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Abstract

A new method, called the Fisher kernel method, for
detecting remote protein homologies is introduced and
shown to perform well in classifying protein domains
by SCOP superfamily. The method is a variant of
support vector machines using a new kernel function.
The kernel function is derived from a hidden Markov
model. The general approach of combining generative
models like HMMs with discriminative methods such
as support vector machines may have applications in
other areas of biosequence analysis as well.

Introduction

Manv statistical, sequeace-Lased tools have veer. -levei-
oped for “etecting proiein homologies. These include
BLAST (Altshul et af. 1990; Altschul et al. 1997),
Fasta (Pcarson & Lipman 1988), PROBE (Neuwald
et al. 1997), templates (Taylor 1986), profiles (Grib-
skov, McLachlan, & Eisenberg 1987). position-specific
weight matrices (Henikoff & Henikoff 1994), and Hid-
den Markov Models (HMMs) (Krogh et al. 1994). Re-
cent experiments (Brenner 1996; Park et al. 1998)
have used the SCOP classification of protein structures
(Hubbard et al. 1997) to test many of these methods
to see how well they detect remote protein homolo-
gies that cxist between protein domains that are in
the same structural superfamily, but not necessarily in
the same family. This work has shown that methods
such as PSI-BLAST and HMMs. which build a sta-
tistical model from multiple sequences, perform bet-
ter than simple pairwise comparison methods, but all
sequence-based methods miss many important remote
homologies.

We present and evaluate a new methodology for de-
tecting remote protein homologies. In this approach
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we use generative statistical models built from mul-
tiple sequences, in this case HMMs, as a way of ex-
tracting features from protein sequences. This maps
all protein sequences to points in a Euclidean feature
space of fixed dimension. (See (Linial et al. 1997)
for a different method of mapping protein sequences
into Euclidean space). We then use a general dis-
criminative statistical method to classify the points
representing protein sequences by domain superfam-
ily. This is quite distinct from methods that train
the parameters of the HMM itself to give a more dis-
crimigative model (Eddy, Mitchison, & Durbin 1995;
Mamitsuka 199€). Other discrimina‘ive methols, us-
ing neural nets, are desciibed in (Dubchak ef al. 1995;
Dubechak, Muchnik. & Kim 1997). Using our meihod,
we obtain a substantial improvement in identifying
remote homologies over what is achieved by HMMs
alone, as they are currently employed. This new
method also compares favorably to what have been
called family pairwise search homology methods, in
which the scores from all pairwise comparisons between
a query protein and the members of a known protein
family are combined to improve performance (Grundy
1998).

Methods

The statistical modeling approach to protein sequence
analysis involves constructing a generative probability
model, such as an HMM, for a protein family or su-
perfamily (Durbin et al. 1998). Sequences known to
be members of the protein family are used as (posi-
tive) training examples. The parameters of a statis-
tical model representing the family are estimated us-
ing these training examples, in conjunction with gen-
eral a priori information about propertics of proteins.
The model assigns a probability to any given protein
sequence. If it is a good model for the family it is
trained on, then sequences from that family, includ-
ing sequences that were not used as training exam-
ples, yield a higher probability score than those out-
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side the family. The probability score can thus be in-
terpreted as a measurc of the extent to which a new
protein sequence is homologous to the protein family
of interest. Considerable recent work has been done
in refining HMMs for the purpose of identifying weak
protein homologies in this way (Krogh et ol 1994;
Baldi et al. 1994; Eddy 1995; Hughev & Krogh 1996;
Karplus et al. 1997).

Let X' = [z.....,ry] denote a protein sequence,
where cach r; is an amino acid residue. Suppose that
we arc interested in a particular protein family such as
immunoglobulins and have estimated an HMM H; for
this family (for details of the estimation process sec.
c.g., (Durbin et al. 1998)). We use P(.X|H;) to denote
the probability of X under the HMM, and P(X|H,) to
denote the probability of .X under the null model. The
score used in database scarch is the likelihood ratio

| P(X|H\)P(H))
& P(X|Ha) P(Hy)
P(X|H)
& P(X|Ho)

cx) = lo (1)

P(H,)
+ log P(H,)

Il

lo

A positive value of the likelihood ratio £(X) is taken
as an indication that the new sequence Y is in-
deed a member of the family. The constant factor
log P(H )/ P{#), the log prior odds, provides an a
priori means tor biasing the decision and does not af-
fect the ranking of sequences being scored.

Discriminative approaches

The parameters of a generative model are estimated
in such a way as to make the positive training exam-
ples, proteins in the family being modeled, very likely
under the probability model. In contrast, the parame-
ters of a discriminative model arc estimated using both
positive training examples and negative training exam-
ples, which are proteins that arc not members of the
family being modeled. The goal in estimating the pa-
rameters of a discriminative model is to find parame-
ters such that the score derived from the model can be
used to discriminate members of the family from non-
members, ¢.g. such that members of the family receive
4 high score and non-mernbers receive a low scorce.

Although the likelihood ratio above is optimal when
the HMM and the null model are perfectly accurate
niodels of the data, it can perform poorly when these
models are not accurate. This can easily happen
with limited training sets (Barrett, Hughey, & Karplus
1997; Park et al. 1998). Discriminative methods can
be used to directly optimize the decision rule using
both negative and positive examples, and often per-
form better.
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Kernel methods

Suppose we have a training set of examples (protein
sequences) {\\;}.¢ = 1,....n for which we know the
correct hypothesis class, H) or Hqy. In other words, we
have a set of protein sequences that ave known to be
either homologous to the family of interest or not. We
model the discriminant function £{.X) directly via the
following expansion in terms of the training examples:

LX) = log P(H|X) —log P(Hy|X) (2)
= 3 MK(N.X)—- > AAXLY)
X, H, X, e He

The sign of the discriminant function determines the
assignment. of the sequences into hypothesis classes,
The contribution, cither positive or negative. of each
trainiug exawple (sequence) to the decision rule con-
sists of two parts: 1) the overall importance of the
example X; as summarized with the non-negative co-
efficient A; and 2) a measure of pairwise “similarity”
between the training example .Y, and the new example
X, expressed in terms of a kernel function A (Y, X).
The user supplies the kernel function appropriate for
the application area. This is the most critical compo-
ncnt. The free parameters in the above decision rule
are the coefficients A;: these can be estimated by it-
eratively maximizing a quadratic objective hinction as
deseribed in (Jaakkola, Dickhans, & Haussler 1998h).

The Fisher kernel

Finding an appropriate kernel function for a particular
application area can be difficult and remains largely an
unresolved issue. We have, however, developed a gen-
eral formalism for deriving kernel functions from gener-
ative probability models (Jaakkola & Haussler 1998).
This formalism carries several advantages, including
the ability to handle complex objects such as variable
length protein scquences within the kernel function.
Furthermore, the formalism facilitates the encoding of
prior knowledge about protein sequences, via the prob-
ability models. into the kernel function.

Qur approach here is to derive the kernel function
from HMMs corresponding to the prolein family of
interest.  We arc thus able to build on the work of
others towards adapting HMMs for protein homology
detection(Krogh et al. 1994; Hughey & Krogh 1996;
Karplus et al. 1997). Our use of protein models in
the kernel function, however, deviates from the stan-
dard use of such models in biosequence analysis in that
the kernel function specifies a similarity score for any
pair of sequences. whereas the likelihood score from an
HAIM only measures the closeness of the sequence to
the model itself.



We extract and entertain a richer representation for
each sequence in the form of what arc known as suffi-
cient statistics. In the context of HMMs these statistics
are computed with each application of the standard
forward-backward algorithm (Rabiner & Juang 1986).
The fixed length vector of sufficient statistics contains a
value for each parameter in the HMM and these values
are the posterior frequencies of having taken a partic-
ular transition or having generated one of the residues
of the query sequence .X from a particular state. The
vector of sufficient statistics thus reflects the process of
generating the query sequence from the HMM. More
generally, they provide a complete summary of the se-
quence in the parameter space of the model.

The idea of using sufficient statistics as an intermedi-
ate representation of the query sequence can be gener-
alized considerably(Jaakkola & Haussler 1998). In the
more general treatment, one works not with the vector
of sufficient statistics directly but with an analogous
quantity known as the Fisher score

Ux = Vylog P(X|H,.6) (3)

Each component of Ux is a derivative of the log-
likelihood score for the query sequence .X with re-
spect to a pasticular parameter. The magnitude of
¢lie components specify the exterc .o which each pa-
rerceter contributes te generating the auery sequence.
Thne computation of these gradients in the context of
HMDMs along with their relation to suflicient statistics
is described in more detail in (Jaakkola, Diekhans, &
Haussler 1998b).

Finding an appropriate kernel function in this new
gradient representation is easier than in the original
space of variable length protein sequences.We only
need to quantify the similarity between two fixed
length gradient vectors U’y and Ux- corresponding to
two sequences X and X, respectively. The kernel func-
tion used in our experiments is given by

- 1 "‘___r',T T =07y
K(X,_\"):c 2. (Ux=Ux " tUx =Uxr) (4)

as derived in (Jaakkola, Diekhans, & Haussler 1998b).
The scaling parameter o appearing in this kernel was
set equal to the median Euclidean distance between
the gradient vectors corresponding to the training sc-
quences in the protein family of interest and the clos-
est gradient vector from a protein belonging to another
protein fold.

To summarize, we begin with an HMM trained from
positive examples to model a given protein familv. We
use this HMM to map cach new protein sequence X we
want to classify into a fixed length vector, its Fisher
score, and compute the kernel function on the basis

of the Euclidean distance between the score vector for
X and the score vectors for known positive and nega-
tive examples .X; of the protein family. The resulting
discriminant function is given by

LX)= 3 AKX X)- D NK(X, X)),

X;eH, = X;eEHy
(5)

where K is the kernel function defined above and the
A; are estimated from the positive and negative train-
ing examples X;. We refer to this as the SVM-Fisher
method.

Combination of scores

In many cases we can construct more than one HMM
model for the family or superfamily of interest. It is
advantageous in such cases to combine the scores from
the multiple models rather than selecting just one. Let
L;(XX') denote the score for the query sequence .X based
on the i model. This might be the score derived
from the SVM-Fisher method. Equation (5), or the
log likelihood ratio for the generative HMM model,
log ;}:mf%%, or even a negative log E-value derived
(.X[Ho) o

from a BLAST comparison, as described in he meth-
ods section. We would like to combine the SVM-Fisher
scores for .\ from all the models of the given family,
and similarly with HMM and BLAST scores  Sirce
there is no clearly optinal way to cormoine these scores
in practice. we explove Lere only two simple heuristic
means. These are average score

. 1 o .
QMMZEZMM) (6)
and mazimum score
Lomar(-Y) = max £;(X), (7

where in cach case the index i ranges over all models for
a single family of interest. These combination methods
have also been explored in other protein homology ex-
periments (Grundy 1998). The average score method
works best if the scores for the individual models arce
fairly consistent, and the maximum score method is
more appropriate when we expect larger values of some
individual model scores to be more reliable indicators.
We have found that the maximum score method works
better in our experiments with generative HMM mod-
els and BLAST scores, so this approach is used there.
However, the average score method works better for
combining scores from our discriminative models, so it
is used in these experiments.

Experimental Methods
We designed a set of experiments to determine the
ability of SVM-Fisher kernel discriminative models to
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recognizc remote protein homologs. The SVM-Fisher
kernel methods were compared to BLAST (Altshul
et al. 1990; Gish & States 1993) and the genera-
tive HMMs built using the SAM-T98 methodology
(Park et al. 1998: Karplus, Barrett, & Hughey 1998;
Hughey & Krogh 1995: 1996). The experiments mea-
sured the recognition rate for members of superfamilies
of the SCOP protein structure classification (Hubbard
et al. 1997). We simulate the remote homology detec-
tion problem by withholding all members of a SCOP
family from the training set and training with the re-
maining members of the SCOP superfamily. We then
test sequences from the withheld family to see if they
are recognized by the model built from the training
sequences.  Since the withheld sequences are known
remote homologs, we are able to demonstrate the rel-
ative cffectiveness of the techniques in classifving new
sequences as remote members of a superfamily. In a
sense, we are asking, “Could the method discover a
new family of a known superfamily?”

Overview of experiments

The SCOP version 1.37 PDB90 domain database. con-
sisting of protein domains, no two of which have 90%
or nore residue identity, wits used as the source of both
training and test sequences PDRY0 eliminates a large
nuiber of essentially redsadant sequences from the
SCOP database. The use of the domain database ai-
lows for accurate determination of a sequence’s class.
climinating the ambiguity associated with searching
whole-chain protein databasces.

The generative models were obtained from an exisi-
ing library of SAM-T98 HNINs. The SAM-T98 al-
gorithm, described more fully in (Karplus, Barrett,
& Hughey 1998). builds an HMM for a SCOP do-
main sequence by searching the non-redundant, protein
database NRP for a set of potential homologs of the se-
quence and then iteratively sclecting positive training
sequences from among these potential homologs and
refining a model. The resulting model is stored as an
alignmnent of the domain sequence and final set of ho-
mologs.

All SCOP farnilies that contain at least 5 PDB90 se-
quences and have at least 10 PDBY0 sequences in the
other families in their superfamily were selected for our
test. resulting in 33 test families from 16 superfamilics
{Jaunkkola, Dickhans, & Haussler 1993b). When test-
ing the recognition of one these families, the training
and test sets were constructed as follows. The posi-
tive training examples were selected from the remain-
ing familics in the superfamily containing the family in
question aud the negative training examples from out-
side of the fold that the family belongs to. The positive
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test examples consisted of all the PDB90 sequences in
the family. The negative test examples were chosen
from outside of the fold containing the family and in
such a way that the negative examples in the training
set and those in the test set never came from the same
fold. Figure 1 shows an example of the division.

For each of the 33 test families, all the test exam-
ples. both positive and negative, were scored, based on
a discriminant function obtained from the training cx-
amples for that family. We used various methods, de-
scribed in the following section, to measure how well
the discriminant function performed by assessing to
what extent it gave better scores to the positive test
examples than it gave to the negative test examples.
Using this setup, the performance of the SVM-kernel
method was compared to the performance of the gen-
erative HMM alonc, and to BLAST scoring methods.

Multiple models used

After selecting a test family, we must construct a model
for its superfamily using available sequences from the
other families in that superfamily. The SAM-T98
method starts with a single sequence (the guide sc-
quence for the domain) and builds a model. In general,
there are too many sequences in the other families of
the superfamily to consider building a mo:dei around
carn one of them. So we used a subsct of PLABY) s 1per-
faritily sequerces presen. in a diverse library of FXISting
HMMe. Tn- SVM-Fisher method was subsoquently
trained using each of these models in turn. The scores
for the test sequences, given each HMM model, were
computed from Equation (3), and the scores obtained
based on multiple models were combined according to
Equation (6).

Details on the training and test sets

In each experiment, all PDB90 sequences outside the
fold of the test family were used as either negative
training or negative test examples. Al experiments
werce repeated with the test /training allocation of nega-
tive examples reversed. This resulted in approximately
2400 negative test sequences for most test families.
The split of negative examples into test and training
was done on a fold-by-fold basis, in such a way that
folds were never split between test and train.  This
insured that a negative training example was never
similar to a negative test example, which might give
a significant advantage to discriminative methods. In
actual applications, this requirement could be relaxed,
and further improvements might be realized by using
digcriminative wmethods.

For positive training examples, in addition to the
PDB90 sequences in the superfamily of the test family
(but not in the test family itself), we used all of the



homologs found by each individual SAM-T98 model
built for the training PDB90 sequences.

BLAST methods

Two BLAST methodologies were used for comparison,
cach using WU-BLAST version 2.0a16 (WU-BLAST ;
Althschul & Gish 1996). These are family pairwise
search homology methods, as explored in (Grundy
1998). In both methods, the PDB90 database was
queried with each positive training sequence. and E-
values were recorded. One method, referred to as
BLAST:SCOP-onlyin the results section, used positive
training examples as defined by (1) above. The other,
which we call BLAST:SCOP+SAM-T98-homologs, in-
cluded the SAM-T98 domain homologs as positive ex-
amples, as in (2) above. In both cases, the scores were
combined by the maximum method. so the final score
of a test sequence in the PDB90 database was taken to
be the maximum —log E-value for any of the positive
training example query sequences. This score measures
the BLAST-detectable similarity of the test sequence
to the closest sequence in the set of positive training
sequences. In (Grundy 1998), a rclated combination
rule, which instead used the average of the BLAST
bit scores, was suggested. We tried a similar aver-
age method, taking the average of the — log E-values,
which should in theor be more acourate than aver-
aging the bit sceres. Howevor, the maximuin method
performed best. so we 1eport results for that combina-
tion method only.

Generative HMM scores

Finally, we also report results using the SAM-T98
method as a purely generative model. The null model
used here is the reverse sequence model from (Park et
al. 1998; Karplus, Barrett. & Hughey 1998). We used
the same data and the same set of models as in the
SVAI-Fisher score experiments; we just replaced the
SVM-Fisher score with the SAM-T98 score. However,
the scores were combined with the maximum method,
since that performed slightly better in this case.

In these experiments we also tried two different types
of positive training examples. In the first set of exper-
iments, we used only the domain homologs found by
the SAM-T98 method itself as a training set for cach
HMM. Thus, we simply used the SAM-T98 models as
thev were given in the existing library of models. In the
second experiment, we retrained cach of these models
using all of the data in (2) above. That is, using all of
the SCOP sequences in the superfamily being modeled
(but not in the family itself), and all of the domain
homologs found by the given SAM-T98 model and by
the models built from other guide sequences from this
superfamily (but not in the family itsclf). Thus in this

Fold

Super-
Family

Family

Negative Negative
Truining Test

Positive Positive
Truining Test

Figure 1: Separation of the SCOP PDB90 database into
training and test sequences, shown for the G proteins
test family.

latter case, ecach HMM was trained on same set of pos-
itive training examples used by the SVM-Fisher and
BLAST:SCOP+SAMT98-homologs methods. Perfor-
mance was somewhat better in the latter case at higher
rates of false positives (RFP, see below), but was worse
at lower RFP, making the method of less practical

“value. Therafore, +e rcport the results of the first ex-

periment herve.

Results

Here we provide a comparison of the results of the best
performing approaches for each of the methods. Since
the numeric scores produced by each method are not
directly comparable, we usc the rate of false positives
(RFP) achieved for cach positive test sequence as met-
ric for comparing methods (Park et al. 1998). The
RFP for a positive test sequence is defined as the frac-
tion of negative test sequences that score as good or
better than the positive sequence.

G-proteins

Here, as an example, we look at the results for the G
proteins family of the nucleotide triphosphate hydro-
lases SCOP superfamily.

The HMNMIs used in the recognition of members of the
G proteins family were taken from two other families
in the superfamily: nucleotide and nucleoside kinases,
and nitrogenase iron protein-like. The positive train-
ing examples were the SCOP PDB90 sequences from
the other families in the superfamily, along with the
HMM domain homologs for the models for the guide
sequences.

This experiment tested the ability of the methods

ISMB'99 153



Sequence | BLAST [ B-Hom [ S-T98 | SVM-F

op21 0.043 0.010 | 0.001 0.000
lguad 0.179 0.031 | 0.000 0.000
letu 0.307 0.404 | 0.428 0.038
ThurA 0.378 0.007 | 0.007 0.000
left(3) 0.431 0.568 | 0.041 0.051
1dar(2) 0.565 0.391 | 0.289 0.019
1tadA(2) 0.797 0.330 | 0.004 0.000
lgia(2) 0.867 0.421 | 0.017 0.000
Table 1: Rate of false positives for G proteins

family. BLAST = BLAST:SCOP-only, B-Hom =
BLAST:SCOP+SAMT-98-homologs. S-T98 = SAMT-
98, and SVM-F = SVM-Fisher method.

to distinguish the 8 PDB90 G proteins from 2439 sc-
quences in other SCOP folds. The results are given in
table 1. It is seen that the SVM-Fisher method scores
5 of the 8 G proteins better than all 2439 negative test
sequences, and gets a lower rate of false positives than
the other methods on the other 3 sequences, with the
exception of left-3.

We summarize the performance of the four methods
in recognizing this family by looking at two overall fig-
urvs of merit. The fArs. i the mazimurm RED for any
sequence it the jamily. Under this m.casure of perfor-
nince, we get 0.867 for BLAST:SCOP-on'y, 0.568 for
BLAST:SCOP+SAMTI8-homologs, 0.128 for SAM-
T98, and 0.051 for SVM-Fisher for the G-proteins fam-
ily.

Since the maximum RFP can be dominated by a
few outliers, which for some reason mayv be partic-
ularly hard for a method to recognize, we also con-
sider the median RFP for the sequences in the fam-
ily. To calculate the median RFP, we require ouly
that at least half of the sequences in the family
be recognized, and calculate the maximum RFP for
these sequences only.  Of course, for each method,
different sequences may be included in this “easiest
half” of the family. Under this measure of perfor-
mance, we get 0.378 for BLAST:SCOP-only, 0.330 for
BLAST:SCOP+SAMT98-homologs, 0.007 for SAM-
T98, and 0.0 for SVM-Fisher for the G-proteins family.

Overall results

In Table 2 we give the performance of all four meth-
ods ou each of the 33 protein families we tested, as
measured by the maximum and median RFP. We also
computed these statistics for the first and third quar-
tile. and the relative performance of the four methods
was similar (data not shown).

A graphical comparison of the overall results for the
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Figure 2: Here we compare the overall performance
for the four methods on the 33 test families. For each
family we computed the median RFP for that family,
as shown in Table 2. Values for the median RFP are
shown on the X-axis. On the Y-axis we plot the munber
of SCOP families, out of the 33 families that we tested.
for which the given method achieves that median RFP
performance or better.
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Further experiments

We did further experiments to verify that the SVAL-
Fisher method was not relying too heavily on length
and compositional bias in discriminating one protein
domain family from another. as suggested by a referee
of this paper. Such information would not be derivable
from the test scquence in the case that the domain to
be classified is contained in a larger test protcin se-
quence. To simulate this situation, we appended ran-
domly generated amino acids onto the ends of all the
sequences in PDBI0, creating a set of padded PDB90
seguences that all had length 1200 (the largest domain
in PDBY0 has length 903). The distribution of these
random amino acids was determined from the overall
amino acid frequencies in PDB90). The fraction of the
padding that ocenred at the beginning of the sequence
versus at the end of the sequence was determined nni-
formly at randowm as well.

We reran the experiments reported above with this
padded PDBI0 data set. Tn cases where homologs were
used, these were randomly padded as well. Apart from
a slight reduction iu the amount of improvement over
the other methods shown by SVM-Fisher, the results
were on average qualitiatively similar to those obtained
without padding. Details can be found in (Jaakkola,



Maximum RFP Median RFP
# | Family BLT | BLH | ST98 | SVM || BLT | BLH | ST98 | S¥M
1 | Phycocyanins 0.882 [ 0.743 | 0.950 | 0.619 || 0.391 | 0.342 | 0.450 | 0.364
2 | Long-chain cytokines 0.847 | 0.526 | 0.994 | 0.123 || 0.721 | 0.397 | 0.446 | 0.035
3 | Short-chain cytokines 0.686 | 0.658 | 0.513 | 0.023 [ 0.407 | 0.114 | 0.109 | 0.002
4 | Interferons/interleukin-10 0.613 | 0.799 | 0.765 | 0.119 [ 0.324 | 0.440 | 0.289 | 0.004
5 | Parvalbumin 0.098 [ 0.000 |{ 0.000 { 0.000 || 0.000 | 0.000 [ 0.000 | 0.000
6 | Calmodulin-like 0.433 | 0.002 | 0.000 | 0.000 |[ 0.023 | 0.000 | 0.000 | 0.000
7 { Immunoglobulin V dom 0.720 | 0.115 | 0.974 | 0.016 || 0.135 | 0.000 | 0.000 | 0.000
8 | Immunoglobulin C1 dom 0.624 | 0.000 | 0.000 | 0.063 || 0.033 | 0.000 [ 0.000 | 0.000
9 | Immunoglobulin C2 dom 0.263 | 0.124 | 0.136 | 0.019 |[ 0.119 | 0.006 | 0.000 | 0.000
10 | Immunoglobulin T dom 0.157 | 0.190 | 0.251 | 0.495 || 0.007 | 0.004 | 0.000 | 0.000
11 | Immunoglobulin E dom 0.792 | 0.797 | 0.899 | 0.683 || 0.168 | 0.329 | 0.178 | 0.073
12 | Plastocyanin/azurin-like 0.869 | 0.895 | 0.730 | 0.772 |[ 0.016 | 0.049 | 0.039 | 0.013
13 | Multidomain cupredoxins 0.775 | 0.853 | 0.233 | 0.360 || 0.342 | 0.116 | 0.003 | 0.002
14 | Plant virus proteins 0.975 | 0.940 | 0.782 { 0.410 |f 0.641 | 0.391 | 0.088 { 0.133
15 | Animal virus proteins 0.962 ' 0997 | 0.941 | 0.513 I} 0.750 | (630 | 0.204 | 0.066
16 | Legume lectins 0561 | €895 7 0.643 | 0552 || 0.278 | 0.298 | 0.278 | 0.082 |
17 T Pr.karyoric proteases 70962 | 0525 [0.030 10060 [T 0N=G | 0602 ¢ 630 | 0€00
1% | Eukaryotic prcieasce 0.846 | 0.007 [ 5,060 | 0063 I 5.006 [ 6.090 | 0000 T 7670 ]
15| Retroviral protease 0500 ' 0.195 TOT&3 | C187 [ 0.238 [ 0108  0.0.2 | 0.683 ]
20 | Retinol binding 0.827 | 0.843 [ 0.930 [ 0.121 [ 0.475 | 0.293 1 0.165 | 0.05:
21 | alpha-Amylases. N-termn 0.935 | 0.953 | 0.737 | 0.037 | 0.630 | 0.851 | 0.007 | 0.000
22 | beta-glycanases 0.974 | 0.939 | 0.370 [ 0.079 || 0.517 | 0.338 | 0.009 | 0.008
23 | tyvpe II chitinase 0.724 | 0.905 | 0.945 | 0.263 || 0.350 | 0.426 | 0.110 | 0.031
24 | Alcohol/glucose dehydro 0.610 [ 0.203 | 0.050 [ 0.025 || 0.041 | 0.004 | 0.019 | 0.008
25 | Rossmann-fold C-term 0.713 | 0.883 | 0.593 | 0.107 || 0.121 | 0.299 | 0.015 | 0.005
26 | Glyceraldehyde-3-phosphate [ 0.791 | 0.537 | 0.062 | 0.004 || 0.315 | 0.102 | 0.009 | 0.002
27 | Formate/glycerate 0.702 | 0.295 | 0.302 | 0.074 || 0.022 | 0.049 | 0.001 | 0.002
28 | Lactate&malate dehydro 0.947 | 0.851 | 0.132 | 0.297 |} 0.530 | 0.330 | 0.024 | 0.002
29 | G proteins 0.867 | 0.568 | 0.428 | 0.051 || 0.378 | 0.330 | 0.007 | 0.000
30 | Thioltransferase 0.205 | 0.072 | 0.986 | 0.029 [ 0.000 [ 0.000 | 0.000 | 0.000
31 | Glutathione S-transfer 0.566 | 0.597 | 0.825 | 0.590 || 0.311 | 0.201 | 0.273 | 0.238
32 | Fungal lipases 0.957 | 0.591 | 0.089 | 0.007 [} 0.044 [ 0.053 | 0.000 | 0.000
33 | Transferrin 0.940 | 0.859 | 0.035 | 0.072 || 0.875 | 0.433 | 0.007 | 0.026

Table 2: Rate of false positives for all 33 families. BLT = BLAST:SCOP-only, BLH = BLAST:SCOP+SAMT-98-
homologs, ST98 = SAMT-98, and SVM = SVM-Fisher method.
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Diekhans, & Haussler 1998b). The datasets for all the
experiments arc available from our web site (Jaakkola,
Dickhans, & Haussler 1998a).

Discussion

We have developed a new approach to the recognition
of remote protein homologies that uses a discriminative
method built on top of a generative model such as an
HMNM. Our experiments show that this method, which
we call the SVAM-Fisher method, significantly improves
on previous methods for the classification of protein
domains based on remote homologies.

All the methods considered in this paper combine
multiple scores for cach query sequence. The mmlti-
ple scores arise either from several models that ave
available for a particular superfamily (IIMM and SV -
Fisher) or because each known sequence can be scored
against the query sequence with BLAST (Grundy
1998). The simple combination rules employed in this
paper for cach method are not necessarily optimal and
further work needs to be done in this regard. It should
be noted that while our methods for combining BLAST
and HMDM scores are essentially the same as those ex-
plored in (Grundy 1998). the relative performance of
the simple generative HMM wethod versus the fan-
ily pairwise search hainology methods using BLAST
is 1overeod i oar orpesiments: here the SLIN pee-
fornes bettor. This s not surprising, since ¢ir (o8 s
consisted of dnding very remote nomologles to- the
most. part, whereas the tests in (Grundy 1998) were for
finding sequences that were mostly in the same family
as the training sequences. Furthermore, the families
in (Grundy 1998) were not defined by structure using
SCOP, but rather by sequence similarity itself. There
were also differences in the construction of the HMA s,
Our experimental results show, however, that it may be
wise to build more powerful. discriminatively trained
protein classification methods on top of HNIM meth-
ods, rather than replace HMDM methods with combina-
tions of BLAST scores.

The discriminative SVM-Fisher method relies on the
presence of multiple training examples from the super-
family of interest. and works best when these train-
ing sequences are not the same as those used to es-
timate the parameters of the underlying HNMM. This
presents us with an allocation problem, i.e., which se-
quences should be used for estimating the parameters
of the HNMM and which ones left for the discriminative

"Our tests used the SAM-T98 method for constructing
HMAIs, whereas the tests in (Grundy 1998) used an carlier
version of the HMMER system (Eddy ; 1997), with the de-
fanlt parameters, which does not perform as well (Karchin
& Hughey 1998); more recent and carefully tuned versions
of HMMER would likely have performed better.
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method. This issue becomes especially important in
cases where there are relatively few known sequences
and homologs in the superfamily of interest. A pos-
sible solution to this problem and one that we have
already successfully experimented with, concerns the
use of generic protein models rather than those tuned
to the particular family of interest. By generic models
we mean HMMs constructed on the basis of statistical
propertics of short amino acid sequences that map on
to structurally conserved regions in proteins (Bystroff
& Baker 1997). Since the role of the HMM in our dis-
criminative formalism is to provide features relevant
for identifying structural relationships. the use of such
generic models seems quite natural.

A generic model could also be trained as a single
multi-way protein domain classifier, replacing the set
of two-way classifiers we built for the experiments re-
ported in this paper. It remains to he scen if this will
be an effective way to construct a multi-way protein
domain classifier, as compared to using some combi-
nation of the existing two-way classificrs. The lower
rates of false positives achieved by our current two-way
classifiers make us hopeful that an effective multi-way
classifier can be built using some version of the SVM-
Fisher method.

In the future, it will alse Lo important i exiend
Qe ncthod o identing mdticle dowmains witain g
protein sequences. $inee our experiments wich acifi-.
“ially padded sequences were »i10cossinl, we are confi-
dent that these methods can be adapted to the iden-
tification of multiple domains. However this work re-
mains to be done. Finally, while this discriminative
framework is specifically developed for identifving pro-
tein homologies. it naturally extends to other problems
in biosequence analysis, such as the identification and
classification of promoters, splice sites, and other fea-
tures in genomic DNAL
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