
Optimization and Simplification of Hierarchical Clusterings 

Doug Fisher 
Department of Computer Science 

Box 1679, Station B 
T,--J--L:ll TT-I-.---II-. v mlaerullr u nlverulby 
Nashville, TN 37235 

dfisher@vuse.vanderbilt.edu 

Abstract 
Clustering is often used to discover structure in 
data. Clustering systems differ in the objective 
function used to evaluate clustering quality and 
the control strategy used to search the space of 
clusterings. In general, a search strategy cannot 
both (1) consistently construct clusterings of high 
quality and (2) be computationally inexpensive. 
However, we can partition the search so that a 
system inexpensively constructs ‘tentative’ clus- 
terings for initial examination, followed by iter- 
ative optimization, which continues to search in 
background for improved clusterings. This pa- 
per evaluates hierarchical redistribution, which 
appears to be a novel optimization strategy in the 
clustering literature. A final component of search 
prunes tree-structured clusterings, thus simplify- 
ing them for analysis. In particular, resampling 
is used to significantly simplify hierarchical clus- 
terings. 

Introduction 
Clustering is often used to discover structure in data. 
Clustering systems differ in the objective functzon used 
to evaluate clustering quality and the control strategy 
used to search the space of clusterings. Ideally, the 
search strategy should consistently construct cluster- 
ings of high quality, but be computationally inexpen- 
sive as well. Given the combinatorial complexity of the 
general clustering problem, a search strategy cannot be 
both computationally inexpensive and give any guar- 
antee about the quality of discovered clusterings across 
a diverse set of domains. However, we can partition the 
search so that an initial clustering is inexpensively con- 
structed that suggests the rough form of structure in 
&@ f~l1owe.d hv itern.tive nnt.imiaa.t,inn t,hat cnnki~~es -J ------- - - r _ ------ - - - - -- 

to search for improved clusterings. 
This paper describes a strategy for iterative opti- 

mization that is inspired, in part, by macro-learning 
strategies (Iba, 1989) - collections of observations are 
reclassified en masse, which appears to mitigate prob- 
lems associated with local maxima. For evaluation pur- 
poses, we couple this strategy with a simple, inexpen- 
sive procedure used by systems like COBWEB (Fisher, 

118 Km-95 

1987) and a system by Anderson and Matessa (1991), 
which constructs an initial hierarchical clustering. 

Once a clustering has been constructed it is judged 
by analysts - often according to task-specific crite- 
ria. Several authors (Fisher, 1987; Cheeseman, et. 
al., 1988; Anderson & Matessa, 1991) have abstracted 
these criteria into a generic performance task akin to 
pattern completion, where the error rate over com- 
pleted patterns is used to ‘externally’ judge the util- 
ity of a clustering. In each of these systems, the 
objective function has been selected with this nerfor- 
mance task in mind. Given this performance task we 
adapt resampling-based pruning strategies used by su- 
pervised learning systems to the task of simplifying 
hierarchical clusterings, thus easying post-clustering 
analysis. Experiments confirm that hierarchical clus- 
terings can be greatly simplified with no increase in 
pattern-completion error rate. 

Generating Hierarchical Clusterings 
Clustering is a form of unsupervised learning that par- 
titions observations into classes or clusters (collectively, 
called a clustering). Each observation is a vector of 
values along distinct observable variables. An objec- 
tive function guides this search, ideally for a cluster- 
ing that is optimal as measured by the objective func- 
tion. A hierarchical clustering system creates a tree- 
structured clustering, where each set of sibling clusters 
partitions the observations covered by their common 
parent. This section briefly summarizes a very simple 
strategy, called hierarchical sorting, for creating hierar- 
chical clusterings, and an iterative optimization strat- 
egy that we then apply to initial clusterings. 

An Objective Function 
We assume that an observation is a vector of nominal 
values, V& along distinct variables, Ai. A measure of 
category uti1i-Q (Corter & Gluck, 1992), CV(Ck) = 

has been used extensively by a system known as COB- 
WEB (Fisher, 1987) and many related systems (e.g., 

From: KDD-95 Proceedings. Copyright © 1995, AAAI (www.aaai.org). All rights reserved. 



Size sma 0.50 med 0.25 lar 0.25 
Shape squ 0.50 sph 0.50 
Color blu 0.25 gre 0.25 red 0.50 

P(root)=l.O 

P(Cllroot)=0.50 
sma 1.00 
squ 1.00 
blu 0.50 gre 0.50 

P(CZlroot)=0.50 

med 0.50 lar 0.50 
sph 1.00 

red 1.00 

sma 1.00 
squ 1.00 
blu 1.00 

P(C3~C1)=0.50 

sma 1.00 med 1.00 
squ 1.00 sph 1.00 
gre 1.00 red 1.00 

P(C41C1)=0.50 P(C51C2)=0.50 

Figure 1: A probabilistic categorization tree. 

lar 1.00 
sph 1.00 
red 1.00 

P(C6lC2)=0.50 

Riawaa Wrsinhmrr & T.i 10&i\ Thje rr?egcr!: rewg& YA”,VWY, ,,V’A-w---b, .s, aa-, A”” A,. 

clusters, Ck, that increase the predictability of vari- 
able values within CI, relative to their predictability in 
the population as a whole. This measure is similar in 
form to the Gini Index, which has been used in super- 
vised systems that construct decision trees (Weiss & 
Kulikowski, 1991). The Gini Index typically measures 
how well the values of a variable, Ai, predict a priorz 
known class labels in a supervised context. The sum- 
mation over Gini Indices reflected in CU addresses the 
extent that a cluster predicts the values of all the vari- 
ables. CU rewards clusters, Ck, that most reduce the 
collective zmpwity over the variables. 

In Fisher’s (1987) COBWEB system, the quality of 
partition of 

:v((c,, a,. * 
data is measured by 

.CN}) = Ck cU(ck)/N or the aver- 
age category utility of clusters in the partition. 

The Structure of Clusters 
As in COBWEB, AUTOCLASS (Cheeseman, et. al., 
1988), and other systems (Anderson & Matessa, 1991), 
we will assume that clusters, ck, are described proba- 
bilistically: each variable value has an associated con- 
ditional probability, P(Ai = QICk), that reflects the 
proportion of observations in ck that exhibit the value, 
Ej, along variable Ai. In fact, each variable value is 
actually associated with the number of observations 
;, tha olrrotor hmr;nm th,t .ml..,. nvnhnh;l;t;m 9-0 PC.-- 111 “llcl CIUUUL.L “CY”“b UIIU” “UIUCI, ~‘““~U”XYLW U&U CVLII- 
puted ‘on demand’ for purposes of evaluation. In addi- 
tion, there is a single root cluster, identical in structure 
to other clusters, but covering all observations and con- 
taining frequency information necessary to compute 
P(Ai = Q)‘s as required by category utility. Fig- 
ure 1 gives an example of a probablistic categorization 
tree (i.e., hierarchical clustering) in which each node is 

R. rlnnter nf nhnervatinns qllmma.ri7w-l nrohahilinticallv. - -_I_ 1-- -_ ----_ .-1_-_- L L-----_----d-- =--- - ----- 1 --I-_ ~. 
Observations are at leaves, and are described by three 
variables: Size, Color, and Shape. 

Hierarchical Sorting 
Our strategy for initial clustering is sorting. Given an 
observation and a current partition, sorting evaluates 
the quality of new clusterings that result from placing 
the observation in each of the existing clusters, and 
the quality of the clustering that results from creating 
a new cluster that only covers the new observation; the 
option that yields the highest quality score (e.g., using 
PU) is selected. The clustering grows incrementally as 
new observations are added. 

This procedure is easily incorporated into a recur- 
sive loop that builds tree-structured clusterings: given 
an existing hierarchical clustering, an observation is 
sorted relative to the top-level partition (i.e., children 
of the root); if an existing child of the root is cho- 
sen to include the observation, then the observation is 
sorted relative to the children of this node, which now 
serves as the root in this recursive call. When a leaf 
is reached, the tree is extended downward. The maxi- 
mum height of the tree can be bounded, thus limiting 
downward growth to fixed depth. 

This sorting strategy is identical to that used by An- 
derson and Matessa (1991). COBWEB (Fisher, 1987) 
c,,.nmontn .nrt;nm h.r nnnpatnva nf m~mn;n,n mln’ff;mn UU~“%U~LUO Y”‘UI’Sb UJ “y.Au”“LY “L “Y”,~Y”sj, u~‘“‘“‘sYy, 

and promotion. These operators combine, decompose, 
and move clusters within a local region of a hierar- 
chy each time an observation is sorted, if such changes 
improve clustering quality. As many observations are 
sorted, a cluster may migrate from one part of the 
hierarchical clustering to another through the collec- 
tive and repeated application of merging, splitting, and 

Fisher 119 



Figure 2: Hierarchical redistribution: the left subfigure indicates that cluster J has just been removed as a descen- 
dent of D and B, thus producing D’ and B’, and is about to be resorted relative to the children of the root (A). 
The rightmost figure shows J has been placed as a new child of C. 

promotion. Unfortunately, these operators promote 
very limited migration in practice. The experiments 
of this paper do not use these operators in initial sort- 
ing, but the idea of moving clusters of observations en 
masse inspires the strategy that we describe next. 

Hierarchical Redistribution 
Hierarchical sorting constructs a tree-structured clus- 
tering cheaply, but this greedy procedure typically con- 
structs nonoptimal clusterings. Thus, after an initial 
clustering phase, a possibly offline process of iterative 
optimization seeks to uncover better clusterings. 

An iterative optimization strategy that appears 
novel in the clustering literature is iterative hierarchi- 
cal redistribution. It can be contrasted with a very 
common strategy (e.g., Biswas, Weinberg, & Li, 1994) 
of redistributing single observations: after initial clus- 
tering, observations may be moved one at a time from 
one cluster to another, if to do so leads to an improved 
clustering according to the objective function. How- 
ever, redistributing observations one at a time is very 
limited. In particular, the movement of an observation 
may be required for the eventual discovery of a better 
clustering, but the movement of any single observation 
may initially reduce clustering quality, thus prevent- 
ing the discovery of the better clustering. In response, 
hierarchical redistribution considers the movement of 
observation sets, represented by existing clusters in a 
h;~~ronh;c..al ol.,.tm;nm III~IWA\rlllticuI L..U”YQA111&. 

Given an existing hierarchical clustering, an outer 
recursive loop examines sibling clusters in the hierar- 
chy in a depth-first fashion. For each set of siblings, an 
inner, iterative loop examines each, removes it from its 
current place in the hierarchy (along with its subtree), 
and resorts the cluster relative to the entire hierarchy. 
Removal requires that the various counts of ancestor 
clusters be decremented. Sorting the removed cluster 

120 KDD-95 

is done based on the cluster’s probabilistic description, 
and reauires a minor generalization of the procedure 
for sort&g individual observations: rather than incre- 
menting certain variable value counts by 1 at a cluster 
to reflect the addition of a new observation, a ‘host’ 
cluster’s variable value counts are incremented by the 
corresponding counts of the cluster (i.e., root of the 
subtree) being classified. A cluster may return to its 
original place in the hierarchy, or as Figure 2 illus- 
trates, it (e.g., cluster J) may be sorted to an entirely 
different location. 

The inner loop reclassifies each sibling of a set, and 
repeats until two consecutive iterations lead to the 
same set of siblings. The outer loop then turns its 
attention to the children of each of these remaining 
siblings. Eventually, the individual observations rep- 
resented by leaves are resorted (relative to the entire 
hierarchy) until there are no changes from one iteration 
to the next. The outer loop may make several passes 
through the hierarchy until no changes occur from one 
pass to the next. 

In sum, hierarchical redistribution takes large steps 
in the search for a better clustering. Similar to macro- 
operator learners (Iba, 1989) in problem-solving con- 
texts, moving an observation set or cluster bridges dis- 
tant points in the clustering space, so that a desirable 
change can be made that would not otherwise have 
been viewed as desirable if redistribution was limited 
C^ - ^_.^ -,.-+ ,c * ~:..:A]..-1 -L ^^__._ A.:--- bv uvvuut;ub UI iiiulvluual uvwxvabwui5. rnL- --AZ- l.ne reu1s- 
tribution of increasingly smaller, more granular clus- 
ters (terminating with individual observations) serves 
to increasingly refine the clustering. In contrast to 
COBWEB’S local application of operators such as merg- 
ing, hierarchical redistribution considers more global 
changes. In addition to COBWEB’S tree-restructuring 
operators, hierarchical redistribution is related to tree- 
restructuring strategies found in supervised, decision- 



tree induction (Utgoff, 1994), and the general idea of 
relocating observation sets more globally is found in a 
recent clustering strategy by Nevins (1995). 

Results with Hierarchical Redistribution 
This section evaluates hierarchical redistribution: a 
random ordering of observations is generated and hi- 
erarchically sorted. Hierarchical redistribution is then 
applied to the resultant hierarchical clustering. These 
experiments assume that the primary goal of cluster- 
ing is to discover a single-level partition of the data 
that is of optimal quality. Thus, the objective function 
score of the first-level partition is taken as the most 
important dependent variable. 

Table 1 shows results in 4 domains when the initial 
tree constructed by sorting is bounded to be no more 
than height 3 (i.e., the root has height 3, the leaves, 
which are single observations, are height 0, and there 
may be up to two levels of intermediate clusters). Row 
one for each domain shows the PU scores of initial clus- 
terings and the time (in seconds) required to construct 
them.r Row two of each domain shows the PU scores 
after hierarchical redistribution, and the additional 
time required for this optimization process. In gen- 
eral, hierarchical redistribution consistently improves 
clustering quality in reasonable time. Fisher (1995) 
c-lcw-rihea nthm a-n,4mmt~ t.hat II) ava111atn turn al- -v-VIA”“” ..“-&“I “dLy”~AA~A~““Y “I&L,.” “.CUIUUUI V..” WI- 
ternative forms of iterative optimi\zsltion, (2) evaluate 
optimization strategies using very ‘poor’ initial cluster- 
ings, and (3) evaluate clustering quality and the time 
required for optimization as one varies the height of 
the initial clustering. These experiments reveal that 
hierarchical redistribution is robust across all these di- 
mensions and is superior, with caveats, to the alter- 
native optimization strategies examined. However, as 
one increases height, there is negligible or no advantage 
in terms of PU score on the domains examined, and 
the cost of hierarchical redistribution rises significantly. 
‘Thus, for reasons of cost, we adopt a tree construction 
strategy that builds a hierarchical clustering three lev- 
els at a time (with hierarchical redistribution) in the 
experiments of Section 3. 

Hierarchical redistribution improves the results ob- 
tained with hierarchical sorting, but it may be ap- 
pended to other greedy, hierarchical techniques as well, 
such as agglomerative clustering methods. 

Simplifying Hierarchical Clusterings 
A hierarchical clustering can be grown to arbitrary 
depth. if there is structure in the data, then ideaiiy the 
top layers of the clustering reflect this structure (and 
substructure as one descends the hierarchy). However, 
lower levels of the clustering may not reflect meaning- 
ful structure. Inspired by certain forms of retrospective 
pruning in decision-tree induction, we use resampling 

‘Routines were implemented in SUN Common Lisp, 
compiled, and run on a SUN 3/60. 

Table 1: Hierarchical redistribution with initial clus- 
terings generated from sorting random ordered obser- 
vations. Tree height is 3. Averages and standard devi- -L:--~ I- nrr ations 01 r”v scores and Time (secondsj over 20 trials. 

PU score Time 
Soybean/s sort 1.53 (0.11) 
47obs,36vars 

18.3 (1.8) 
hier. 1.62 (0.00) 93.8 (27.5) 

Soybean/l sort 0.89 (0.08) 
307obs,36vars hier. 

142.4 (10.2) 
1.07 (0.02) 436.3 (138.9) 

House sort 1.22 (0.30) 104.3 (8.7) 
435obs, lhars hier. 1.68 (O.Oq 355.0 (71.1) 
Mushroom sort 1.10 (0.13) 406.6 (64.2) 
1000obs.2?vars h_ier: 1:2? (Oi’-‘Oj 12sgi2 (4.58) I-c. --_L 

to identify ‘frontiers’ of a hierarchical clustering that 
are good candidates for pruning. Following initial hi- 
erarchy construction and iterative optimization, this 
simplification process is a final phase of search through 
the space of hierarchical clusterings that is intended to 
ease the burden of a data analyst. 

Identifying Variable Frontiers 
o...-- -1 ~--Lx ITT%’ 1 4 fin- 3everai autnors \r isner, lYu I ; Cheeseman, et. ai., 
1988; Anderson & Matessa, 1991) motivate clustering 
as a means of improving performance on a task akin 
to pattern completion, where the error rate over com- 
pleted patterns can be used to ‘externally’ judge the 
utility of a clustering. Given a probabilistic categoriza- 
tion tree, a new observation with an unknown value for 
a variable can be classified down the hierarchy using 
a small variation on the hierarchical sorting procedure 
described earlier. Classification is terminated at an ex- 
isting node (cluster) along the classification path, and 
the variable value of highest probability at that clus- 
ter is predicted as the unknown variable value of the 
new observation. Naively, classification might always 
terminate at a leaf (i.e., an observation), and the leaf’s 
value along the specified variable would be predicted 
as the variable value of the new observation. However, 
a variable might be better predicted at some internal 
node in the classification path. We adapt retrospective 
pruning strategies in decision tree induction, such as 
reduced error pruning (Quinlan, 1987), to the task of 
identifying these internal nodes. 

Given a hierarchical clustering and a validation set 
-I -L _^__._ LZ--- AL- -.-l:,-L:... ~-I r- UL UUS~:TV~LIOIIS~ bne vallaaGion se6 is used to identify 
an appropriate frontier of clusters for prediction of 
each variable. Figure 3 illustrates that the preferred 
frontiers of any two variables may differ, and clusters 
within a frontier may be at different depths. For each 
variable, Aa, the objects from the validation set are 
each classified through the hierarchical clustering with 
the value of variable Ai ‘masked’ for purposes of classi- 
fication. At each cluster encountered during classifica- 

Fisher 121 



-3 of A3 

Figure 3: Frontiers for three variables in a hypothetical clustering. 

tion the observation’s value for Ai is compared to the 
most probable value for Ai at the cluster; if they are 
the same, then the observation’s value would have been 
correctiy predicted at the ciuster. A count of aii such 
correct predictions for each variable at each cluster is 
maintained. Following classification for all variables 
over all observations of the validation set, a preferred 
frontier for each variable is identified that maximizes 
the number of correct counts for the variable. 

The identification of variable-specific frontiers facil- 
itates a number of pruning strategies. For example, 
a node that lies below the frontier of every variable 
offers no advantage in terms of pattern-completion er- 
ror rate; such a node probably reflects no meaningful 
structure and it fand its descendentsj mav be nruned. -__- _.-_- ..__ - -. \----- --- ---.-.---__ I-, _._.. ~ - _ =----- -. 
However, if an analyst is focusing attention on a subset 
of the variables, then frontiers might be more flexibly 
exploited for pruning. 

The novelty of the validation strategy described here 
stems from an observation that any single partition 
of observations may overfit the data relative to some 
variables and underfit relative to others. Undoubtedly, 
the identification of variable-specific frontiers can also 
be implemented by adapting Bayesian or hypothesis- 
testing techniques, which are currently used to termi- 
nate hierarchical decomposition by identifying a single, 11.. . variable-independent frontier (e.g., hrToCLAss j. 

Experiments with Validation 
To test the validation procedure’s promise for simplify- 
ing hierarchical clusterings, each of the data sets used 
in the experiments of Section 2.5 was randomly di- 
vided into three subsets: 40% for training, 40% for 
validation, and 20% for test. A hierarchical clustering 
is first constructed by sorting the training set. This hi- 
erarchy is then optimized using hierarchical redistribu- 
tion. The final hierarchy decomposes the training set 
to &daton cil&ers. e;t.ch c~nt,ainin~ A. single training 1- L--- o--1-- 7 ----- D - ---- 
observation. The validation set is then used to identify 
variable frontiers within the entire hierarchy. 

122 KDD-95 

Table 2: Characteristics of optimized clusterings before 
and after validation. Average and standard deviations 
nvo, 311 t.ria1n V.Ih I” “IIWI”. 

Unvalidated Validated 
Leaves 18.00 (0.00) 

Soy/s 
13.10 (1.59) 

Accuracy 0.85 (0.01) 0 85 (0 01) 
Frontrer 18.00 0.00 2:75 (1:17) 

Leaves 122.00 (0.00) 79.10 (5.80) 
Soy/l Accuracy 0 83 (0 02) 083 (002) . 

IFrontier 122.00 (0.00) 17.01 (4.75) 
Leaves 174.00 (0.00) 49.10 (7.18) 

House Accuracy 0.76 (0.02) 0.81 (0.01) 
pI”II”lsLI ‘rc.nC.ar 174.00 (0.00) 9.90 (5.16) 

During testing of a validated clustering, each vari- 
able of each test observation is masked in turn. When 
classification reaches a cluster on the frontier of the 
masked variable, the most probable value is predicted 
as the value of the observation; the proportion of cor- 
rect predictions for each variabie over the test set is 
recorded. For comparative purposes, we also use the 
test set to evaluate predictions stemming from the un- 
validated tree, where all variable predictions are made 
at the leaves (singleton clusters) of this tree. 

Table 2 shows results from 20 experimental trials 
using unvalidated and validated clusterings. The first 
row of each domain lists the average number of leaves 
for the unvalidated and validated trees. The un- 
validated clusterings decompose the training data to 
single-observation leaves - the number of leaves equals 
the ~~~~~~~~ nf irainina nhmwntinna Tn the xralic-lat~rl b Y-Y”* IVYIVYY. II& “Al” .U11UUUYU 
clustering, we assume that clusters are pruned if they 
lie below the frontiers of all variables. Thus, a leaf in a 



validated clustering is a cluster (in the original cluster- 
ing) that is on the frontier of at least one variable, and 
none of its descendent clusters (in the original cluster- 
ing) are on the frontier of any variable. 

Prediction accuracies in the second row of each do- 
main entry are the mean proportion of correct pre- 
dictions over all variables over 20 trials. Predictions 
were generated at leaves (singleton clusters) in the un- 
validated hierarchical clusterings and at appropriate 
variable frontiers in the validated clusterings. In all 
cases, validation/pruning substantially reduces cluster- 
ing size and it does not diminish accuracy. 

We have suggested that more flexible pruning or ‘at- 
tention’ strategies might be possible when an analyst 
is focusing on one or a few variables. We will not spec- 
ify such strategies, but the statistic given in row 3 of 
each domain entry suggests that clusterings can be ren- 
dered in considerably simpler forms when an analyst’s 
attention is selective. Row 3, labeled IFrontier/, is the 
average number of frontier clusters per variable. This 
is an average over all variables and all experimental 
trials. Intuitively, a frontier cluster of a variable is a 
‘leaf’ as far as prediction of that variable is concerned. 
The IFrontier entry for unvalidated clusterings is sim- 
ply given by the number of leaves, since this is where all 
variable predictions are made in the unvalidated case. 
Our results suggest that when attention is selective, a 
partial clustering that captures the structure involv- 
ing selected variables can be presented to an analyst 
in very simplified form.2 

Concluding Remarks 
Error rate and simplicity are objective criteria, with 
analogs in supervised (e.g., decision-tree) induction, 
that can be used to evaluate the merits of differing 
objective functions. The relation between the Gini 
Index and Category Utility suggests that other ob- 
jective functions can be derived from analog selection 
measures (e.g., Lopez de Mantaras, 1991) of decision 
tree induction (Fisher, 1995). However, our focus has 
not been on objective functions, but on search con- 
trol strategy; the search for hierarchical clusterings 
can be partitioned into three phases: (1) inexpensive 
generation of a hierarchical clustering for initial ex- 
amination, (2) iterative optimization for clusterings of 
better quality, and (3) retrospective simplification of 
generated clusterings. In particular, the paper intro- 
duces apparently novel (but derivative) implementa- 
tions of phases 2 and 3. These are an iterative op- 
timization strategy called hierarchical redistribution, 
which relocates observation sets en masse, and prun- 
ing/simplification strategies based on the identification 
of variable-specific frontiers. For purposes of evalua- 
tion we have coupled these with a particular objective 

2Fisher (1995) also looks at the relative amount of sim- 
plification that can be performed with optimized (using 
hierarchical redistribution) and unoptimized clusterings. 

function, initial clustering strategy, and data represen- 
tation. These two strategies, however, may be coupled 
with other initial clustering strategies, objective func- 
tions, and (e.g., numeric) data representations as well 
(Fisher, 1995). 

Acknowledgements This work was supported by 
grant NAG 2-834 from NASA Ames Research Center. 

References 
Anderson, J. R., & Matessa, M. (1991). An interative 

Bayesian algorithm for categorization. In D. Fisher 
& M. Pazzani (Eds.), Concept formation: Knowl- 
edge and experience in unsupervised learning. San 
Mateo, CA: Morgan Kaufmann. 

Biswas, G., Weinberg, J., & Li, C. (1994). ITERATE: 
A conceptual clustering method for knowledge dis- 
covery in databases. In B. Braunschweig and R. Day 
(Eds.) Innovative Applications of Artificial Intelli- 
gence in the Oil and Gas Industry. Editions Technip. 

Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, 
W., & Freeman, D. (1988). AutoClass: A Bayesian 
classification system. Proceedings of the Fifth Inter- 
national Machine Learning Conference (pp. 54-64). 
Ann Arbor, MI: Morgan Kaufmann. 

Corter, J., & Gluck, M. (1992). Explaining basic cat- 
egories: feature predictability and information. Psy- 
chological Bulletan, 111, 291-303. 

Fisher, D. H. (1987). Knowledge acquisition via in- 
cremental conceptual clustering. Machine Learning, 
2, 139-172. 

Fisher, D. H. (1995). Iterative optimization and sim- 
plzjkatzon of hierarchical clusterings. Technical Re- 
port CS-95-01, Department of Computer Science, 
Vanderbilt University, Nashville, TN. 

Iba, G. (1989). A h euristic approach to the discovery 
of macro operators. Machzne Learning, 3, 285-317. 

Lopez de Mantaras, R. (1991). A distance-based at- 
tribute selection measure for decision tree induction. 
Machine Learning, 6, 81-92. 

Nevins, A. J. (1995). A branch and bound incremen- 
tal clusterer. Machzne Learning, 18, 1, 5-22. 

Quinlan, J. R. (1987). Simplifying decision trees. 
International Journal of Man-machine Studies, 2’7, 
221-234. 

Utgoff, P. (1994). A n improved algorithm for incre- 
mental induction of decision trees, Proceedings of 
the Eleventh International Conference on Machine 
Learning (pp. 318-325). New Brunswick, NJ: Mor- 
gan Kaufmann. 

Weiss, S., & Kulikowski, C. (1991). Computer Sys- 
tems that Learn. San Mateo, CA: Morgan Kauf- 
mann Publishers. 

Fisher 123 


