
Compression-Based Evaluation of Partial Determinations 

Bernhard Pfahringer and Stefan Kramer 
Austrian Research Institute for Artificial Intelligence 

Schottengasse 3, A-1010 Vienna, Austria 
{bernhard,stefan}@ai.univie.ac.at 

Abstract 

Our work tackles the problem of finding partial deter- 
minations in databases and proposes a compression- 
based measure to evaluate them. Partial determina- 
tions can be viewed as generalizations of both func- 
tional dependencies and association rules, in that they 
are relationalin nature and may have exceptions. Ex- 
tending the meazures used for evaluating association 
rules, namely support and conjidetace, to partial de- 
terminations leads to a few problems. We therefore 
propose a measure based on the minimum description 
length (MDL) principle to remedy this problem. We 
assume the hypothetical task of transmitting a given 
database as efficiently as possible. The new measure 
estimates the compression achievable by transmitting 
partial determinations instead of the original data. It 
takes into account both the complexity and the cor- 
rectness of a given partial determination, thus avoid- 
ing overfitting especially in the presence of noise. We 
also describe three different kinds of search using the 
new measure. Preliminary empirical results in a few 
boolean domains are favorable. 

1 Introduction 
Recently, researchers in KDD have paid much atten- 
tion to the search for functional dependencies (Man- 
nila & Raih&, 1994) and association rules (Agrawal & 
Srikant, 1994; Mannila et al., 1994). Functional de- 
pendencies are essentially relational and do not allow 
for the possibility of exceptions. Therefore, algorithms 
searching for functional dependencies would not find a 
dependency even if there was only one exception to the 
rule. 

For instance, an algorithm might induce the fol- 
lowing functional dependency from a train schedule 
database: 

{Direction} + {Minutes} 

This means that the direction of a train determines 
the time when the train is leaving every hour. If there 
was a different schedule at night, this kind of algorithm 
would usually not find such a dependency. 

On the contrary, associataon rules not only allow for 
the possibility of exceptions, but are essentially prob- 

abilistic. This is a useful feature for the search espe- 
cially in large databases where exceptions are likely to 
arise. However, association rules are propositional and 
therefore limited in their expressiveness. 

For instance, in a supermarket database the associ- 
ation rule 

{Bread, Butter} * {Milk) 

might be found. It says, that customers that pur- 
chase bread and butter also purchase milk. Clearly, 
the statement will not be true for all customers that 
purchase bread and butter. Anyway, the information 
is useful even if the association rule holds only for 80% 
of the customers that satisfy the left-hand side. 

Our work deals with a form of knowledge that 
is more expressive than the propositional association 
rules, but also well-suited for real-world data, since ex- 
ceptions are possible. According to (Russell, 1989), 
we will call those non-strict functional dependencies 
partial determanations. Partial determinations can be 
viewed as generalizations of both functional dependen- 
cies and association rules, in that they are relational in 
nature and may have exceptions. 

Unfortunately, the measures evaluating association 
rules, support and confidence, are not suited for par- 
tial determinations. We therefore propose an alterna- 
tive, compression-based measure for evaluating partial 
determinations in databases, and describe its use in 
search. 

In section 2 we define partial determinations, in sec- 
tion 3 we introduce the compression-based measure, in 
section 4 we report on empirical results, in section 5 we 
survey related work, and finally in section 6 we draw 
conclusions. 

2 Partial Determinations 
Before we define partial determinations, we will present 
the definition of functional dependencies according to 
(Mannila & Riiha, 1994): 

Given a relation schema (i.e. a set of attributes) 
R, a functional dependency over R is an expression 
X + Y, where X, Y C R. To define the semantics of 
such expressions, let T be a relation (a table) over R, 
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i.e. a set of tuples over R. We write Dam(A) for the 
domain of an attribute A E R and oom(X) for the 
domain of a set of attributes X s R. The projection 
of a tuple t on a set of attributes X, denoted t[X], is 
defined as the restriction oft on X (here X C R). Now 
X + Y holds in T, denoted T b X --) Y, if all tuples 
U, v E T with u[X] = v[X] also satisfy u[Y] = v[Y]. 

Partial determinatzons are generalizations of func- 
tional dependencies. They are expressions of the form 
X +d Y. The index d is a number. The set of at- 
tributes X will be referred to as LHS, the left-hand 
side of the partial determination, and Y will be re- 
ferred to as RHS, the right-hand side. 

Semantically, X -fd Y holds in r, denoted T b 
X -fd Y, if d is the determination factor d(X, Y) as 
defined by (Russell, 1989). The determination factor is 
the probability that two randomly chosen tuples have 
the same values of Y, provided they have the same val- 
ues of X. Note that d(X,Y) is defined without regard 
to a particular mapping from oom(X) to Dam(Y). 

Corresponding to a partial determination, we define 
a mapping pdxddy in the following way. The do- 
main of the mapping is defined by the LHS and the 
range is defined by the RHS of the partial determi- 
nation. ‘The tuples in T determine the mapping it- 
self: For all tuples u that are equal under the projec- 
tion X, we call the most frequently occurring u[Y] the 
majority tuple. pdx+dy maps tuples of oom(X) to 
their respective majority tuples in Dam(Y). A tuple 
u E T is called an exception to the mapping pdxbay, 
if u[y1 # pdx-,dy(u[X]). Depending on the number 
of exceptions, the partial determination is more or less 
‘functional” . 

In the following, the notion of a partial determina- 
tion is used for both the statement X -,d Y and the 
corresponding function pdx.+6y. This is not problem- 
atic, since there is a correspondence between the ref- 
erents. 

3 Evaluating Partial Determinations 
Searching for partial determinations in databases re- 
quires a function measuring their goodness. Next, we 
will show why support and confidence, the measures of 
association rules, can not be generalized for this pur- 
pose. 

3.1 Support and Confidence 
For simplicity, we will define support and confidence 
using the same notation as for functional dependen- 
cies. Let R = {11,12! . . . . ms I J be a relation schema 
with attributes over a binary domain (0, 1). (Agrawal 
& Srikant, 1994) call those attributes atems.) Let 
T = {tl,tz , . . . , tn) be a relation over the relation schema 
R. An association rule is an expression X =+ Y, where 
X c R, Y c R, and XnY = 0. If-W E R and t[A] = 1 
for all A E IV, we write t[W] = 1. The rule X 3 Y 
holds in T with confidence c if c% of the tuples in T 

for which t[X] = i also t[YJ = i. The rule X + Y has 
support s in T if t[XY] = 1 for 5% of the tuples in T . 

Generalizing those measures for partial determina- 
tions leads to four different problems: 

1. 

2. 

3. 

4 -. 

When we consider partial determinations, the tu- 
ples can be divided into those which satisfy the rule 
and those which are exceptions. Here, support is 
the percentage of tuples that satisfy the rule, and 
confidence is 100% minus the percentage of excep- 
tions in T. So support and confidence are no dif- 
ferent measures when applied to partial determine 
tions. 

When another attribute is added to the LHS of the 
dependency, the evaluation automatically gets “bet- 
ter” or, in the worst case, remains the same. The 
reason is that the number of exceptions will decrease 
in most cases, and at worst will remain constant. 
Conversely, when adding another RHS-attribute, the 
evaluation automatically gets “worse” or, in the best 
case, remains the same. The reason for this is that 
the number of exceptions will increase in most cases, 
and at best will remain constant. 

The measure does not take into account the com- 
plexity of the mapping, that is, the information 
needed to encode the relationship between the do- 
main and the range. Thus, the partial determination 
just needs to have enough attributes in the LHS in 
order to obtain a high support. Obviously, this may 
cause overfitting of the data. 

In order to avoid these problems, we propose a 
compression-based measure based on the so-called 
Minimum Description Length (MDL) principle (Rissa- 
nen, 1978). This principle allows taking into account 
a theory’s accuracy and its complexity simultaneously. 
The key idea is to measure the joint cost of coding a 
theory and of coding the data in terms of that the- 
ory. A good introduction to MDL can be found in 
(Pednault, 1991). In this paper we only deal with 
partial determinations ranging over boolean attributes 
and having a single consequent. 

3.2 A New Compression-Based Measure 
for Partial Determinations 

We assume the hypothetical task of transmitting a 
given database as efficiently as possible. If we can find a 
good partial determination for a given attribute, trans- 
mitting this partial determination instead of the raw 
data values can improve efficiency considerably. The 
MDL principle allows us to estimate the degree of com- 
pression achievable by using a given partial determina- 
tion. 

The MDL principle tries to measure both the sim- 
plicity and the accuracy of a particular theory (in our 
setting: partial determination) in a common currency, 
namely in terms of the number of bits needed for en- 
coding theory and data. (Cheeseman 90) defines the 
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message length of a theory (called model in his article) 
aS: 

Total message length = 
Message length to describe the model + 
Message length to describe the data, 

given the model. 

This way a more complex theory will need more bits 
to be encoded, but might save bits when encoding more 
data correctly. The theory with the minimal total mes- 
sage length is also the most probable theory explaining 
the data (Rissanen, 1978). Actually we don’t really 
need to encode! we just need a formula estimating the 
number of bits needed if we were to encode a theory 
and data in terms of that theory. 

So we have to define an encoding for partial deter- 
minations that will allow the hypothetical receiver of a 
transmission to reconstruct the original attribute val- 
ues. Therefore we have to specify which attributes are 
used in the LHS, which mapping is used to compute 
the value of the RHS-attribute, and which tuples in 
the relation contradict the determination (the excep- 
tions). The exact definition of the coding cost of a 
partial determination for boolean attributes is given in 
figure 1. 

Total cost (1) is the sum of the cost for selecting 
the attributes (the theory) and for defining their map- 
ping and for encoding the exceptions to the mapping 
(encoding the data in terms of the theory). 

The selection of attributes (2) is defined by specify- 
ing which of all possible attributes are used. 

For encoding the mapping only the 21usedAttrsl dif- 
ferent mapping values need to be encoded. This can 
be done by specifying which of all of these values are 
“true” (3). 

Additionally we have to “correct” the mapping by 
specifying which examples (tuples in the relation) are 
assigned a wrong value by the mapping (4). 

For estimating the cost of encoding the selection of 
E elements out of N possible elements (5,6,7) we just 
use the theoretical entropy-based bound provided by 
(Shannon & Weaver, 1949). As we do not have to really 
encode the data, using this theoretical bound makes 
sense.’ Alternatively, selection could also be coded 
and estimated as described in (Quinlan 1993). The 
advantage of the entropy-based estimate is its efficient 
computability (only 2 logarithms need to be computed 
versus 2 * E logarithms). 

Now according to the MDL principle the one par- 
tial determination which minimizes the above cost- 
function, i.e. the one with the smallest bit-cost (the 
most compressive determination) is the most probable 
determination given the tuples of the relation. 

‘Especially as there are coding methods known (e.g. 
arithmetic coding), that can actually achieve this bound. 

3.3 Bounds for the Compression-Based 
Measure 

We can deduce two bounds useful for searching for par- 
tial determinations. First of all the maximal number 
of LHS-attributes of a useful partial determination is 
a function of the number of tuples in a given relation 
(BOUNDS): 

ILHS~D 1 < log2 ITuples( 

This follows from the fact that encoding the raw values 
of the RHS-attribute (without using a partial determi- 
nation PD) would yield a bitstring of an approximate 
size of ITuplesl. Now a partial determination PD using 
1.- Irn . ..-f --I TTTC( -LI-IL.-L-- ----.,A J-L!-- L -----I-- rogalr upresl Ln3-abLrruubes WOUIU uenne d rnapp~ng 
with a truth-table containing 21°galTuplesl = ITuplesl 
entries. Additionally we have to encode the selected 
attributes. Therefore we would get: 

Using such a partial determination would be more 
costly than directly encoding the data. 

The second bound is a lower bound for the cost 
achievable when specializing (i.e. adding attributes to 
the LHS of) a particular determination PDN. Assume 
thcat thin Aatnrm;ncxt;nn ~tnacl N attr;hntan ~.nrl thn PP- UllcuU “Ill” u~u~Illllllcuul”ll U”b” 1. ul”“IIVUU~” UllU UIL” I.2 
sulting mapping has p bits “on” and n bits “off”. If we 
add an attribute AN+~ to this partial determination, 
we get BOUNDS: 

COStm@&+1) > costehoose(N + 1, IAllAttrsl) 

+ c&hoose(~qP, 4, 2N+1) 

This is because we have to encode one more attribute, 
the resulting mapping will in the - regarding coding 
cost - best case still have only min(p,n) bits “on” or 
“off” respectively, and in the best case the number of 
_____ -L1--- -.:I, 1. ̂  -^-- 
excepblorls Will ve ztxu. 

This BOUND:! also tells us that specializing a total 
determination (a determination already having zero 
exceptions) will not yield a better determination, as 
its respective cost will be strictly larger. 

3.4 Rule-Interest Measures 
Using the gain in coding cost (costMDL(@) - 
COS~MDL (PD)) as the actual evaluation function sat- 
isfies the three principles for rule-interest measures 
stated by (Piatetsky-Shapiro, 1991). They were origi- 
nally formulated for propositional rules and can easily 
be reformulated for partial determinations: 

1. If the attributes of the left-hand side are statistically 
independent of the attributes of the right-hand side, 
the value of the rule-interest function shall be zero. 

2. If the support gets bigger, the value of the rule in- 
terest function shall increase. 

3. If the number of tuples in the database increases 
and the support stays constant, the value of the rule 
interest function shall decrease. 
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COS~MDL(PD) = cost(LHS) + cost(Mapping) + cost(Ezceptions) 

cost(LHS) = cost,hoose(lUsecZAttrsl, IAllAttrsl) 

cost(Mapping) = cost,hooJe(lTTUeEIZtTieSI, IAllEntriesl) 

cost(Ezceptions) = cost,hoose(lEzxeptionsl, IAlIEzamplesl) 

~ost,~~~~~(E, N) = N * entropy(E, N) 

entropy(E, N) = -(plog(E/N) + plog(1 - E/N)) 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

‘log(‘) = 1 “P * logz(P) ftLeT:ise (7) 

Figure 1: The Definition of the Coding Cost of a Partial Determination 

_--- _ 
The first condition is satisfied by MUL-based mea- 

sures because of the way they are derived from proba- 
bility theory (Rissanen, 1978). Empirically, this is also 
evident in experiments on random data. The second 
condition is obviously true for our measure, since the 
number of exceptions decreases. The third condition 
is trivially satisfied as well, because the tuples that are 
added can only be exceptions if the support stays the 
same. 

4 Empirical Results 
For a preliminary empirical evaluation of the above 
formula we have done a few experiments on mostly 
artificial boolean data sets with different levels of at- 
tribute noise. As enumerating and evaluating all possi- 
ble subsets of attributes up to a size given by BOUNDS 
is clearly out of the question for realistically sized data 
sets, one must rely on search to provide reasonable 
candidates for evaluation. For this purpose we have 
implemented three different search strategies: 

1. 

2. 

Hill-Climbing: may fail to find a good partial de- 
termination, especially if the first attributes chosen 

Depth-Bounded Backtracking: BOUND2 allows to 
prune some of the search space, but unfortunately 

during search are irrelevant. 

for such small sets of attributes BOUND2 is rarely 
ever effective, because for small sets exception costs 
tend to dominate the total coding costs. Bounded 
depth-first search will of course fail to find partial 
determinations more complex than the bound. On 
the other hand, if it fails to find any partial determi- 
nation, we know that no small determination exists. 
And if we can afford to search up to a depth equal 

3. 

to BouNDi, we wiii either find the best partiai de- 
termination or prove its non-existence. 

Stochastic Search: This third strategy tries to be 
both more complete than hill-climbing and to be less 
costly than bounded depth-first search. This strat- 
egy works as follows: N times do randomly generate 
attribute subsets of a size not exceeding BOUNDS. 
If such a random subset has a smaller bit-cost than 
the empty set, this subset is already a useful partial 
determination by itself. But due to its random gen- 
eration it might contain more attributes than neces- 
sary. Therefore to further improve this partial de- 
termination, we perform an unbounded depth-first 
search on this subset, which will return the optimal 
partial determination possible for this subset. The 
global effect of this search strategy is that especially 
in the presence of attribute noise it tends to find bet- 
ter partial determinations at still reasonable runtime 
costs. 

artificial boolean domains to investigate the effects of 
attribute noise. Table 1 summarizes search results for 
a particular boolean relation involving 15 attributes: 

We have conducted a few experiments using purely 

a2 = or(a0, al) 
a7 = or(a3, ~4, a5, a6) 

a10 = parity(a8, a9) 
a15 = parity(al1, a12, a13, a14) 

This particular experiment used 5000 randomly drawn 
examples. Attribute noise was set to lo%, i.e. with a 
probability of 10% each attribute value was switched 
from 0 to 1 or vice versa. Due to space reasons we 
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Attr S Gain Exe 
a2 s”s” 0 30 

1099 17 
D&z 1099 17 

a7 ifs” 0 15 
116 13 

DB3 0 15 
a10 HC 0 50 

ss 939 25 
DBs 939 25 

al5 HC 0 49 
ss 317 34 
DBa 0 49 

- 

I - 

T Det 
20 
23 0,l 
70 0,l 
20 
31 2,3,4,5,6,9,10,11,13 
70 
20 
31 8,9 
70 8,9 
20 
20 6,10,11,12,13,14 
70 

Table 1: Partial determinations found for selected 
boolean attributes. Search methods are hill-climbing 
(HC), stochastic search (SS), and depth-bounded back- 
tracking to level three (DBs). Gain is the gain in num- 
ber of bits relative to the empty set, exceptions (Exe) 
are percentages, runtimes (T) are in seconds, and Det 
are the LHS-attributes of the respective determination. 

only report results for the RHS-attributes. All deter- 
minations found really have less exceptions than the 
empty set. For each type of search we list the deter- 
mination found (if any), the gain (i.e. costing - 
COStMDL(PD)) P ex ressed in number of bits, the num- 
ber of exceptions of the determination in percentages 
when applying the determination’s mapping to the tu- 
ples, and the runtimes in seconds. 

Hill-climbing fails to find any determinations. 
Stochastic search finds determinations for all attributes 
in reasonable time. Bounded depth-first search takes 
more time than both other methods without finding 
better solutions. For OR4 and PARITY4, and a depth 
bound of three, this was to be expected. Only one out 
of all results possibly shows signs of overfitting (SS for 
A7). 

Table 2 summarizes the results of searching for par- 
tial determinations in the “natural” voting domain’. 
This domain is in principle a boolean domain, but 
does have missing values. Therefore we introduced 
an additional boolean attribute for each original at- 
tribute specifying whether the value is known or not. 
The binary class information (democrat or republican) 
is provided as attribute 0. So we have a total of 33 
boolean attributes and 300 examples. Due to space 
reasons we only report results for a few prototypical 
RHS-attributes. From the table we see that gain and 
exceptions correlate as expected, namely that for larger 
gains we also get fewer exceptions. Complete search 
only finds slightly better solutions at a pronouncedly 
larger time cost. Both incomplete methods sometimes 
fail (see e.g. A20 or A22). But note that the fol- 
lowing well-known simple determination between at- 

ZVOTING is one of the databases available at the UC 
Irvine Machine Learning Repository 

tributes A0 and A8 is found by all three methods: 

5 Related Work 
In this section we briefly describe how our work relates 
to the closest work found in the literature. 

l (Russell, 1989) introduced the term “partial deter- 
mination” and described a method for evaluating 
partial determinations with respect to given facts. 
Briefly, Russell estimates the proportion of tuples 
in the database for which the determination holds 
through sampling. In other words, he estimates 
nothing else but the confidence of the dependency 
given a set of tuples. Therefore the same argument 
as for support and confidence applies. 

l (Shen, 1991) describes an algorithm that searches for 
three kinds of regularities in a large knowledge base. 
One of those regularities are determinations, and 
they are restricted to those having a single attribute 
in the left-hand side. Since Shen is not looking 
for more complex dependencies, there is no need to 
avoid overfitting the data. Furthermore, the deter- 
minations of interest are like association rules in that 
they have binary attributes. The algorithm gener- 
ates such simple determinations and returns them if 
the support is bigger than the counter-support and 
if a statistical test suggests their significance. 

l (Schlimmer, 1993) proposes an algorithm that re- 
turns every “reliable” partial determination with a 
complexity lower than a user-defined threshold. The 
reliability measure is supposed to measure the “func- 
tional degree” of the map given subsequent data. 
Schlimmer argues that this is better than functions 
that measure the functional degree of the map given 
the current data. The reliability measure is used 
for pruning: If a determination is not reliable, one 
can conclude that all determinations with a more 
complex domain will not be reliable and need not 
be considered. The algorithm performs a complete 
search in the space of partial determinations up to 
a user-defined complexity threshold, but it does not 
avoid overfitting the data, since it does not have a 
penalty for overly complex dependencies. 
We recognize two problems with this particular reli- 
ability measure: 

1. The reliability measure only evaluates the domain 
of the partial determinations. Consequently, it 
does not consider how the tuples from the domain 
map to the tuples from the range. Clearly, not ev- 
ery two functions with the same domain and the 
same range, but different mappings, should have 
the same values of the evaluation function. As a 
further consequence, the measure does not take 
into account how the projections of the tuples to 
the attributes from the right-hand side are dis- 
tributed. 
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Search Attr Gain 1 Exe T Det Attr Gain Exe T Det 
BC 0 194 5 6 8 2 19 28 8 6,?2,23 
ss 194 5 15 8 18 30 14 6,16 
D& 194 5 57 8 19 28 52 6,12,23 
HC 12 87 14 6 10,24,26 14 104 15 7 16 
ss 79 16 14 lo,26 104 15 15 16 
D& 87 14 52 10,24,26 106 13 52 0,10,16 
HC 20 1 37 8 4,32 22 0 35 12 
ss 0 50 14 11 27 14 0,14 
D& 1 37 52 4,32 20 24 52 0,4,18 

Table 2: Partial determinations found for some attributes of the voting domain. 

2. The algorithm does not avoid overfitting the data, 
since it does not have a penalty for overly complex 
dependencies. We believe that algorithms search- 
ing for more complex dependencies have to cope 
with the problem of overfitting. 

6 Further Work and Conclusion 

We plan to extend this work by experiments with other 
search strategies, e.g. genetic algorithms and combi- 
nations of search algorithms. Experiments with large 
real-world databases will have to be the next step. This 
will require generalizing the measure for multi-valued 
attributes. More importantly, we will investigate how 
knowledge can be included in order to obtain mean- 
ingful dependencies. [Klemettinen et al., 19941 show 
how hierarchies of attributes can be used to select rules 
from large sets of discovered association rules. Alter- 
natively, hierarchies could be utilized by operators dtir- 
ing ihe search for dependencies. ~urt~ierrIiore, we will 
investigate determinations having more than one RHS- 
attribute. 

In summary, we presented a new compression-based 
measure to evaluate partial determinations and its use 
for search. Partial determinations are a useful form of 
knowledge since they are more expressive than associa- 
tion rules but also allow for exceptions. The possibility 
of exceptions makes this kind of dependency interesting 
to search for in real-world data. In contrast to other 
measures of partial determinations known to the au- 
thors, the XDi-based function avoids Wdiiiiig the 
data. The usefulness of the approach is supported by 
experimental evidence. 
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