). However, the tendency of short
amino acid sequences to adopt stable conformational states
in solution (referred to as minimally frustrated segments) is
believed to drive protein folding towards the native
structure. This notion is supported by theoretical analysis
of protein folding (Rooman et al., 1992; Sali et al., 1994;
Abkevich et al., 1994; Karplus and Weaver, 1994; Dill and
Chan, 1997; Klimov and Thirumulai, 1998) and by
experimental results, which indicate that one of the earliest
steps in the folding process is the formation of secondary
structure elements, essentially stabilized by short range
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interactions, which may or may not be concomitant with a
hydrophobic collapse (Serrano et al., 1992; Matthews,
1993; Qian and Chan, 1996; Hao and Scheraga, 1998).
Alpha helix structures, which are locally stabilized by
intrachain interactions, are viable candidates for the role of
minimally frustrated folding initiation sites (Presta and
Rose, 1988) and may be regarded as a suitable simplified
model of protein folding (Muñoz and Serrano, 1995).
Moreover a large body of information is available on the
factors contributing to the stability of alpha helices in
proteins and to the helical behavior of protein fragments in
solution (Scholtz and Baldwin, 1992; Muñoz and Serrano,
1994; Baldwin, 1995 and references therein).

In this paper we analyze a data set of 822 non redundant
proteins, containing 4783 alpha helix structures with the
aim of extracting the minimally frustrated alpha helical
fragments and defining a data base containing the most
stable alpha helical fragments in proteins of known
structure. This is performed using a neural network-based
alpha helix predictor which implements a minimum
entropy criterion for the identification of the minimally
frustrated alpha helical fragments (Compiani et al., 1998).
Comparison with experimental results clearly indicates that
protein folding initiation sites and stable isolated alpha
helical protein fragments are a subset of our data base.

The protein training set

A set of 822 proteins was extracted from the non
homologous protein data base  (with an identity value
<25%) selected using the PDB_select_jun_98 algorithm
(http://www.embl-heidelberg.de). This set comprises
174191 amino acid residues, 52618 of which are classified
alpha helix by the DSSP program (Kabsch and Sander,
1983) for a total of 4783 alpha helix structures. Following
the definitions suggested by Zhang and Chou (1992), 137
proteins of the set are all alpha, 37 all beta, and 114
alpha/beta.
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Table 1: The prediction efficiency of the network with single sequence and multiple sequence inputs

Single Sequence
Q2 = 0.70 Q(H) = 0.81 Q(nonH) = 0.65 SovΗ

pred = 0.84
C = 0.43 Pc(H) = 0.50 Pc(nonH) = 0.89 SovΗ

obs = 0.58
Multiple Sequence
Q2 = 0.85 Q(H) = 0.67 Q(nonH) = 0.93 SovΗ

pred = 0.85
C = 0.63 Pc(H) = 0.80 Pc(nonH) = 0.86 SovΗ

obs = 0.76

Q2= accuracy of the prediction in 2 states (helix, non-helix). C=Correlation coefficient. Q(H)=correctly predicted/observed residues for
the helical state. Q(nonH)=correctly predicted/observed residues for the non helical state. Pc(H)=correctly predicted/total predicted
residues for the helical state. Pc(nonH)= correctly predicted/total predicted residues for the non helical state. SovΗ

pred , SovΗ
obs  =

predicted and observed measures of the overlapping segments as defined in Rost and Sander (1994).

The neural network-based predictor and the
entropy criterion

A standard feed-forward neural network is implemented
with a back propagation algorithm as learning procedure
(Rumelhart et al., 1986). The network architecture consists
of a perceptron with one hidden layer containing 22 hidden
nodes and an input window spanning 17 residues. Two
output nodes discriminate alpha helices from other
structures, respectively. Evolutionary information is used
as input (Rost and Sander, 1994) to improve the
performance of the two-state discriminating network using
the single sequence input (Table 1). Proteins are presented
to the network using their sequence profile, as taken from
the HSSP files (Sander and Schneider, 1991). Each residue
is encoded by a 20-element vector, where each element
represents the frequency of the residue in the multiple
sequence alignment. A cross validation procedure is used
to validate the predictor efficiency. This is done by
splitting the whole set of proteins into 20 subsets
containing an approximate equal number of chains. One
subset at a time is removed from the training set and used
as testing set. For the evaluation of the statistical indices
which score the predictor efficiency (Table 1), the
predictions of the 20 different networks are averaged.
Under these conditions the accuracy of the prediction (Q2)
is 0.85. To our knowledge, this accuracy value is higher
than those of the available competing systems performing
the same task (Rost and Sander, 1993; Mamitsuka and
Yamanishi, 1995). Moreover, a neural network-based
predictor trained with the multiple sequence profile to
discriminate three structural states (alpha, beta and coil),
similar to that known to perform with the highest
efficiency when compared to the other three-state
discriminating predictors available to date (Cuff and
Barton, 1999), was also tested on the two-state prediction
of our data base (merging beta and coil outputs). In this
case, the accuracy of the predictor (Q2), which is 0.72
when in cross validation three structural types are

discriminated, becomes 0.83. This value is somewhat
lower than that of the two-state discriminating predictor
(described above), which is used in this study also in order
to make possible the probabilistic interpretation of the
outputs. A standard way to assess the network’s output is
based on the reliability index (Rost and Sander, 1994).
However we use the more statistically grounded
information entropy (Eq.1) which turns out to be a more
sensitive measure in the low entropy (high reliability
index) range (Fig.1).

The network outputs are rated according to their entropy
value, which is computed using the following equation:

S = -Σ p(i)ln(p(i)) (1)

Considering that the network outputs p(i) are real numbers
in [0 , 1], the entropy (S) limiting values are 0 and 0.693.
This procedure is based on the theorem which ensures the
convergence of the outputs of the back propagation
networks to the conditional probability that a given input is
found in a given structure type (Bishop, 1994). In order to
regularize the entropy profile of the predicted chain, the
entropy value of each predicted residue is averaged over a
segment comprising 5 contiguous residues (S5). The
segments characterized by a minimum entropy value in the
chain correspond to the most reliable patterns predicted by
the network and also to the minimally frustrated fragments
in the protein. This was previously demonstrated
(Compiani et al., 1998), considering that the structural
assignment carried out by the network on the basis of the
input pattern relies on an average over all the contexts of
the training set. The averaging procedure is the main
performance limiting factor for those patterns whose
secondary structure is protein-context dependent (i.e.,
those segments which are stabilized by long range tertiary
interactions in the protein); conversely, it scarcely affects
the prediction of those patterns whose secondary structure
is largely context-independent (i.e., those segments
referred to as minimally frustrated fragments which are



stabilized by short range interactions in the protein
context).
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Fig.1. Relationship between the reliability index (defined as R=| O(H) - O(NH) |, where the Os are the network outputs for the helix and
non-helix predictions (Rost and Sander, 1994 )) and the Shannon entropy (Eq. 1) computed from the outputs for each predicted residue of
the data set.

Evaluating the entropy threshold value

The predictive accuracy of the network, albeit good (for
comparison see a somewhat similar predictor in Rost and
Sander, 1993, characterized by an accuracy (Q2) of 81%)
is unfortunately not perfect (Table 1). This is apparent
from Fig. 2, where the distribution of the entropy values
are shown both for the segments correctly predicted in the
helix state and for those not correctly predicted (one
fragment is not correctly predicted provided that it contains
at least one residue with a wrong prediction). At low
entropy values, correct predictions are more frequent than
the wrong ones. The distributions of the correct and wrong
predictions peak at different entropy values (S5=0.139 and
S5=0.554, respectively); however a significant overlap of
the distributions is noticeable. Maximization of the correct
predictions over the wrong ones is obtained by introducing
a threshold entropy value. This is evaluated by considering
that at the intersection of the two distributions (Fig 2) the
frequency of the correct predictions equals that of the
wrong ones. The threshold value S5 is therefore set equal
to the intersection entropy value (0.416). As a
consequence, only those helical segments which are
characterized by an entropy value ≤0.416 are accepted and
included in the data base of minimally frustrated protein

fragments. This S5 value corresponds to a Pc(H) value
equal to 0.85 and a reliability index equal to 7 (Rost and
Sander, 1994).

Comparison with experimental results

A typical smoothed entropy profile of the alpha helical
predictions in a protein chain is shown in Fig.3. The
protein analyzed is the hen egg white lysozyme whose
putative initiation sites have been elucidated by NMR
(Radford et al., 1992). The S5 minima correspond to the
folding initiation sites experimentally found. Entropy
minima which are not in the helix state are not considered
by our procedure. The former analysis carried out in
Compiani et al. (1998) is here extended to a new set of
putative folding initiation sites of proteins (Table 2).
Unfortunately the presently available data on
experimentally detected initiation sites are still largely
insufficient to determine a S5 cut-off threshold value for
accepting minimally frustrated helical segments. Yet the
large majority (>95%) of the about 50 putative initiation
sites experimentally detected in native proteins is
successfully predicted by our method.

In Table 3, the predictor is tested on a number of
segments whic h are self-stabilizing, namely protein



fragments which are documented to have some helical
content also in polar solution (Muñoz and Serrano, 1994).
A good correlation (r=0.8) is noticeable between the

fragments extracted by our predictor and the helical protein
fragments experimentally detected.
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Fig.2. Frequency distribution of predicted helical segments as a function of their entropy value averaged on a segment of 5 contiguous
residues (S5). The difference between the correct and wrong predictions highlights the intersection entropy value (0.416) which is used as a
threshold value for defining minimally frustrated segments.

Table 2: Comparison of minimally frustrated segments with putative folding
initiation sites experimentally determined.

PDB
Code

Entrop
y

(S5)

Position
in the protein

chain

Extracted
Sequence

Reference

132l 0.109 8-14 LAAAMKR Radford & al.(1992)
132l 0.212 89-95 TASVNCA Radford & al.(1992)
1hfx 0.186 86-91 TDDIMC Chyan & al. (1993)
1hfx 0.221 7-13 ALSHELN *
1hrc 0.156 92-99 EDLIAYLK Jeng & al. (1990)
2mm1 0.050 127-132 AQGAMN Hughson & al. (1990)
2mm1 0.104 139-146 RKDMASNY Hughson & al. (1990)
2mm1 0.154 105-111 EFISEAI Hughson & al. (1990)
7rsa 0.409 8-11 FERQ Udgaonkar & Baldwin(1990)
1ubq 0.322 25-28 NVKA Briggs & Roder (1992)
1gf1 0.311 10-16 LVDALQF Hua & al. (1996)
2ci2 0.236 14-19 VEEAKK Fersht (1995)

*Not yet experimentally detected
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Fig.3 Profile of the smoothed entropy (S5) for the hen lysozyme (132L). Two entropy minima are extracted from the four correctly
predicted helical segments (Q2=92%), and these have also been experimentally identified as putative protein folding initiation sites
(Radford et al., 1992).

The Data Base of minimally frustrated
segments

The structure of the data base is as simple as possible to
facilitate the visualization and downloading of the data
from our web site: http://www.biocomp.unibo.it. The
extracted segments are organized in text format in two
different tables, which share the same structure and are
arranged in records. Records are sorted differently. Each
record contains five fields:
• the protein PDB code, with the indication of the chain

that has been analyzed;
• the entropy value of the extracted segment;
• the starting and ending positions in the protein chain

of the extracted segment;
• the amino acidic residue sequence (in one letter code)

of the extracted segment;
• the assigned structure according to the DSSP program.

An excerpt of the data base is shown in Fig.4. The
protein fragments are sorted according to their entropy
values starting from the lowest ones. The lower the
entropy the higher the probability that the helical segments
are minimally frustrated. The second type of table (not
shown) lists the segments sorted by the PDB codes of the
protein from which they have been extracted. In this case it

is possible to search for segments related to a particular
protein.

The main characteristics of the helical segments
contained in the data base are summarized in the
following. With our minimum entropy criterion, 626
proteins of the training set contain reliable alpha helical
fragments (or minimally frustrated fragments). Their
length varies from 5 to 25 residues (average length = (7±2)
residues, to be compared with the average length of the
helical segments in the training sets (11±6)). 3000
fragments are listed with S5≤ 0.416. Among these, only
478 (16% of the total) have at least one residue in the
segment which is not correctly predicted (these residues
are indicated with exclamation marks in the fragments as
assigned by the DSSP program). Further information can
be derived from the data base, such as the frequency of
occurrence of the residues in the data base as compared to
that in the helices of the training set and the frequency of
occurrence of paired residues in position i and respectively
i+2, i+3 and i+4. In Fig. 5, the frequency of the twenty
different residues is plotted with respect to the relative
abundance of the residues in the helices of the training set,
starting from the most frequent residue (A) to the less
frequent one (P). This distribution is compared to that of
the residues in the protein helical fragments of the data



base. The frequency difference between the two
distributions indicates that the residue composition of the
data base amplifies the general trend of the residue
composition of the helix training set. Considering the
physico-chemical properties of the majority of residues
characterized by positive values of the frequency
difference, it can be concluded that on average the
fragments of the data base are more hydrophobic than the
helical segments of the training set. In Fig.6, the frequency
of occurrence of the paired residues in position i and i+4 in
the fragments of the data base is shown after normalization
to the same value computed from the helices of the
training set. It appears that the most emerging residue pairs
are EE, IC, DH, LI and IL (shown in black in Fig.6). This
indicates that the most reliable patterns predicted by the
network with a low entropy value are helix blocks where

local stabilization within one helix turn is determined by
side chain interaction of not only  hydrophobic residues
(IL, LI), but also of polar and apolar residues (IC), charged
and polar residues (DH) and charged residues (EE).
Careful analysis of the 101 EE pairs extracted from 89
proteins of the data base shows that most of them (>96%)
are exposed to the polar solvent in the native protein.
Likewise 88% of the 17 DH pairs (from 16 proteins) are
exposed to solvent in the folded protein. EE pairs (in
positions i, i+4) are seemingly compatible with the high
helix content (measured experimentally) of the CIIIL and
COMA4 peptides in Table 3. These results, all together,
provide useful hints for determining helix building blocks
for the rational design of peptides with helical propensity.

Table 3: Comparison of minimally frustrated segments with peptides extracted from proteins

Code*  Peptides* % Helix in
solution*

Entropy
(S5)

Extracted
Segment

3FXC TYKVTELINEAEGINETIDCDD 1 ##### ####
3LZM GFTNSLRMLQQKRWDEAVNLAKS 10 0.262 WDEAVNL

          “ 10 0.329 LRMLQQK
3LZM-2 GVAGFTNSLRMLQQKRWDEAAVNLAKS 12 0.203 SLRMLQ

          “ 12 0.210 DEAAVNL
CIII ESLLERITRKLRDGWKRLIDIL 8 0.171 LLERIT

          “ 8 0.260 WKRLID
CIII-L ESLLERITRKL 15 0.171 LLERIT
CIII-R RDGWKRLIDIL 4 0.260 WKRLID
CIII-M RITRKLRDGWK 2 #### ####
Sigma KVATTKAQRKLFFNLRKTKQRL 9 0.218 TKAQRK
COMA1 DHPAVMEGTKTILETDSNLS 4 #### ####
COMA2 EPSEQFIKQHDFSSY 3 #### ####
COMA3 VNGMELSKQILQENPH 6 0.189 LSKQILQ
COMA4 EVEDYFEEAIRAGLH 20 0.020 YFEEAIR
COMA5 KEKITQYIYHVLNGEIL 3 #### ####
ARA1 AVGKSNLLSRYARNEFSA 2 #### ####
ARA2 RFRAVTSAYYRGAVG 3 #### ####
ARA3 TRRTTFESVGRWLDELKIHSD 7.5 0.194 SVGRWL
ARA4 AVSVEEGKALAEEEGLF 4 #### ####
ARA5 STNVKTAFEMVILDIYNNV 3 #### ####
G1 DTYKLILNGKTLKGETTTEA 2 #### ####
G2 GDAATAEKVFKKIANDNGVD 4 #### ####
G3 GEWTYDDATKTFTVTE 2 #### ####

* Protein fragments whose alpha helical content in polar solution was determined by means of circular dicroism (Muñoz
and Serrano, 1994). Similar values of alpha helical content are predicted by the AGADIR algorithm (http://www.embl-
heidelberg.de/Services/Serrano/agadir/agadir-start.html) estimating the helical behavior of monomeric peptides in
solution. Extracted segment = the segment extracted by the predictor. Entropy= value of the minimal entropy averaged on
5 neighboring residues. ####= no pattern within the entropy threshold is extracted by the predictor.



 CODE  ENTROPY POSITIONS SEQUENCE        DSSP SECONDARY STRUCTURE
 1msk_  0.002   192-206  ADRLAEAFAEYLHER  HHHHHHHHHHHHHHH
 1pyda  0.004   307-319  MKFVLQKLLTNIA    HHHHHHHHHHHHH
 1ngr_  0.005   63-72    LDALLAALRR       HHHHHHHHHH
 1sly_  0.005   338-346  AKEILHQLM        HHHHHHHH!
 1aerb  0.006   20-28    VERLLQAHR        HHHHHHHHH
 1bcn_  0.006   113-123  LENFLERLKTI      HHHHHHHHHHH
 1bib_  0.006   215-226  LAAMLIRELRAA     HHHHHHHHHHHH
 1fkx_  0.006   337-346  KKELLERLYR       HHHHHHHHHH
 2arcb  0.006   148-158  NLLEQLLLRRM      HHHHHHHHHHH
 1aqt_  0.008   112-125  DYAQASAELAKAIA   HHHHHHHHHHHHHH
 1fit_  0.008   111-120  EEEXAAEAAA       HHHHHHHHHH
 1mtyg  0.009   22-30    LEKAAEMLK        HHHHHHHHH
 2tct_  0.009   50-60    LLDALAVEILA      HHHHHHHHHHH
 1hsba  0.010   150-157  AHVAEQWR         !!HHHHHH
 2chsa  0.010   17-26    EEILQKTKQL       HHHHHHHHHH
 1hjp_  0.011   175-184  ETLIREALRA       HHHHHHHHH!
 1pou_  0.011   5-13     LEQFAKTFK        HHHHHHHHH
..........................................................................................................................

Fig. 4: An example of the data base of minimally frustrated protein fragments sorted by their minimum entropy value.
Non helical residues in the corresponding protein chain (as defined by the DSSP program) are indicated with an
exclamation mark and correspond to wrong predictions given by the network.
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Fig.5. The frequency distribution of the 20 amino acid residues in the data base of minimally frustrated
segments as compared to that of the α-helix structures in the training set. The difference curve highlights
those residues which are more frequent in the data base as compared to the training set.



Fig.6 . Frequency distribution of paired residues in position i (y-axis) and i+4 (x-axis) in the helical fragments
of the data base normalized to the analogous distribution of the α-helix structures in the training set. Black: ratio
> 1.5; dark gray: ratio ≤ 1.5, ≥ 1.2; light gray: ratio < 1.2, ≥ 0.8; white: ratio < 0.8.

Remarks

For proteins not belonging to our training set, the predictor
is available upon request.
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