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Abstract

One of the problems associated with the large-scalc analysis
of unannotated, low quality EST sequenccs is the detection
of coding regions and the correction of frameshift crrors that
they often contain. We introduce a new type of hidden
Markov model that explicitly deals with the possibility of
errors in the sequence to analyze, and incorporates a method
for correcting these errors. This model was implemented in
an cfficient and robust program, ESTScan. We show that
ESTScan can detect and extract coding regions from low-
quality sequences with high selectivity and sensitivity, and is
able to accurately correct frameshift errors. In the
framework of genome sequencing projects, ESTScan could
become a very useful tool for gene discovery, for quality
control, and for the assembly of contigs representing the
coding regions of genes.

Introduction

Background

Many complementary approaches are being used to
characterize the genes encoded in the genome of any
individual species. While the ultimate goal of most genome
sequencing projects is to produce a complete sequence with
as low an error rate as possible, it has proven enormously
useful to also generate large numbers of single-pass, low
fidelity sequences from the expressed portion of the
genome. This approach, dubbed Expressed Sequence Tag
(EST) sequencing (Adams, Kelley et al. 1991), is of great
value in characterizing the transcriptome, in the discovery
and assembly of the coding regions of new genes, and in
providing unique markers for physical mapping. The
widely recognized contribution of ESTs to gene discovery
has spurred the production of very large numbers of these
sequences, both from the academic and the private sector.
There are currently over 1.5x10° human EST sequences in
the public databases, and ESTs make up more than 60% of
all of the database entries. An even larger number are
thought to be available from private sources.
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Exploitation of the EST data still lags far behind their
production. Many biologists use the blastn or thlastn
programs (Altschul, Madden et al. 1997) to find EST
sequences that may belong to the same family as a query
sequence, usually in the hope of finding new genes that
may play a role in their field of experimental interest.
Motif-based searches based on hidden Markov models or
profiles are performed only in a handful of well-equipped
biocomputing groups, and large-scale analyses of the EST
databases are still very rare. It is also noteworthy that there
are still no publicly available, comprehensive assembled
EST contig databases, which would be of great help in gene
discovery programs. The Unigene databases produced by
the NCBI (http://www.ncbi.nlm.nih.gov/UniGene), which
group human, mouse and rat ESTs in clusters likely to be
derived from the same gene, are currently the most useful
collections in this regard.

For several reasons, the detection and assembly of new
coding sequences from ESTs is not a trivial task. First.
because most libraries used as a source of ESTs were
constructed by oligo(dT)-primed ¢cDNA synthesis, regions
derived from the poly(A)-proximal regions ot mRNAs,
which are overwhelmingly non-coding 3'UTRs, are over-
represented. Second, the inherently low quality of EST
sequences very often results in errors that impede the
proper recognition of coding regions: shifts in the reading
frame caused by missing or erroneously inserted bases, stop
codons introduced by sequencing errors, and ambiguous
bases precluding accurate translation (Quellette and
Boguski 1997). Therefore, standard database comparison
programs that rely on an automated translation of target
sequences in the six possible frames often miss significant
similarities. It thus seemed desirable to develop a tool that
could recognize potential coding regions in poor quality
sequences, reconstruct these coding regions in their proper
reading frame, and discriminate between ESTs with coding
potential and those derived from non-coding regions.
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Potential applications

Applications of a program capable of reliably detecting
coding potential in EST-quality data are many. To cite a
few:

1. Quality assessment of cDNA libraries. Methods based
on approaches other than oligo(dT) priming, e.g.
random priming, low-stringency priming followed by
PCR, and 3’ or 5° RACE, are subject to multiple
artifacts, the most common of which is contamination
with genomic sequences. The program should be able
to discriminate between bona fide ESTs (mostly
coding) and genomic contaminants (non-coding).

2. Gene discovery. The direct screening of EST databases
with  sequence or motif-based queries s
computationally expensive and prone to artifacts. The
program should ideally allow the creation of coding
sequence-only nucleotide databases and/or predicted
protein databases (with embedded corrections for
frameshift errors), making the searches much more
efficient and sensitive. A blastp search of an EST-
derived, frameshift-corrected predicted protein
database would be both more sensitive and faster than
a tblastn search of the full EST database with the same
query. The predicted protein databases could
themselves provide a source of new sequences without
similarity to any known gene families, and thus spur
the discovery of new families.

3. Exon detection in genome survey sequences. Many
current genome projects are generating low-quality
genomic "shotgun” sequences similar to ESTs (Venter,
Adams et al. 1998). It would be useful to flag potential
coding exons in these data, both as an aid to gene
mapping and as an alternative gene discovery tool.
Current gene prediction programs, which expect high-
quality data as input and are thus not error-tolerant, are
not well suited to this task.

Algorithms for predicting coding regions

The detection of coding regions is by no means a novel
problem (reviewed by Fickett, 1996). As it is a central issue
in gene prediction, many techniques have been devised to
address it, and more specifically to detect coding exons in
genomic sequences. Approaches relying on the detection of
similarity to existing database entries (see e.g. Brown,
Sander et al. 1998), or on lexical analysis involving splice
donor and acceptor signals, are outside the scope of our
project. The most powerful independent predictor of coding
potential is probably the known associated bias in
hexanucleotide composition, imposed by species-dependent
codon usage biases and amino acid composition
inhomogeneities. This hexanucleotide bias, which is used
as a component in many gene prediction algorithms, was
formalized as an inhomogeneous 3-periodic fifth-order
Markov model in the GENMARK program (Borodovsky
and MclIninch 1993), and incorporated into the exon model
used by the GENSCAN program (Burge and Karlin 1997).

Hidden Markov models have become the most widely used
descriptors for the diagnostic features of genes, including
not just coding regions but also introns, exons, splice
junctions, etc. (Henderson, Salzberg et al. 1997, Fickett and
Hatzigeorgiou 1997, Burge and Karlin 1998)

In order to take into account errors often found in EST
sequences, the coding sequence model should
accommodate three additional possibilities normally
ignored in gene prediction algorithms: (1) frameshift errors
that would destroy the periodicity of the Markov chain; (2)
sequencing errors that would introduce erroneous stop
codons; (3) the presence of a sizeable number of
ambiguous nucleotides.

These possibilities can be taken into account by embedding
the exon model for the coding regions into a hidden
Markov model, a principle introduced by Krogh, Mian et
al. (1994) and which is used as the basis of many modern
gene prediction programs including GENSCAN (Burge and
Karlin 1997) and newer versions of GeneMark (Lukashin
and Borodovsky 1998). In this application, the additional
states of the Markov chain model frame-shift errors rather
than RNA processing and translational control signals.
Recent work by Audic and Claverie (1998) introduced an
error-tolerant HMM for the identification of genes in
bacterial genomes, but their method did not include a
specific method for correcting sequencing errors.

The ESTScan program is thus an implementation of a
coding region detection method based on an
inhomogeneous 3-periodic fifth-order hidden Markov
model, extended to allow for various types of sequencing
errors, and normalized to correct for biases introduced by
the length of the sequence and its G+C isochore group. We
show here that this produces an efficient and robust method
for the detection, evaluation and reconstruction of coding
regions in poor quality sequence data.

Datasets and Methods

Sequence sets

For length- and isochore-dependent score normalization,
we extracted from the human EST databases four isochore-
separated sets (<43% G+C, 43-51%, 51-57%. and > 57%),
each containing about 10" nucleotides. These were
concatenated, cut into segments of 200 nt, internally
shuffled in windows of 10 nt, reconcatenated, and finally
split into pieces of variable length. This produced a series
of normalization databases that preserved most of the
compositional biases of the original ESTs while being
devoid of coding potential.

Using the SRS system (Etzold, Ulyanov et al. 1996) to
index and parse the EMBI. database, we created a database
of 1549 human 3° UTR regions to serve as negative
controls. We also prepared a set of 6342 EST-derived 3’
UTRs representing the five best matches in the human EST
database for each of the members of the 3’ UTR database,
and truncated the search results to the non-coding matching
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regions using the xblast program (Claverie and States
1993). As positive controls, we used the isochore-separated
coding sequence collections prepared by the GENIO group
at the University of Stuttgart (http://ipvr2.informatik.uni-
stuttgart.de/GENIO), and a set of ESTs matching each of
the isochore groups, using the same method as for the 3’
UTRs (blastn of each sequence against the human EST
database, extract 5 best hits, blastn against the original
sequence set followed by xblast to extract the coding
region).

Hidden Markov model

ESTScan uses a novel type of hidden Markov model
(HMM) for prediction and reconstruction of coding
regions. The description presented here assumes that the
reader is familiar with the basic concepts of HMMs
(tutorial introductions can be found in Rabiner (1989), and
Durbin, Eddy et al. (1998)). The ESTScan HMM, whose
basic architecture is shown in Fig. 1, includes as a
submodel for the coding region the nth order 3 periodic
Markov process previously used for exon recognition in
gene prediction algorithms. The additional states model
frame-shift errors and flanking non-coding sequences. In its
present version, ESTScan does not use a particular sensor
module for translation start sites nor a specific model for
non-coding sequences.

Figure 1. HMM undcrlying the ESTScan algorithm

The model we designed is different from previously
described hidden Markov models combining higher order
states with deletion and insertion states, in that the emission
probabilities of the higher order states do not depend on the
preceding symbols of the emitted sequences but on the
preceding symbols of a frame-shift corrected hypothetical
true coding sequence. The stochastic process by which this
model generates EST-like sequences is best described by
pretending that the model generates two sequences in
parallel: a hidden sequence x; ... x, having the properties of
a true coding region, and a visible sequence e; ... e,, being
an error-containing copy of the true coding region possibly
flanked by non-coding sequences. The model contains four
different state types producing a visible symbol, a hidden
symbol, both types of symbols, or none, at any one time. If
both types of symbols are produced, they are always
identical meaning that our model does not explicitly
describe a substitution error-generating process. The exact
properties of each state are listed in the right-hand part of
Fig. 1.

A visible EST-like sequence is generated by a random walk
through the model formally described by a series of states
q;, .. , g Knowing the parameters of the model one can
compute the probability by which a given pair of visible
and hidden sequences is generated by a particular path. The
problem solved by the ESTScan algorithm can thus be
described as finding the most probable path g, .. g,

Symbol
State(s)  Function visible ¢, hidden , Score
Begin of sequence Q
@ End of sequence o
® Begin of coding region
@ £nd of coding region
/o — Non-coding regions A.2,G,
X Terminal codon extension N
<_1_)> Deletion error N i
A Insertion error A o
Initiation of coding region A, T
!—r_—o] E ’E] Coding region extension A,C,3,T

The model shown represents a novel type of HMM generating two sequences at once, a hidden sequence corresponding exactly to the
true coding region. and a visible copy of the same sequenve. which may contain a few insertion and deletion errors. as well as non-coding
sequences at the beginning and at the end. There arc four types of states represented by different shapes: silent states (circles), states
cmitting only a visible symbol (triangles), states emitting oniy a hidden symbol (hexagons). and states adding the siame type of symbol to
the visible as well as to the hidden sequence (squares). The central part of the graph (emphasized by thick lines) represents the coding
model, which in this example, is a 2nd order 3 periodic inhomogeneous Markov process. The two wings on the left and right side of the
coding region model produce insertion and deletion errors, respectively, in the visible sequence. Special F states following frame-shift
error states are needed because the scores assigned (o visible bases by these states depend in different manners on the preceding visible
symbols. For instance, if a visible symbol ¢; is matched with an F state of the deletion wing, its score will be conditioned on the
preceding symbols ez, €., rather than ¢,.), e,.; us for the main coding states. The foops around states b and e produce leading and trailing
non-coding sequences. The additional states above and below the central coding region belong to entry and exit modules which make
sure that the coding region starts and ends in the correet codon position. A visible sequence is generated by a random walk through the
model. The states do not only produce visible or hidden symbols. they also define scores for such events related to their occurrence
probabilities. The exact properties of cach state are defined in the table on the right-hand side.
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generating a given visible sequence ¢; ... e,. Due to the fact
that the HMM never emits two different symbols at a time,
the hidden sequence is uniquely defined by the emitted
sequence and the corresponding path. This property also
makes it possible to find the most likely path which
determines the most likely coding region, with the aid of a
standard Viterbi-type dynamic programming algorithm (see
Durbin et al. 1998, page 58).

Since ESTScan uses a Viterbi approach (computation of a
score corresponding to the most likely path) rather than a
full probabilistic approach (summing over the probabilities
of all possible paths), the parameters of the model states
can be defined as additive scores interpretable as the
logarithm of the ratio of the actual probability over the
corresponding null model probability. Using such additive
scores, a number of sticky issues can be avoided, such as
for instance the definition of specific probabilities for
wildcard symbols, or the choice of a particular geometric
length distribution for the flanking regions. For practical
purposes, it is also not necessary that the implied emission
probabilities of a given state sum to one. In the case of the
ESTScan model, all scores for the transitions can be
normalized to zero by transferring the corresponding costs
to subsequent destination states. The transition terms can
thus be eliminated from the expression for the total score of
a path generating a particular sequence, which then has the
following form:

Stej...emlqgr... qi) = 2.‘ S(eqiy! qi)

Here e, is the visible symbol emitted by the ith element of
the path. Note that this term is only relevant for states that
emit a visible symbol. For the states implementing the nth
order 3 periodic inhomogeneous Markov process modeling
the coding region, the score depends on the emitted
symbol, the current reading frame, and the n preceding
symbols of the hidden sequence (see Fig. 1). All other
scores are independent of the symbol produced.

Parameters used by the HMM

ESTScan uses exactly the same type of coding region
model as GENSCAN, and the same parameter file format.
A particularly useful feature of this model is that it offers
the possibility to use different Markov processes for
different isochores (G+C content ranges). The order of the
inhomogeneous 3-periodic Markov chain is a variable.
The human exon model included in the GENSCAN
distribution and used in this work consists of two Sth-order
Markov chains for sequences of high and low G+C content
(in Fig. 1, an HMM for a 2nd order Markov chain is shown
for simplicity). In the GENSCAN parameter tables, the
Markov transition probabilities are expressed as log-odds
ratios of the higher-order Markov probabilities of the
coding regions and the null model probabilities of the
corresponding bases. The absolute values of the
probabilities are thus unknown. The results shown in Table
1 clearly indicate that the GENSCAN exon scoring tables
favor G+C-rich sequences, suggesting that the
corresponding null model was derived from total genomic

sequences rather than exons only, the latter tending to have
a higher G+C-content than the surrounding non-coding
sequences.

The order of the Markov process also determines the
number of the parameters to follow. The GENSCAN
parameter table defines scores for all n+/-tuples of the
alphabet {A,C.G,T} for the three alternative codon
positions. (The n+/th symbol of the tuple is the one which
is actually produced by the state, the preceding n symbols
are those upon which its score depends.) For most gene
prediction programs, it is not known how ambiguous base
symbols (rarely occurring in genomic sequences) are
handled. For ESTScan, an appropriate treatment of
ambiguous symbols is essential, not only because such
symbols frequently occur in EST sequences, but also
because the underlying HMM produces such symbols to
accommodate hypothetical bases presumably missing in the
input sequence. A precise description of how such symbols
are treated is therefore desirable.

ESTScan uses a five-letter alphabet for internal sequence
representation, including the wildcard character N’ in
addition to the four standard base symbols. During
sequence input, any ambiguous IUPAC base symbol is
automatically converted into N'. At the same time, the
GENScan score tables for the coding region model are
expanded to a five-letter alphabet. The scores of all n+/-
tuples containing an N at the last position are set to zero.
The scores for n+/-tuples containing exactly one N
between position 1 and n are assigned the average of the
four corresponding n+I-tuples in which N’ is replaced by
A, C, G or T. The current version of ESTScan offers in
addition six alternative ways to compute these values,
consisting of averaging over only the 1,2,3 highest, or the
1,2,3 lowest values of the four corresponding n+/-tuples.
The scores for n+/-tuples containing more than one N’
between positions 1 and n, are recursively computed using
the same averaging procedure.

So far, we have not yet described a mechanism accounting
for substitution errors occurring in the input sequence. As
mentioned before, these errors which in most cases have far
less drastic consequences on the deduced amino acid
sequence, are not dealt with by the HMM architecture.
There is however one particular case, the accidental
generation of a stop codon, which makes a mechanism to
deal with such errors mandatory. Because the GENSCAN
exon models assigns prohibitively low scores to all n+1/-
tuples containing a stop codon in the critical frame, such arr
error would cause immediate termination of a coding
region if no modification to the scoring system were
applied. ESTScan deals with this problem by raising all
prohibitively low scores to a threshold value defined by a
command line parameter (the min matrix value parameter,
see next Section). This threshold value must however
remain substantially below the scores of the most
unfavorable stop codon-free hexanucleotides in order to
preserve the capability to detect intervening non-coding
regions in coding exons. The only two additional non-zero
scores of the HMM shown in Fig. 1, which do not belong
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to the coding region model itself, are the insertion and
deletion penalties, which are also specified on the
command line.

Finding multiple matches

ESTScan also has the capability of finding multiple coding
sequences separated by intervening non-coding regions in
the input sequence. This is useful because ESTs may
indeed contain such intervening sequences as a result of
cloning artifacts or genomic contaminations in the cDNA
libraries. Alternatively, true coding regions could look like
non-coding sequences because of a high local
concentration of sequencing errors or atypical sequence
properties. In either case, it would probably be impossible
to reconstruct the correct coding region from a negatively
scoring sequence segment, which is sufficient reason for
excluding it from the coding region prediction.

In order to accommodate the possibility of multiple coding
regions, the Viterbi algorithm recursively computes the
optimal coding region for subsequences starting at position
1 of the input sequence and ending at current position k.
During this scanning process, it keeps track of the score of
the best coding region ending at the current position, as
well as the globally maximal score obtained at a previous
position. Each time the current best score becomes
negative or null, the procedure is re-initialized. A coding
region is defined as the portion of sequence comprised
between the procedure starting point and the point where
the score was maximum; i.e., the portion of sequence that
contributed mostly positive scores (provided the maximum
score was above a specified cutoff value). The scanning
procedure restarts at the nucleotide following the one
where the score was maximum. To take into account the
fact that there can be multiple fluctuations in the score
between the start and maximum points, and to provide
optimal tuneability, ESTScan introduces a configurable
maximum drop parameter (-D). After a maximum score
(greater than the cutoff) has been seen, the current best
score will not be allowed to drop more than this specitied
value below the last maximum (i.e., we do not allow a
valley deeper than the maximum drop, after having seen a
proper maximum score). When the score goes below this
maximum drop, the same thing happens as when the score
reaches zero: production of a coding region and restart of
the scanning procedure. Note that the absolute drop-oft
value is typically lower than the cut-off value for an
individual coding region. We have not found a way to
formulate an algorithm implementing this behavior in an
HMM framework.

Score normalization

To classify short EST sequences into likely coding and
non-coding sequences, one has to make adjustments to the
scores to account for the effect of the sequence length.
Assuming that the ESTScan scores are distributed
according to the Karlin-Altschul statistics (Karlin and
Altschul 1990) - and we have no reasons to believe that this
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is not the case - a simple length normalization procedurc is
suggested by the well-known formula used to compute the
expectation values for BLAST matches: £ = K N*, where
E is the expected number of matches with scores above S
for sequence length N. K and A are two parameters that
could be determined by a single simulation experiment.
However, this approximate formula applies only to
situations where the length of the match is much smaller
than the length of the sequence. Because we knew from
preliminary tests with negative control databases that this
condition is not satisfied for short EST sequences, we
expected a more complex relationship between the
expected false positive rate and the sequence length.
Therefore, rather than relying on a theoretical model, we
decided to compensate for the effects of length and
isochore class by generating a table of empirical data
documenting the score boundaries (cutoffs) obtained at
various false positive values f when using our algorithm on
the normalization databases described above. The program
with default parameters was run against each database. and
the cutoff scores reached by a proportion of (1-f) of all
sequences were recorded. The data obtained are shown in
Table I; they indicate that scores obtained from non-coding
EST-type sequences strongly depend on the length and the
isochore class of the sequence. Interestingly, there was a
much stronger length dependence for the scores obtained
from sequences with high G+C content,

To take these effects into account, the score normalization
procedure reads a set of matrices of the type shown in
Table I, selects the matrix corresponding to the sequence’s
GC content, and then uses linear interpolation on the
sequence length, and logarithmic interpolation on the
accepted false positive rate, to determine the proper cutoft
value. The normalized score is then calculated as 100 x log
(score / cutoff). Thus, a negative score is obtained if the
probability that a query sequence is coding is less than the
accepted false positive rate (0.01 by default).

Implementation and availability

The program was written as a Perl script, which calls the
main algorithm (the alignment of the Markov model to the
query sequence) as a compiled C module. In order to
maximize flexibility, many parameters can be passed on the
command line, using the syntax:

ESTScan [options] <file>
where options are:

-m <int> min value in matrix [-50]
-d <int> deletion penalty [-50]

-1 <int> insertion penaity [-50]
-D <int> maximum drop value [200]

-M <file> score matrices file
-p <float> GC select correction for score
matrices [4]

-N <inct> how to compute the score of N [(]

-w <int> width of the FASTA seguence ocutput

-a all in one sequence output [(]

-0 report header information for hest
match only [0]

-b show resuits for both strands {0Q:



-t <file> Translate to protein.

-0 <file> send output to file. - means stdout.
-f <float> expected false positive rate [0.01]

-F <file> false positive rate matrices file

-s <int> Skip sequences shorter than length [1]
~-C <int> absolute cutoff wvalue [undefined]

The input is a FASTA-formatted file containing an
arbitrary number of sequences to be analyzed. The output is
normally a FASTA-formatted file containing the predicted
coding region, padded with X characters at the 5’ end (if
necessary) to force frame 1 to be the correct reading frame;
insertions are indicated by X and deletions by showing the
nucleotide to be removed in lower case. Alternatively,
coding regions can be output in uppercase against a
background of lowercase non-coding sequence (-a option),
or the output can be restricted to statistics only (-O option).
In addition to the nucleotide sequence(s) of the predicted
coding region(s), ESTScan can produce predicted protein
sequences (-t option). The sequence’s ID and description,
the normalized score, absolute score, computed cutoff
value, and the begin and end position of the predicted
coding region are indicated on the FASTA header line.

The format and values of the score matrices for the Markov
model are those used by Burge and Karlin’s GENSCAN
program, and ESTScan can read GENSCAN’s matrices
without modifications. For score normalization, we use a
table similar to Table I, distributed with the program. For
the time being, this table is available only for human
sequences.

We also provide utilities for generating the normalization
databases and tables: sorting of ESTs according to isochore
class, shuffling of the sequences, output of uniformly-sized
pseudo-sequences after shuffling, and generation of a table
suitable for input into ESTScan. These tools can be used to
generate databases and tables for various species, or
scoring systems of varying stringency.

The program, including source code, is freely available
from the authors upon request. Individuals or institutions
interested in redistributing the program or in incorporating
its code into a commercial product should contact the
authors.

Results

Initial optimization

There is no easy method to perform an optimization of all
parameters for all classes of sequences (high-quality
sequences and ESTs derived from different isochore
classes) in an objective way. Therefore, we only
investigated the effects of a few parameters on the ability of
the program to discriminate between coding and non-
coding sequences, and we have not yet attempted to
optimize the matrix cutoff, ambiguous nucleotide scoring,
and drop values.

First, we found that score normalization is absolutely
necessary to produce an objective criterion by which to
evaluate the probability of a sequence to be coding. As the

raw scores were highly dependent on both the length of the
sequence and its isochore class (Table I). no single cutoff
value could be assigned that would distinguish coding from
non-coding sequences. On the other hand, a normalization
table that considered only two isochore classes (with a
boundary at 47% G+C) performed almost as well as the
four-class table presented here.

Second, and surprisingly, we found that the indel penalties
did not have a very significant effect on the effectiveness of
the discrimination over a wide range of negative values.
We have not yet investigated in detail how much they
would affect the accuracy of the coding region detection,
but preliminary results indicate that high penalties result in
the elimination (as opposed to frame correction) of out-of
frame regions. It should be noted that our scoring system
awards an average score of about 1.5 to each nucleotide
found to be within a predicted coding region.
Unsurprisingly, on the “high-quality” dataset extracted
from non-EST entries of the GenBank/EMBL databases,
the discrimination power was essentially independent of the

False positive rate (f)
Class len 0.2 0.1 0.05 0.02 0.005 0.002

100 47 59 70 84 105 118
250 63 77 92 111 143 164
400 71 88 104 128 166 192
625 81 98 117 142 184 211
1000 91 111 131 160 206 244
I 5000 | 134 160 185 221 283 323
II 100 57 73 87 105 130 146
11 250 82 105 129 159 203 227
I 400 98 128 158 198 253 290
I 625 115 151 188 236 303 349
I 1000 | 138 181 226 280 371 414
I 5000 | 243 307 372 453 563 693
111 100 65 83 100 121 148 165
III 250 99 131 162 199 248 279
I11 400 124 169 212 263 333 376
I 625 155 211 267 334 424 470
I 1000 199 273 345 434 543 614
111 5000 | 447 610 761 932 1254 1494
v 100 76 98 118 140 172 190
v 250 129 172 209 252 309 344
v 400 173 237 290 350 432 48]
v 625 235 319 391 470 574 639
v 1000 | 331 444 542 647 784 859
Iv 5000 | 1166 1491 1750 2034 2334 2507

bt el et bd e

Table 1. Cutoff values used for score normalization.
Shuffled EST sequence databases with entries of
uniform length were produced as described in Methods.
The isochore classes were: It <43% G+C; II: 43-51%,
IMI: 51-57%, and IV: > 57%. The scores for all entries
in each database were calculated, and the cutoff score
for false positive rates of f calculated. The actual table
used by ESTScan contains a larger number of entries,
based on more values for f and length.
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penalties used. On the EST-derived datasets, optimal
discrimination between coding and non-coding sequences
was achieved using indel penalties of around -50, which is
the default value for the program. However, penalties as
high as -15 and as low as -100 still produced acceptable
discrimination levels (data not shown).

Sensitivity and selectivity of coding region
detection

In order to estimate the sensitivity and selectivity of our
method, we ran the program on 3’ UTR sequences as well
as isochore-separated collections of coding regions,
derived either from high-quality database cntries or from
ESTs. Results were collected with the —O option, which
reports tor each sequence the highest score obtained on
either strand. In normal mode, only those sequences
producing positive scores would be reported.

The results are shown in Figure 2, either as relative
trequencies of normalized score intervals (upper panels), or
as the cumulative fraction of sequences scoring above (or
below, for the negative control sets) a specific score (lower
panels). Clearly, the score distributions of the 3° UTRs are
well separated from those of the coding regions. As
expected, this separation is better for the high-quality
sequences than for the EST sequences. The scores for the
high-quality sequences were obtained using an expected
false positive rate of 0.01; at that rate, between 3.5 and
4.5% of the coding sequences scored below zero (false
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Figure 2. Discrimination between coding and non-coding sequences

negatives), while less than 3% of the 3° UTR sequences
scored above zero (false positives). In other words, about
94% of all good-quality sequences given to the program
were flagged accurately to be coding or non-coding. For the
EST sequences, we chose an expected false positive rate of
0.1; at that level, 5.74% of isochore class 1, 4.72% of class
IT, 4.37% of class III, and 5.92% of class IV were scored as
false negatives, while 18.17% of 3’ UTRs were scored as
false positives. In other words, it is possible to flag and
extract about 95% of true coding sequences from EST
databases while accepting a tolerable rate of false positives.
In contrast, GENSCAN found only about 35% of the
coding sequences in the positive EST set. It was interesting
to note that the false positive rates measured for 3’UTRs
were higher than those calculated from the normalization
databases. We suspect that this is due to the lower G+C
content of 3’UTRs, which causes them to undergo a less
stringent normalization than high isochore sequences (see
Table I).

We did not perform systematic tests on the accuracy of the
assignment of boundaries between coding and non-coding
regions in EST sequences. However, we did ascertain that
the presence of non-coding regions did not affect either the
sensitivity or the selectivity of coding region detection
(data not shown).

Normalized scores were computed for collections of 3' UTR sequences (diamonds), and of coding sequences from isochores |
(squares). 11 (triangles), L1l (crosses) and IV (plus signs). Pancls A and C: results from high-quality scquences; panels B and D:
results from EST sequences. Panels A and B: histograms o! the distribution of the scores, in 10-unit intervals, Panels C and D:
cumulative percentages of the scores above (or below, for the 3' UTRs) the interval indicated on the abscissa.
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Figure 3. Example of a reading frame reconstruction by
ESTScan

a) Reverse-complement of an EST sequence (Ac-nr: AA857478)
containing most of the human ferritin light subunit mRNA
sequence. The part corresponding to the coding region is shown
in upper case. Conflicts with the published mRNA sequence
(Ac-nr :M10119) are indicated above the sequence.

b) Framec-shift comrected coding region predicted by ESTScan.
Note that bases missing in the input sequence are represented by
X

c) Alignment of the human ferritin light chain protein sequence
with the translated coding region predicted by ESTScan. The
alignment was gencrated with the program alignO from the fasta2
package (W.R. Pearson, ftp://ftp.virginia.edu/pub/fasta/).

d) EST coding region prediction with GENSCAN. Shown is an
alignment between the human ferritin and the translated amino
acid sequence I[rom two consecutive exons predicted by
GENSCAN for the same EST sequence. Note that GENSCAN
accommodates the two frameshift errors in the central part of the
coding region by predicting a short intron.

Accuracy of reading frame corrections

One of the design goals of the program was to detect and
correct frameshift errors present in EST sequences. We
tested this functionality on two specific examples: (1) an
EST containing most of the mRNA sequence of the light
chain of human ferritin, with two sequencing errors in the
coding region that each cause the deletion of one
nucleotide; (2) GenBank/EMBL entry AB000215, the
sequence of the mRNA for the rat CCA1 protein, which
was found to contain a sequencing error (deletion of 1 nt)
near its 3’ end that affects the sequence of the last 40 amino
acids of the protein (K. Hofmann, personal
communication). This second case is made more difficult
by the fact that the artefactual reading frame is not
interrupted by a stop codon before the position of the true
stop codon.

ESTScan performed extremely well in both cases. The first
one is illustrated in Figure 3: the program, run with default
parameters, detected both frameshifts and corrected them
by inserting an “X” within less than 10 nt of the actual
sequencing error. The GENSCAN program, which was not
designed to handle insertions and deletions leading to
frameshifts but otherwise uses an algorithm very similar to
ours, accommodated the double frameshift by converting
the intervening region to an intron. This is still a
remarkably good result considering the very different
design goals of GENSCAN. In the second example,
ESTScan again detected the frameshift and corrected it
within 10 nt, despite the fact that it was preceded by over
1800 nt of correct coding sequence and that the correction
did not affect the total length of the ORF. It should be
noted that the GENIO program also detected this
frameshift, while GENSCAN did not.

To get a more quantitative evaluation, we tried to assess
ESTScan's accuracy in coding region reconstruction on a
larger scale. The design of an adequate test for this
purpose is not trivial as coding regions and sequencing
errors are of course not annotated in the EST sequences.
We therefore chose an indirect approach, comparing the
sensitivity of a tblastn search of an EST DNA database
with that of a blastp search of the corresponding protein
database extracted by ESTScan. The rationale of this
experiment is as follows: If ESTScan would miss many
true coding regions, select the wrong reading frame, or be
unable to localize frame-shift errors with sufficient
precision, then the blastp search would miss a substantial
fraction of the sequences found by the tblastn search.
Conversely, it ESTScan would precisely restore all open
reading frames, one would expect some increase in
sensitivity due to the error correction and reduction of the
search space. The database chosen for this experiment
consisted of all human EST sequences not assigned to a
cluster in Unigene version 74. ESTScan extracted from
these 299,191 sequences totaling 97.6 million residues,
78,387 ORFs totaling 6.0 million amino acids. Taking into
account that a tblastn search considers both strands of a
DNA sequence, this amounts to a 32-fold reduction of the
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search space, resulting in a proportional decrease in search
time. As protein queries we used to sequences expected to
hit many targets in the EST database: a yeast protein kinase
(YPKI, SWISS-PROT entry O12688) and human
epidermal growth factor (EGF, SWISS-PROT entry
P01133). With the protein kinase query, the tblastn search
of the DNA database produced 126 hits with E-values
lower than 10™; the blastp search of the protein database
detected 123 sequence at the same significance threshold.
With the EGF query, the blastp search was even slightly
more effective than the tblastn search (48 versus 44 hits).
A more detailed analysis of the hit lists revealed that about
10% of the sequences found by tblastn were missed by
blastp because they were not detected by ESTScan, and
that a similar fraction of sequences found by blastp reached
the significance threshold thanks to frame-shift corrections
made by ESTScan. In summary, these results indicate that
most of the reading frames detected by ESTScan are also
reconstructed with high accuracy, and that applying this
procedure can reduce the execution time of an EST
database search with a protein query by a factor of 30
without net loss of sensitivity.

Discussion

While coding exon recognition is an important component
of any gene prediction program, the recognition and
correction of sequencing errors leading to frameshifts and
erroneous stop codons has only been addressed in the
context of homology-based approaches (Brown, Sander et
al. 1998; Birney, Thompson and Gibson, 1996)) in the
bioinformatics literature. The only program we know of
that appears to be based on principles similar to ESTScan
is GENIO/frame (N. Mache, unpublished), which generates
a graphical representation of the probability that each of the
three forward frames in a coding sequence is the coding
frame. This allows a quick visual detection of frameshifts,
but does not at present propose a model for their automated
correction. The GENIO suite also includes an explicit
model for non-coding regions, which may improve its
ability to discriminate between coding and non-coding
regions. To our knowledge, the frameshift detection and
coding region recognition algorithms of GENIO have not
yet been integrated into a single program.

We approached the problem of reconstructing correct
coding regions from error-containing EST sequences by a
new type of HMM combining higher order Markov states
with insertion and deletion states. Although simpler HMMs
with these properties and corresponding algorithms have
been described before (Durbin, Eddy et al. 1998) we felt
that a new model type was required to solve this problem
for two reasons: First, in the previously described model
type, the higher order Markov probabilities were dependent
on the emitted (visible) sequence context, which appears to
be inconsistent with the goal of this algorithm to correct for
errors. Obviously, probabilities that are supposed to
describe the statistical properties of true coding regions
should not be made dependent on potentially erroneous

146  ISELI

preceding base sequences. Secondly, there is an ambiguity
with the previously described models regarding the exact
placement of insertions and deletions during path
reconstruction. Since the higher order Markov probabilities
apply to overlapping n+/-mers (in case of the GENSCAN
exon model to hexamers overlapping by 5 bases), it is by
no means clear where to delete or where to insert a single
base within the overlap region. Most disturbingly, by
blindly applying some arbitrary convention, a stop codon
could be generated by accident. Therefore, we introduced a
new model type where the higher order Markov
probabilities depend not on the visible sequence context,
but on preceding symbols of a supposedly correct
hypothetical coding region. We are aware of the fact that
the error-generating process implemented in this model
(see Fig. 1) may not be entirely realistic as it does not allow
for double insertions or deletions at nearby locations
(within the dependence range of the Markov process).
However, this aspect is irrelevant from a practical
viewpoint because with reasonable gap penalty values such
unlikely events could never be correctly reconstructed
anyway, as a single base insertion would always be a
cheaper way to restore the coding frame than a double
deletion and vice-versa. We thus believe that the model
proposed in this work could serve as paradigm for other
sequence analysis applications where appropriate modeling
of sequencing errors is crucial for good performance.

The experiments with shuffled databases revealed the
expected complex relationship between sequence length
and false positive rate. We were more surprised to find a
strong isochore dependence of the ESTScan scores,
apparently reflecting an inherent property of the exon
model copied from GENSCAN, and were wondering why
this property seems not to negatively affect the
performance of the model in gene prediction. There may be
a simple explanation for this paradox. The GENSCAN
algorithm assigns each part of the sequence to one of threc
sequence classes, exon, intron, or intergenic regions, cach
of which is modeled by a specific Markov process. The
exon model is thus in competition with other models. and if
these other models exhibit the same type of isochore
dependence, the net effect would be zero. In contrast,
ESTScan does not use a particular model for non-coding
regions, which is tantamount to comparing the exon model
to a simple null model consisting of a zero-order Markov
process with equal base frequencies. These considerations
suggest that the isochore normalization could be tackled by
introducing a more appropriate model for non-coding
regions into the ESTScan HMM. While such an approach
seems more elegant and intellectually more satisfying, we
cannot be sure at the moment whether it would work
equally well or better than the simple and robust procedure
we currently use.

The practical implementation of ESTScan should make it a
widely useful tool. We have designed a simple Web
interface to the program, for the use of biologists who are
interested in checking individual sequences for coding
potential and sequencing errors (at



http://www.ch.embnet.org). On the other hand, it can be
used in batch mode to scan arbitrarily large numbers of
sequences and produce databases of error-corrected coding
regions or of predicted protein sequences. These databases
could then be used as a much-improved source of raw data
for efforts aimed at producing contigs from existing EST
collections. Currently, a major obstacle to the automated
production of such contigs is the presence in the EST
databases of large amounts of non-coding sequence,
including repetitive elements, introns, and 3’ UTRs, all of
which should be removed by ESTScan.

In conclusion, we feel that the ESTScan program fills a
new niche among the panoply of methods available to the
biocomputing community, and that it introduces in the
process potentially interesting variations to the Markov
models used in biological sequence analysis.
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