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Abstract

A new method, called the Fisher kernel method, for
detecting remote protein homologies is introduced and
shown to perform well in classifying protein domains
by SCOP superfamily. The method is a variant of
support vector ma(:hines using a new kernel function.
The kernel function is derived from a hidden Markov
model. Tile general approach of combining generative
models like HMMs with discriminative methods such
as support vector machines may have applications in
other areas of biosequence analysis as well.

Introduction

Man.: statistica], seque,~c~:-t.ased tool’: ha~e beer..teve.!.-.
oped for detecting protein homolo,,.;ies. These include
BLAST (Altshul et al. 1990; Altschul et al. 1997),
Fasta (Pearson & Lipman 1988), PROBE (Neuwald
et al. 1997), templates (Taylor 1986), profiles (Grib-
skov, McLachlan, & Eisenberg 1987), position-specific
weight matrices (Henikoff & Henikoff 1994), and Hid-
den Markov Models (HMMs) (Krogh et al. 1994). Re-
cent experiments (Brenner 1996: Park et al. 1998)
have used the SCOP classification of protein structures
(Hubbard et al. 1997) to test many of these methods
to see how well they detect remote protein homolo-
gies that exist between protein domains that are in
the same structural superfamily, but not necessarily in
the same family. This work has shown that methods
such as PSI-BLAST and HMMs, which build a sta-
tistical model from multiple sequences, perform bet-
ter than simple pairwise comparison methods, but all
sequence-based methods nliss many important remote
holnologies.

We present and evaluate a new methc)dc)logy for de-
tecting remote protein homologies. In this approach
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we use generative statistical models built from nml-
tiple sequences, in this case HMMs, as a way of ex-
tracting features from protein sequences. This maps
all protein sequences to points in a Euclidean feature
space of fixed dimension. (See (Liniai et al. 1997)
for a different method of mapping protein sequences
into Euclidean space). We then use a general dis-
criminative statistical method to classify the points
representing protein sequences by domain superfam-
ily. This is quite distinct from methods that train
the parmneters of the HMM itself to give a more dis-
crlrninative model (Eddy, Mitchison, & Durbin 1995;
:~._’amiteuka 199£). Other disc.rimina’ive~ .,nethois,. ils.-
ing :)eural nets, are de,,cP,t)ed in (l)ubchak al. 1995;.
D,lbc.hak, _Muchnik & KJm 1997). U~ing our me.:hod,
we obtain a subst,’mtial improvement in identit}’ing
remote homologies over what is achieved by HMMs
alone, as they are currently employed. This new
method also compares favorably to what haw~, been
called family pairwise search homology methods: in
which the scores from all pairwise comparisons between
a query protein and the members of a known protein
family are combined to improve performance (Grundy
19981).

Methods

The statistical modeling approach to protein sequence
analysis involves constructing a generative probability
model, such as an HMM, for a protein family or su-
perfamily (Durbin et al. 1998). Sequences known to
be members of the protein family are used as (posi-
tive) training examples. The parameters of a statis-
tical model representing the family are estimated us-
ing these training examples, in conjunction with gen-
eral a priori information about properties of proteins.
The model assigns a probability to any given protein
sequence. If it is a good model for the family it is
trained on, then sequences from that family, includ-
ing sequences that were not used as training exam-
ples, yield a higher probability score than those out-
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side the family. Tile probability score can thus be in-
terpreted as a measure of the extent to which a new
protein sequence is homologous to the protein faintly
of interest. Considerable recent work has been done
in refining HMMs for the purpose of identiL;ing weak
protein homologies in this way (Krogh et aL 1994;
Baldi et al. 199,1; Eddy 1995; Hughey & Krogh 1996;
Karplus st al. 1997).

Let X = [xt .... ,.r,~] denote a protein sequence,
where each xi is an amino acid residue. Suppose that
we are interested in a particular protein family such as
ilnmunoglobulins and have estinlated an HMY, I H1 for
this family (for details of the estimatkm process see.
e.g., (Durbin et al. 1998)). We use P(XIH1) to denote
the probability of X under the HMM, and P(X{H,) to
denote the probability of X under the null model. The
score used in database search is the likelihood ratio

P(XIH,)P(H1)~:(.\-) = (1)
P(X[H,,)P(Ho)
P(XIHI) P(Ht)

= log p(XlHa ) + log P(Hcd

A positive wdue of the likelihood ratio f_.(X) is taken
as art indication that the new sequence _\" is in-
deed a member of the fanfily. The constant factor
logP(Ht)/P(tlo), the log prior odds, providc’s an a
priori means for biasing the decision and does not af-
fect the ranking of sequences being scored.

Discriminative approaches

The parameters of a generative model are estimated
in such a way ,as to make the positive training exam-
pies, proteins in the fanfily being modeled, very likely
under the probability model. In contrast.: the parame-
ters of a discriminative model are estimated using both
positive training examples and negative training exam-
ples, which are i)roteins that are not members of the
family being modeled. The goal in est.imating the pa-
rameters of a discriminative model is to find pa.rame-
ters such that the score derived from the model can be
used to discrinfinate members of the family from non-
members, e.g. such that members of the family receive
a high score and non-mernbers receive a low score.

Although the likelihood ratio above is optimal wh(,n
the HMM and the mill model are perfectly ac(:urate
models of the data. it can perform poorly when these
models are not accurate. This can easily happen
with limited training sets (Barrett, Iiugtmy, & Karplus
1997; Park et al. 1998). Discrinfinativ(’ methods can
be used to directly optimize the decision rule using
both negative and positive examples, and often per-
form better.
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Kernel methods

Suppc)se we have a training set of examt)les (protein
sequences) {Xi}.i = 1 ..... o fc)r which we know the
correct hypothesis (:lass, HI or H0. In other words, we
have a set of t)rotein sequences that are known to h(,
either homologous to the fantily of interest or not. We
model the discriminant flnlction £(X) directly via the
following expansion in terlns of the training examples:

= log P(H, IX) - log P(H,,IX) (2)

= ,\,I;(x, av)- 
i:X,C IIl i:X,¢..tIo

Tit(’ sign of tit(’ dis(’riminant flnlction d(’termines 
assignment of tim sequences into hyt)otl,esis (’lasses.
The contribution, either positive or negative, of each
trainiug exantple (sequence) to the (lecisi~m rule con-
sists of two parts: 1) the overall importance (.,f the
example Xi as summarized with the non-negative co-
ettMent Ai and 2) a nleasure ()f l)airwise "’similarity"
between the training (,xample .\’j and the new (’x;mq)[e
X, expressed in terlns of a ke~’nel function K(Xi. X).
The |lser supplies the kernel function al)l)ropriate for
the application area. This is the most (’riti(’al (’t)lllpo-
n(nt. Tit(’ fre(, parameters in the :d)ove decistere rule
are the c,)effM,nts .)~i: these car be e.~timat(’d bv it.-
er ~t.ively t;mx imizir, g a quadratic ob.v’c :ix’( fnncti(,n 
d,scrlbed in (Jaakkola, Dickhan.% );: Haussler 1.9981¢).

The Fisher kernel

Finding an appropriate kernel fllnct ion for a particular
application area can be difficult and remains largely an
unresolved issue. We have, however, developed a gen-
eral [ornmlism for deriving kernel functions from gener-
ative probability models (3aakkola & Haussh’r 1998).
This formalism carries several advantages, including
the ability to handle complex objects such as variable
length protein sequences within the kernel function.
gurthernlore, the formalism facilitates the encoding of
prior knowledge about protein sequen(’es, via. the l)tt)l)-

ability’ too(Ms, into the kernel function.
Our al)proach here is to derive the kernel function

from IIMMs corresponding to the protein family of
int(’rest. We are thus able to build on the work of
others towards a(lapting HM.Ms for protein h()ntology
deteetion(Krogh et al. 1994; Hughey & Krogh 1!)!)6;
Karplus et al. 1997). Our use of pr()tc.in models 
the kernel function, however, deviates front tim stan-
(lard use of such models in biosequence analysis it, that
the kernel time(ion spe.cifies at sinfilarity score for any
pair of sequences, whereas the likelihood s(’ore front an
HMM only metusures the closeness of the sequence to
the model itself.



We extract and entertain a richer representation for
each sequence in the form of what arc known as suffi-
cient statistics. In the context of HMMs these statistics
are computed with each application of the standard
forward-backward algorithm (Rabiner & Juang 1986).
The fixed length vector of sufficient statistics contains a
value for each parameter in the HMM and these values
are the posterior frequencies of having taken a partic-
ular transition or having generated one of the residues
of the query sequence X from a particular state. The
vector of sufficient statistics thus reflects the process of
generating the query sequence from the HMM. More
generally, they provide a complete summary of the se-
quence in the parameter space of the model.

The idea of using sufficient statistics as an intermedi-
ate representation of the query sequence can he gener-
alized considerably(Jaakkola & Haussler 1998). Ill the
nmre general treatment: one works not with the vector
of sufficient statistics directly but with an analogous
quantity known as the Fisher score.

Ux = V0 log P(XIH,, O) (3)

Each component of Ux is a derivative of the log-
likelihood score for the query sequence X with re-
sp’cct to a pazticular parameter. The magnitude, of
c,l~e components specify tim extem: ;o which each pa-
rt:x:eter contributes tc generating the (!uery sequence.
Tim computation of these gradients in the context of
H.MMs along with their relation to sufficient statistics
is described in more detail in (Jaakkola, Diekhans, 
Haussler 1998b).

Finding an appropriate kernel function in this new
gradient representation is easier than in the original
space of variable length protein sequences.V~Te only
need to quantify the similarity between t.wo fixed
length gradient vectors Ux and Ux, corresponding to
two sequences X and X’, respectively. Tile kernel flmc-
tion used in our experinlents is given by

as derived in (Jaakkola, Diekhans, & Haussler 1998b).
The scaling parameter cr appearing in this kernel was
set equal to the median Euclidean distance bet.ween
the gradient vectors corresponding t.o tile training se-
quences in the protein family of interest and tile clos-
est gradient vector from a protein behmging to another
protein fold.

To summarize, we begin with an HMM trained from
positive examples to model a given protein fanfily. We
use this HMM to map each new protein sequen(’e X we
want to classify int,() a fixed hmgth vector, its Fisher
score, and compute the kernel flmction on the basis

of the Euclidean distance between the score vector for
X and the score vectors for known positive and nega-
tive examples Xi of the protein family. The resulting
discriminant function is given by

i:XiEH1 i:XIEHo

(5)
where K is the kernel function defined above and tile
Ai are estimated from the positive and negative train-
ing examples Xi. We refer to this as the SVM-Fisher
method.

Combination of scores
In many cases we can construct more titan one HMM
nmdel for the family or superfamily of interest. It is
advantageous in such cases to combine the scores from
the multiple models rather than selecting just one. Let.
gi(X) denote the score for the query sequence X based
on the i th model. This might be the score derived
from the SVM-Fisher method. Equation (5), or the
log likelihood ratio for the generative HMM model.

_p(~log P(XlH0)’ or even a negative log E-value derived
fronl a BLAST comparison, as described in he meth-
ods section. We would like to combine the SVM-Fisher
scores for X from all the models of the giv(,n .%rally,
and siv’ilarly with H313...I :rod BLAST scores Sii,ce
t, here is no clearly optimal way to :emoine these scores
in practice, we explore t..ere oily two simple he.uristic
means. These are average ,score.

1
£,..~ (X) = ~ Z/2,(X) (:6:)

i

and maximum ,score

£ .... (X) = max £i(X), (7)
i

where in each case the index i ranges over all models for
a single fanfily of interest. These comhinat, ion methods
have also been explored in other protein homology ex-
periments (Grundy 1998). The average score method
works best if the scores for the individual models are
fairly (:onsistent, and the maximum s(’or(’ method 
more appropriate when we expect larger values of some
in(lividual model scores to be more reliable indicators.
We have found that the mmxinmm score method works
better in our experiments with generative tIMM mod-
els and BLAST scores, so this approach is used there.
However. the average score lnethod works bett(,r for
combining scores from our discrinfinative models, so it
is used in these experiments.

Experimental Methods
We designed a set of experiments to determine tim
ability of SVM-Fisher kernel discriminative models to
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recognize renlote protein homologs. The SVM-Fisher
kernel methods were compared to BLAST (Altshul
et al. 1990; Gish & States 1993) and the genera-
tive HMMs built usil,g the SA,iI-T98 methodology
(Park et al. 1998: Karphls, Barrett, & Hughey 1998;
Hughey & Krogh 1995; 1996). The exlmriments mea-
sured the recognition rate for melnbers of superfamilies
of the SCOP protein structure cla.ssifieation (Hubbard
et al. 1997). We simulate the remote homology detec-
tion prol)lem by withholding all members of a SCOP
family from the training set and training with tile re-
maining members of the SCOP superfamily. We then
test sequences fi’om tht, withheld faintly to see if they
are recogIfized by the model built from the training
sequences. Since the withheld sequences are known
renlote homohtgs, we are abh’ to demonstrate tile rel-
atiw, effectiw,ness of the techniques in classifying new
sequences as remote melnbers of a superfalnily. In a
sense, we are asking, "Could the method discover a
new faintly of a known superfamily’?"

Overview of experiments

The SCOP v(’rsion 1.37 PDB90 domain database, con-
sisting of protein domains, no two of which have 90%

or more residue identiD’, w;t~ used as the, sere’c(" ()f both
training and (,,st. se(luCnc,.~; PDP,90 eliminates a large
i~umber of ess,,ntially red::,Ma:lt se(tu,ul:’(’s fi’Ottt the
SCOP database. [’ho u:~e of the domain databa.m ai-
lows for a(’(’ura.te ([et(’rmination ()f a sequence’s 
(qiminating the ambiguity ass()(’iated with searching
whole-chain protein databases.

Th(, ,generative models were ol)l.ained froln a.n oxisl-
ing library of SAM-T98 HMMs. The SAM-T98 al-
gorithm, (lescribed more flflly in (Karphts, Barrett,
& Hughey 1998), buihls an HMM for a SCOP clo-
m;dn sequence by searching tit(, non-redundant protein
database NR P for a set of potential homoh)gs of the se-
qu(,n(’e and then it.eratively seh,eting positive training
sequ(,nces front among th(,se pote, i~tial homoh)gs 
refining a model. The resultiz,g ,uodel is st.or(,d as an
alignm(,nt of the domain se(tu(’m’(’ and final (,f ho-
mohtgs.

All SC()P families l.ha.t contain at least 5 PDB9(} se-
(lUences and have at least. 10 PDB90 sequences in the
other famili(,s in their superfamily were seh’(:ted for our
test, resulting in aa test families fl’om 16 superfumilies
(.Iaakk,)la, Di,,khans, & Hmlss](,r 1998})). When 
ing the recognition of one those families: the training
and lest sets were (’onstru(’t(,d as folhtws. The t)osi-
tire training exanlples were selected front the remain-
ing families in the superfamily contaii,ing the family in
question and the negative training examt)les fl’om out-
side of the fold that tim family belongs to. The positive

152 JAAKKOLA

test examples consisted of all the PDB90 sequen(’es in
the family. The negative test examples were chosen
from outside of the foht containing (.he family and in
such a way that the negative examples in the training
set and those in the test set never came fi’om tile same
tiM. Figure 1 shows an example of the division.

For each of the 33 test families, all the test exam-
pies. both positive and negative, were score.d, hase.d on
a discriminant function obtained from the training ex-
amples for that family. We used various nlethods, de-
scribed in the following section, to measure how well
the discriminant fimction performed by assessing to
what extent it gave hetter scores to the positive test
examl)h’s than it gave to the negative, test examples.
Using this setup, the perforlnance of the SVM-kernel
method was compared to the performance of the gen-
erative HMM alone, and to BLAST scoring methods.

Multiple models used
After selecting a test family, we must construct a. ale(tel
for its superfalnily using available sequences flom the
other families in that superfanfily. The SAM-T98
me(lied starts with a. single s(Nuen(:e (the guide 
(tuence for the domain) and builds a model, ht general,
there are too many sequ(mces in the other fanlilies of
the superfamily to consider building a mod,..i ,wouud
(,a,’n one ,)f thenl. So w~ used a subset of PDBg0 ,, (per-.
family s(.(lUet..,::es pres,’,m, in a dive( se library of cx,st}ng
HMM:,. "lt).= SVBl-gisi:cr method wa.q subsequently
trained using each of these models in turn. The scores
for the test sequences, given each HMM mo(h,l, were
comput(,d fi’om Equation (5), and the scores ot)tain(,d
based on multiph’ models were combined according to
Equation (6).

Details on the training and test sets
In each ext)eriment, all PDB90 sequences outside the
fold of the test family were use(t as either negative
training or negative test exantpies. All experiments
were r(,ltea.ted with the test/training allo(’atiou of nega-
tive exanttth~s reversed. This resulted in approximately
2-1(10 negative test sequ(ulces for most test families.
The split of negative examples into test and training
was done on a foht-by-fold t)a_~is, in su(’h a way. that
folds wme n,,ver split between test and train. This
insured that a negativ(, training example was never
sinli]ar tt) a negatiw~ test example, which might give
a significant advantage to dis(u’iminative methods. In
actual apl)lications, this requirement could b(, relaxed,
aim fm’ther improvements might be realized by using
discriminative methods.

For positiw’ training examples, in a(hlilion t() 
PDB90 sequences in the superfamily of the test family
(lint not in the test fantily itself), we used all of the



homologs found by each individual SAM-T98 model
built for the training PDB90 sequences.

BLAST methods
Two BLAST methodologies were used for comparison,
each using WU-BLAST version 2.0a16 (WU-BLAST 
Althschul K." Gish 1996). These are family pairwise
search homology methods, as explored in (Grundy
1998). In both methods, the PDB90 database was
queried with each positive training sequence, and E-
values were recorded. One method, referred to as
BLAST:SCOP-only in the results section, used positive
training examples as defined by (1) above. Tile other,
which we call BLAST.’SCOP+SAM-TP8-homoloys, in-
chuted tile SAM-T98 domain homologs as posMve ex-
amples, as in (2) above. In t)oth cases, the scores were
combined by the nmximum method, so the final score
of a test. sequence in the PDB90 database was taken to
be the maximum - log E-value for any of the positive
training example query sequences. This score measures
the BLAST-detectable similarity of the test sequence
to the closest sequence in the set of positive training
sequences. In (Grundy 1998), a related combination
rule, which instead used the average of the BLAST
bit scores: was suggested. \Ve tried a similar aver-
age method, taking the average of the - log E-values,
which should in theory be nlo,"e accurate th;m aver-
aging the bit ,~ccces. Ho~ev..?r, the maximum method
performed bes:, so we zeport results for that combina-
tion method only.

Generative HMM scores
Finally, we also report results using the SAM-T98
method as a purely generative model. The null model
used here is the reverse sequence model from (Park st
el. 1998; Karplus, Barrett. &: Hughey 1998). We used
the same data and the same set of models as ill the
SVM-Fisher score experiments; we just replaced the
SVY.I-Fisher score with the SAM-T98 score. However.
the scores were combined with the maximmn method,
since that. performed slightly better in this ease.

In these experiments we also tried two different types
of positive training examples. In the first set of exper-
iments: we used only the domain homologs found by
the SAM-T98 method itself as a training set for each
HMM. Thus, we simply used the SAM-T98 models as
they were given in the existing library of models. In the
second experiment, we retrained each of these models
using all of the data in (2) above. That is, using all 
the SCOP sequences in the superfamily being modeled
(but not in the family itself), and all of the domain
homologs found by the given SAM-T98 model and by
the models built from other guide sequences from this
superfimfily (but not in tile family itself). Thus ill this

Fold

Super-
Family

Fami~

I"

: SCOP~

, !!
..... ,,~ ~.,~¯

" ’~’*" "~/ l \’~-) \ Negative Negative

x
Positive Positive
Training Test

Figure 1: Separation of the SCOP PDB90 database into
training and test sequences, shown for the G p~vteins
test family.

latter case, each HMM was trained on same set of pos-
itive training examples used by the SVM-Fisher and
BLAST:SCOP+SAMT98-homologs methods. Perfor-
mance was somewhat better in the latter case at higher
rates of false positives (RFP, see below), but was worse
at, lower RFP, m,~king the method of less pract.ical
value. Tber~ffore, ~’e r(port the rcsult~ of tea. first ex-
pcrim,mt here.

Results
Here we provide a comparison of the results of the best
performing approaches for each of the methods. Since
the numeric scores produced by each method are not
directly comparable, we use the rate of false positives
(RIP) achieved h)r ea(’h positiw’, test sequence as met-
ric for comparing methods (Park et el. 1998). The
RFP for a positive test sequence is defined as the frac-
tion of negative test se(tuences that score as good or
better than the positive sequence.

G-proteins

ttere, as all example, we look at the results for the G
proteins family of the nucleotide tviphosphate hydro-
lases SCOP superfamily.

The IIMMs used in the recognition of members of the
G proteins family were taken from two other families
in the superfimlily: nucleotide a.nd nucleoside kinases,
and nitrogentzse iron protein-like. The positive train-
ing examples were the SCOP PDB90 sequences fl’om
the other families in the superfamily, along with the
HMM domain homologs for the models for the guide
sequences.

This experiment tested the ability of tile methods
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Sequence BLAST B-Horn I S-T98 I SVM-F
5p21 0.043 0.010 0.001 0.000
lguaA 0.179 0.031 0.000 0.000
let, u 0.307 0.404 0.428 0.038
lhurA 0.378 0.007 0.007 0.000
left(3) 0.431 0.568 0.041 0.051
ldar(2) 0.565 0.391 0.289 0.019

ltadA(2) 0.797 0.330 0.004 0. O0O
lgia(2) 0.867 0.421 0.017 0.000

Table 1: Rate of false positives for G proteins
family. BLAST = BLAST:SCOP-only, B-Horn =
BLAST:SCOP+SAMT-98-homologs. S-T98 = SAMT-
98, and SVM-F = SVM-Fisher method.

to distinguish the 8 PDB90 G proteins from 2439 se-
quences in other SCOP fokls. The results are given in
ta.ble 1. It is seen that the SVM-Fish.er m(:thod scores
5 of the 8 G proteins better than all 2439 negative test
sequences, and gets a lower rate of false positives than
the other inethods on the other 3 sequences, with the
exceptkm of left-3.

We suminarize the perfornlance of the four methods
in recognizing this family by looking at two overall fig-
Ul’OS .If me:it. "I’ll(, .firs.. is the III$U:ilIIllI.’.I RFP fin aliy

sequence ii the /amily. l.;iJ-[ei t.h.;s n..easure .Jr perfor-
nl:,.nce, we get 0.367 re,." BLAST:SCOP-offy, 11.568 for
BLAST:SC, OP+SAMT98-homologs, 0.i28 fl)r SAM-
T98, aim I).051 for SVM-Fisher for the G-proteins fain-
ily.

Since the maxinmm RFP can be dominated by a
few outliers, which for some reason may be partic-
ularly hard for a method to recogifize, we also con-
sider the median RFP for the sequences in the fa.m-
ily. To cMculate the median R.FP, we require only

that at least half of t.he sequences in the family
be recognized, and calculate the maximmn tlFP for
these sequences only. Of course, for each method,
different sequences may he inchlded in this "easiest.
half’ of the family. Under this measure of perfor-
mance: we get 0.378 for BLAST:SCOP-only, (I.331) for
BLAST:SCOP+SAMT98-homologs, 0.007 for SAM-
T98, and 0.0 for SVM-Fisher for the G-proteins family.

Overall results

In Table 2 we give the performance of all four moth-
ods on each of the 33 protein families we tested, as
measured by the maximuin and median RFP. We also
computed these statistics for the first, amt third quar-
tile. and the relative performance of the four methods
was similar (data not shown).

A graphical comparison of the overall results for the
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I:igure 2: tlere we compare the ov(’rall perforimmce
for the fern" methods on the 33 test fimdlies. For each
family we computed the median RFP for that t’alnil.v,
as shown in Ta.Mo 2. Values for the mrdian RFP are
showll t)ll the X-axis. Ol| |he Y-~u, ds we plot the IlUllIblW

of SCOP families, out of the 33 families [}lilt wo tosto(1.
for which the given method achieves t.h~lt median RFP
prrformance or better.

33 lest. ti-,.t,’..;ie:; i].x:u"in L (;:1 Low mt.dl.|n !If.:; ) i:. %ia on
;n figu..., ’2

Further experiments

\¥e did further ext)eriments I.o verify that the SVM-
Fish.er method was not relying too heavily on length
and (’ompositional hi,ks in discriminating one protein
(tomain family frolIl another, as suggested by a. ref(u’ee
of this l)apor. Stlch information would not b(’ (h,rivable
from the test sequence in the case that the domain to
be classified is contained in a larger test proteii~ 5(,-
quen(’e. To simulat.v this situation, we aplwxMed ran-
d(,mly generated amino acids onto the {’m.ls (,f all the
sequei,ces in PDB90, creating a set of padd(,d PDB9()
sequences that all hail length 1200 (the 1 n’g~st domain
in PDB90 has length 905). The distribution of these
randonl amino acids was deternlined from tim ovrral|
alI|[n() acid frequencies in PDB90. The fla(’tion uf 
padding that occnred at the begimling of t.he s~,qm,nve
versllS/it the end of th0 s(,que~lce WHS determilwd uni-

formly at random as well.
We reran the experinients reI)()rt(,d .above uit}, 

padded PDB90 data set. In cases where homoh~gs were
us(,d, thes(’ were raiMomly t)a.(hhxl a.~ w(Jl. Apart fl’OItt

a slight reduction iu the atllottnt of inq)rovelnent over
t.he other methods shown by SVM-Fisher, tim results
were on average qualitiatively siinilatr to those obl.aill.ed
without padding. Details can 1)o found in (Jaakkola,



# I Family

0.450 0.364
0.446 0.035
0.109 0.002
0.289 0.004
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.000 0.000
0.178 0.073
0.039 0.013
0.003 0.002
0.088 0.133
0.20.1 0.066
0.278 0.083
(~, I,(10 0 t;00

0.(’.i 2 t̄,,0.0,,3
0.165 0.05:
0.007 0.000
0.009 0.008
0.110 0.031
0.019 0.008
0.015 0.005
0.009 0.002
0.001 0.002
0.024 0.002
0.007 0.000
0.000 0.000
0.273 0.238

0.053

Maximum RFP Median RFP
BLT I BLH I ST98 I SVM BLTI BLH I ST98 I SVM

1 Phycocyanins 0.882

0.000 0.00(}
0.433 0.007 0.026

0.743 0.950 0.619 0.391 0.342
2 Long-chain cytokines 0.847 0.526 0.994 0.123 0.721 0.397
3 Short-chain cytokines 0.686 0.658 0.513 0.023 0.407 0.114
4 Interferons/interleukin-10 0.613 0.799 0.765 0.119 0.324 0.440
5 Parvalbumin 0.098 0.000 0.000 0.000 0.000 0.000
6 Calmodulin-like 0.433 0.002 0.000 0.000 0.023 0.000
7 Inmmnoglobulin V dora 0.720 0.115 0.974 0.016 0.135 0.000
8 Immunoglobulin C1 dora 0.624 0.000 0.000 0.063 0.033 0.000
9 Immunoglobulin C2 dora 0.263 0.124 0.136 0.019 0.119 0.006

10 Immunoglobulin I dom 0.157 0.190 0.251 0.495 0.007 0.004
11 Immunoglobulin E dom 0.792 0.797 0.899 0.683 0.168 0.329
12 Plastocyanin/azurin-like 0.869 0.895 0.730 0.772 0.016 0.049
13 Multidomain cupredoxins 0.775 0.853 0.233 0.360 0.342 0.116
14 Plant virus proteins 0.975 0.940 0.782 0.410 0.641 0.391
15 Animal virus proteins L_0.962 0 997 0.941 .513 0.750 0.630
16 Legume lectins 0.895 0.643 .55.2__0.278 0.298

ii -gNT ~
t.

i7’ Pr,;karyo~.ic plote-~¢ s 0 ~;’? 5. 0.(’30 .0C0 0 ).)80 9.6 )2
.., -~ , Evkaryot ic pr(.tea,c,-’ -ggv4U0.009 q.0,m _o 0A,C,’).000 0.030 ~7oi,:67 ’:.69o

R etr’wiral p:-otea.,e --0.5-0~ 0.195 - 0 lb3 C. 18i’ o.2~8 0.108
Retinol binding 0.827 0.843, 0.940 ~i.~Z!- 0.475 0.293

21 alpha-Amylases, N-term 0.935 0.953 0.737 0.037 0.630 0.851
22 beta-glycanases 0.974 0.939 0.370 0.079 0.517 0.338
23 type II chitinase 0.724 0.905 0.945 0.263 0.350 0.426
24 Alcohol/glucose dehydro 0.610 0.203 0.050 0.025 0.041 0.004
25 Rossmann-fold C-term 0.713 0.883 0.593 0.107 0.121 0.299
26 Glyceraldehyde-3-phosphat e 0.791 0.537 0.062 0.004 0.315 0.102
27 Formate/glycerate 0.702 0.295 0.302 0.074 0.022 0.049
28 Lactate&malat.e dehydro 0.947 0.851 0.132 0.297 0.530 0.330
29 G proteins 0.867 0.568 0.428 0.051 0.378 0.330
3O Thioltransferase 0.205 0.072 0.986 0.029 0.000 0.000
31 Glutathione S-transfer 0.566 0.597 0.825 0.590 0.311 0.201
32 Fungal lipases 0.957 0.591 0.089 0.007 0.044
33 Transferrin 0.940 0.859 0.035 0.072 0.875

Table 2: Rate of false positives h)r all 33 families. BLT BLAST:SCOP-only, BLH = BLAST:~COP+SAMT-98-
holnologs, ST98 = SAMT-98: and SVM = SVM-Fisher method.
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Diekhans, &: Haussler 1998b). The datasets for all the
experinmnts are available from our web site (Jaakkola,

Diekhans, & Haussler 1998a).

Discussion
We have developed a new approach to the recognition
of remote protein homologies that uses a discriminative
method built on top of a generative model such as an
HMM. Our experiments show that this method: which

we call the SVM-Fisher method, sigrtificantly improves
on previous nletho(ts for th(, classificatiou of protein
domains based on remote homologies.

All the methods considered in this paper combine
nmltiple scores for each (tuery seqIlell(:(’. The multi-
pie scores arise ritht,r fl’om several models that are
available for a particular superfamily (IIMM and SVM-
Fisher) or because each known sequence can t-m scored
against the query soqll(!ilCt, with BLAST (Grundy
1998). The simph, (:olnbination rules emph.?yed in this
paper for each method are not necessarily optimal and
further w,~rk needs to be done in this :’egard. it. should
be noted that while OUl’ methods for cornbining BLAST
and [I.M.M scores are rssentially the same as those ex-
pit)red iu {Grundy 1998). the :’olative performance 
the simple general iv(, It.MM qmt}lod ve!su~’ the faln-
ily !m.irwigo sea~(’h htnm~!ogy metl~ods u.’si:ig BLAST
¯ I l.l’. x:S t,wO:’~,.,(l̄  Jr. our ,,2"|)(,.’ilrle~.~.s: t:el’O t.hr, ~.,.1_,I ,),.:.-
ft;l’ll.S [wtt.u’. This is :,,,t..~lll[)liSJllg, sirwc t.::r L-.s 
consisted. <;f finding vrry r,.,IiK)t.:. ~ homologies. (o" tile
iilost part, whereas the tests in (Grundy 1998) were for
finding sequelWOS that were mostly in tim same family
as the training sequences. Furtherntore, the families
in (Grmldy 1998} werr llOt defined by structure using
S(’OP, but I’ather by se(lllell(:(! similarity itself. There
we,’e also diffc:ences in the construction of the HMMs~.
Our 0xperimental :esults show, however, that it may be
wise t.() build more powerfl:l, discriminativcly trained
protei:I classification methods on top of HMM meth-
ods, rather than replace HMM nlethods with combina-
tions of BLAST seo:’es.

The discriminative SV.M-Fish(,r method relies on the
I.n’esenc~’ of multit)h’ training examples fl’om the super-
family of interest., and works best when these train-

illg seqtlent’es are not th(’ satlle as those used to (,s-
t.imate the tmrameters ()f the mld(,rlying HMM. This

t)resvnts us with an allocation tnobh,m, i.e., which se-
(luencrs should be used fl..,r (,stinmting the parameters
of the H_M.M and which ones left for the discriminative

1 ()ur tests used the SA 3I- T98 met hod for constructing
HMMs, whereas tile tests in (Grundy 1998) used an earlier
version of the H.MMEI1 systen, (Eddy ; 1997), with tile de-
fault parameters, which does not perform ~m well (Karchin
& Hughey 1998); more recent and carefully tuned versions
of HMMEI1. would likely have performed better.
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method. This issue becomes especially important in
cases where there are relatively few kuown sequences
and homologs in the superfamily of interest. A pos-
sible solution to this problem and one that we have
already suceessflflly experimented with, concerns the
use of generic protein models rather than those tuned

to the particular family of interest. By generic models
we mean HMMs constructed ell the ba~sis of statistical
properties of short amino acid sequences that map on

to structm’ally conserved regions in proteins (Bystroff
& Baker 1997). Since the role of the HMM in ore’ dis-
criminative fi)rmalisln is 1;o provide featu,’es ,’elevant

for identifying structural ,elationships. the use of such
generic models seems quite natural.

A generic model could also be trained as a single
multi-way p,’otein domai,1 classifier, replacing the set
of two-way classifiers we built for the experinlents re-
ported in this paper. It re,nains to be seen if this will
be an effe(:t.ive way to construct a multi-way protein
domain classifier, as compared to using some combi-
nation of the existing two-way classifiers. The lower
,’ates of false positives achieved by our currem two-way
classifie,’s make us hopefltl that an effective muhi-way
classifier (’at: be 1)uilt using :~(m:e version of the SVM-

Fisher method.
hi the fl)ture, it. will also L,.. iraporta,,t i.,, ,’x~,,,’:d

, h(’ In~ }.t,od ,.o id( nl.lt~ r, mlti!:.lc d(,m,~,ins :,it !fin l’ug,.
prol.(qn s,.,qt’cn,"es. ~’~:._,!ce ,o~Jl" c’v[)elin:ollts \,,}d~ ac;ifi-.

, ially paddr..d .~,(luence:, ,.ve:e ~;l.’o,ss;.,tl. we. ,tr,. (’onli-.
dent tha.t these methods (’an t)(, adapted to l.h~ iden-
tifi(’ation of multiple de, mains. However this work re-
mains to be done. Finally, while this discrintinative
framework is specifically devel()ped for identifying pro-
tein homoh,gios, it naturally extends to other problems
in biosequence analysis, such as the identification and
classification of promoters, split(’ sites, and other fea-
tures in genomic DNA.
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