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Abstract 

When applying rules induced from training ex- 
amples to a test example, there are three possi- 
ble cases which demand different actions: (1) no 
match, (2) single match, and (3) multiple match. 
Existing techniques for dealing with the fist and 
third cases are exclusively based on probability 
estimation. However, when there are continuous 
attributes in the example space, and if these at- 
trihrrtnn hilvn haan Awrc=.ti.caA intn Lqkprv& he “-.l-..u” _....” I--aa -.,-.------ --“- 
fore induction, fuzzy interpretation of the discre- 
tised intervals at deduction time could be very 
valuable. This paper introduces the idea of us- 
ing fuzzy borders for interpretation of discretised 
intervals at deduction time, and outlines the re- 
sults we have obtained with the HCV (Version 
2.0) software. 

Introduction 

Knowledge discovery in databases (KDD) is a research 
frontier (Wu 93a) for both database technology and 
machine learning techniques, and has seen sustained 
research over recent years. It acts as a link between 
the two fields, thus offering a dual benefit. Firstly, 
since database technology has already found wide ap- 
plication in many fields, machine learning research 
obviously stands to gain from this greater exposure 
and established technological foundation. Secondly, as 
databases grow in both number and size, the prospect 
of mining them for new, useful knowledge becomes 
yet more enticing. Machine learning techniques can 
augment the ability of existing DBMSs to represent, 
acquire, and process a collection of expertise such as 
those which form part of the semantics of many ad- 
vanced applications. 

Generally speaking, all kinds of attribute-based 
learning algorithms can be adapted to extract knowl- 
edge from databases. It is not difficult to add an in- 
duction engine to an existing database system in an ad 
hoc way to implement rule induction from databases 

or design some specific engines to learn from domain- 
specific data sets. However, when we integrate ma 
chine learning techniques into database systems, we 
must face many problems such as: 

Efficient induction algorithms are needed. The algo- 
rithms should be capable of being applied to realistic 
databases, e.g. 1 lo6 relational tuples. Exponential 
or even medium-order polynomial complexity will 
not be of nractical use. r--.-.--~.- ~~._. 

The knowledge learned needs to be tested and/or 
used back in the learning systems. 

Noise (including missing information) has to be ef- 
fectively handled. Machine learning is different from 
mathematic induction. We cannot assume that the 
data in the given databases is complete. There are 
various sources of noise including missing values in 
real-world databases. To produce acceptable results 
for realistic applications, noise handling facilities are 
often essential to learning algorithms. 

Numerical data and symbolic data are equally im- 
portant in practical application. Existing learning 
algorithms can be generally divided into two groups: 
numerical methods including statistical methods and 
neural networks which are good at processing nu- 
merical data in noisy environments, and symbolic 
AI methods which are more efficient in dealing with 
symbolic or nominal data. It has been a long term 
dispute that AI methods (especially the decision 
trees) are too simple to represent the real world. In 
the meanwhile, we can also easily argue that numer- 
ical methods are not good enough to represent and 
maninulate locic relationshins among svmbolic val- r ---. 1_ --~-- - ~~-.-----.-~~I~ ” * ~~ 
ues. We need to have induction algorithms which 
can effectively deal with both types of data. 

There are quite a few induction algorithms such as 
the ID3-like algorithms (Quinlan 86; Quinlan 93) and 
HCV (Wu 93b; Wu 95) which are low-order polynomial 
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in both time and space. However, since induction from 
databases relies to a great extent on the quality of the 
training databases, interpreting induction results (say, 
rules) to classify a new example needs to face three 
possible cases which demand different actions: 

No match: No rules match the example; 

Single match: One or more rules indicate the same 
class match, and 

Multiple match: More than one rule matches the ex- 
ample, and indicates different classes. 

The third case does not apply to decision trees pro- 
duced by IDJ-like algorithms, but when the trees are 
decompiled into rules, the rules will face the same prob- 
lems (Quinlan 87; Quinlan 93). 

In the single match case, the choice of class to the 
example is naturally the class indicated by the rules. 
Existing techniques for dealing with the first and third 
cases (Wu 95) are exclusively based on probability es- 
timation. Among them, the Measure of Fit for dealing 
with the no match case and the Estimate of Probabil- 
ity for handling the multiple match case developed in 
(Michalski et al. 86) h ave been widely adopted in the 
KDD community. 

The Measure of Fit and Estimate of Probability 
methods perform quite well with problem domains 
where no real-valued attributes are involved. However, 
when a problem contains attributes that take values 
from continuous domains (i.e. real numbers or inte- 
gers), the performance of both methods, especially in 
terms of accuracy, decreases. In existing induction al- 
gorithms, dealing with continuous domams is based on 
discretisation of them into a certain number of inter- 
vals. There are quite a few strategies available for dis- 
cretisation, such as (Wu 95) Bayesian classifiers and 
the information gain method. Once each continuous 
domain has been discretised into intervals, the inter- 
vals are treated as discrete values in induction and de- 
duction. This is the standard way all existing systems 
have taken. However, discretisation of continuous do- 
mains does not always fit accurate interpretation, To 
say an age greater than 50 is old or a temperature 
above 32 centigrades is high is fuzzy. In these kinds 
of cases, fuzzy interpretation of the discretised inter- 
vals at deduction time could be very valuable. Rather 
than trrlcina the rnt. nninta &d&d by t,E_e rl_~~c.&~~~- “IIV.L UU’.“‘~ “.A” VI” y-.-.v- 
tion methods as sharp borders, we can instead place 
some kind of curve at each cut point as fuzzy borders. 
With these fuzzy borders, a value can be classified into 
a few different intervals at the same time, with vary- 
ing degrees. This could change a single match case to 
a multiple match, and a no match case to a single or 

even multiple match. Deduction with fuzzy borders of 
discretised intervals is called fuzzy matching. In the 
multiple match case, we can take the interval with the 
greatest degree as the value’s discrete value. 

Discretisation of Continuous Attributes 
When there are both symbolic and continuous at- 
tributes in an example set for induction, the standard 
approach is discretise the numerical domains of these 
continuous attributes into a certain number of inter- 
vals. The discretised intervals can be treated in a sim- 
ilar way to nominal values during induction and de- 
duction. 

The most difficult aspect of discretisation is to find 
the right places to set up interval borders. This sec- 
tion reviews some typical discretisation methods. In 
the following account, N indicates the number of ex- 
amples in the training set, c is the number of classes or 
concepts that these examples are classified into, and d 
is the number of intervals generated by discretisation. 
In all these methods, sorting the values of the contin- 
uous attribute in question in ascending order is always 
uaafnl hnfnre rliarreticatinn ia rarrb-l nd .A”“~..~ YIL”I.2 . ..Y”.“VIYcy”SV.~ a” “..s~~I”U “YY. 

The simplest class-separating method 
The simplest discretisation method is to place interval 
borders between each adjacent pair of examples that 
are not classified into the same class. Suppose the pair 
of adjacent values on attribute X are ~1 and es, 2 = 
(xl+ x2)/2 can be taken as an interval border. 

If the continuous attribute in question is very infor- 
mative, which means that positive and negative exam- 
ples take different value intervals on the attribute, this 
method is very efficient and useful. You can find, for 
example, that Professors and Lecturers at Australian 
universities have distinctive salary ranges, and the con- 
tinuous attribute salary is very informative in distin- 
guishing academic positions. However, this method 
tends to produce too many intervals on those attributes 
which are not very informative. These intervals can 
also easily confuse algorithms like HCV (Wu 93b) be- 
cause a 0.16 difference between a positive example and 
a negative one on a numerical attribute makes one 
more interval. The worst case is d = N - 1, where 
a border has to be set up between every pair of exam- 
ples. 

Bayesian classifiers 
According to Bayes formula, 

e4c.i)ecj) 
p(cj’z) = Cizl P(+JP(Ck) (1) 

where P(cj 1~) is the probability of an example belong- 
ing to class cj if the example takes value z on the 
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continuous attribute in question, P(zlcj) is the prob- 
ability of the example taking value z on the attribute 
if it is classified in the class cj. 

P(cj) can be approximated by using one of the fol- 
lowing three probability estimation methods: relative 
frequency, Laplacian Law of Succession (Niblett and 
Bratko 87), or the m-estimate (Lavrac & Dzeroski 94), 
and P(cjIt) can take the frequency of cj under e over 
all the examples in the training set. 

Given P(cj) and P(cj/x), we can construct a prob- 
ability curve, 

fjtx) = P(XlCj)P(Cj) (2) 
for each class cj. When the curves for every class have 
been constructed, interval borders are placed on each 
of those points where the leading curves are different 
on its two sides. Between each pair of those points 
including the two open ends, -00 and +co, the leading 
curve is the same. 

We call a discretisation implemented by the above 
method a Bayesian classifier (Hong 94). 

The information gain heuristic 
When the examples in the training set have taken val- 
ues of 21, . . . . x, in ascending order on a continuous 
attribute, we can use the information gain heuristic 
adopted in ID3 (Quinlan 86) to find a most informa- 
tive border to split the value domain of the continuous 
attribute. (Fayyad & Irani 92) has shown that the 
maximum information gain by the heuristic is always 
achieved at a cut point (say, the mid-point) between 
the values taken by two examples of different classes. 

We can adopt the information gain heuristic in the 
following way. Each x = (zi +xi+1)/2 (i = 1, . . . . n - 1) 
is a possible cut point if xi and xi+1 have been taken by 
examples of different classes in the training set. Use the 
information gain heuristic to check each of the possible 
cut points and find the best split point. Run the same 
process on the left and right halves of the splitting to 
split them further. The number of intervals produced 
this way may be very large if the attribute is not very 
informative. (Catlett 91) has proposed some criteria 
to stop the recursive splitting: 

l Stop if the information gain on all cut points is the 
same, 

l Stop if the number of examples to split is less than 
a certain number (e.g. fourteen), and 

l Limit the number of intervals to be produced to a 
certain number (e.g. eight). 

In C4.5 (Quinlan 93), the information gain approach 
is revised in the following ways. Firstly, each of the 

possible cut points is not the midpoint between the 
two nearest values, but rather the greatest value in the 
entire training set that does not exceed the midpoint. 
This ensures that all border values occur in the train- 
ing data. Each border value in this case is not neces- 
sarily the same as the lower of the two neighbouring 
values since all training examples are examined for the 
selection. Secondly, C4.5 (Quinlan 93) adopts the in- 
formation gain ratio rather than the information gain 
heuristic. Finally, C4.5 does binarization of continu- 
ous attributes, which means only one interval border 
is found for each continuous attribute. 

Fuzzy Borders and Fuzzy Interpretation 
Rather than taking the cut points set up by discreti- 
sation methods as sharp borders, each interval is asso- 
ciated with a specific membership function with fuzzy 
methods. The membership function measures the de- 
gree of a value belonging to the interval. In fact, sharp 
intervals can be treated as a special case of fuzzy bor- 
ders: the membership function for an interval with 
sharp borders takes value 1 iff the value is inside the 
interval and 0 otherwise, and one value can belong to 
one interval only. Figure 1 shows the difference be- 
tween sharp borders and fuzzy ones. 

I’ 
I’ 

/ 1s 

1 

___---------- ----- 
I’ \ \ 

I’ \ \ 
II \ \ 

I’ \ 
Ii 1 \ \ \ 

Figure 1: Sharp and Fuzzy Borders 

In Figure 1, xleft and zrisht are the left and right 
sharp borders of interval Ii respectively, and 1 = 
Gight - x[~J~ is the original length of the interval. s is 
the spread parameter, which indicates the length that 
an interval should be extended at each end. When the 
parameter is 0.1, for example, the interval in Figure 1 
spreads out into adjacent intervals for twenty percent 
of its original length. In HCV (Version 2.0) (Wu et al 
95), s is a user-specified parameter with default being 
0.1. 

The match of an example taking value x on a spe- 
cific attribute domain with an interval is defined as 
the value of the membership function of the interval 
calculated for x. 
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We have implemented three membership functions 
(see Appendix) in HCV (Version 2.0), with which two 
methods for calculating the match degree of a value z 
with a selector1 or conjunction have been implemented. 
The first takes the maximum membership degree of 
the value in all of the intervals involved in the selector. 
The drawback of this method is that if two adjacent 
intervals belong to the same selector, a value close to 
the border between the two intervals will get a very 
low membership value in both, leading to a low overall 
....d...Lm."l.:.. AA.v%.,. ,..*A.. :c:c :, ..*a11 ",...,".J l...eL., n* IIIc;IIIv~LDIIIp UG&;lr;r; C"-al II IV ID w-z,, L"YOLGU ",y U1I-z DG- 

lector. In an attempt to remedy this, the other method 
adds with fuzzy plus2 all the fuzzy membership degrees 
within one selector. 

The HCV (Version 2.0) software 
The HCV algorithm (Wu 93b) is a representative of the 
extension matrix based family of attribute-based in- 
duction algorithms, originating with JR. Hong’s AEl 
(Hong 85). By dividing the positive examples (PE) of 
a specific concept in a given example set into inter- 
secting groups and adopting a set of strategies to find 
a heuristic conjunctive rule in each group which covers 
all the group’s positive examples and none of the neg- 
ative examples (NE), HCV can find a rule in the form 
of variable-valued logic for the concept in low-order 
polynomial time. If there exists at least one conjunc- 
tive rule in a given training example set for PE against 
NE, the rule produced by HCV must be a conjunc- 
tive one. The rules in variable-valued logic generated 
by HCV have been shown empirically to be more com- 
ncart than thn r-Lr;~inn tmmc no. t.h& mdvalmt. rt~risinn yyyu” “1.W.. Y..V UVV.Y.“.. V.““” “11 VIIV.. .dyu.. U.“..” ..““.Y.“.. 
rules produced by the ID3 algorithm (the best-known 
induction algorithm to date) and its successors (e.g., 
C4.5) in terms of the numbers of conjunctive rules and 
conjunctions. 

The HCV (Version 2.0) software is a C++ implemen- 
tation of the HCV algorithm. In this implementation, 
HCV can work with noisy and real-valued domains as 
well as nominal and noise-free databases. It also pro- 
vides a set of deduction facilities for the user to test 
the accuracy of the produced rules on test examples. 
The detailed description of the software is inciuded in 
(Wu et al 95). 

In addition to a set of discretisation facilities, such 
as the Bayesian classifiers and the information gain 

’ A selector in variable-valued logic (Michalsld 75) takes 
the general form 

[XWI 
where X is a variable or attribute, # is a relational operator 
(such as =, #, <, >, 5, and 21, and R is a list of one or 
more values (including discretrsed intervals) that X could 
take on. 

2Fuzzy plus $ is defined as follows: a @ b = a + b - ab. 

heuristic, and the fuzzy borders mentioned above, 
HCV (Version 2.0) permits the user to specify their 
own discretisation of real-valued attributes by provid- 
ing a set of intervals in the structure file, which speci- 
fies the attributes (with their order and value domains) 
and classes used in the data files. This is a very useful 
way for integrating domain information. 

Hybrid Interpretation 
Extensive experiments have been carried out with the 
above fuzzy methods in HCV (Version 2.0) on a large 
set of databases from the University of California 
at Irvine Repository of Machine Learning Databases. 
However, the results were much less encouraging than 
what we expected when we were trying to justify that 
fuzzy borders are generally more reliable than sharp 
borders with numerical domains. 

We have analysed the results by fuzzy methods and 
those with sharp borders, and found that the accuracy 
of the single matches is in general much better than 
nn mat.rh,x ad mnlt.inle matrhee wit.h all m&hncle . ..a . ..I”VY1I u.... ‘.*“.Y’y’-” . ..-““.I”” .,.Y.. .“.I . ..YY..VUY. 
With the multiple match case, the Estimate of Proba- 
bility (Michalski et al. 86) with the Laplacian Law of 
Succession (Niblett and Bratko 87) outperforms other 
methods including fuzzy matching. These observations 
motivated the development of a hybrid interpretation 
in HCV (Version 2.0) with fuzzy matching and the Es- 
timate of Probability. 

The hybrid method works as follows. In the single 
match case, we do not provide any probability analysis 
or fuzzy borders. In the multiple match case, the Esti- _ :_: 
mate of Probability method with sharp borders is used 
to find the best class for the example in question. Only 
in the no match case, fuzzy borders are set up (with 
the polynomial membership function as default) in or- 
der to find a rule which is closest (with the maximum 
membership degree) to the example in question. 

The hybrid method is an option for deduction in 
HCV (Version 2.0). The user can overrule it by spec- 
ifying other methods (such as the combination of the 
Measure of Fit and the Estimate of Probability). 

Conclusions 
As mentioned above, fuzzy methods, although their re- 
sults are significant when combined with other deduc- 
tion methods, do not contribute as much as one can ex- 
pect to the accuracy of deduction on their own. This is 
likely because all the experiments have not been specif- 
ically conducted with domain dependent information. 

Fuzziness is strongly domain dependent. The HCV 
(Version 2.0) software has provided a way for the user 
to specify their own intervals and select their own fuzzy 
functions. This is an important direction to take if we 

328 KDD-95 



would like to achieve significant results with specific 
domains. 
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Appendix: 
Three Fuzzy Membership Functions 
Implemented in HCV (Version 2.0) 

There are three functions in HCV (Version 2.0) which 
can be used to fuzzify interval borders. 

The linear function (see Figure 2) is specified by 

A .kx+lJ =... / b+n 
. . : 

10 -- 

. . 
. . . . . ..* 

. ..’ % % **.. 
._ 

. . . . 
-... 

-. 
- F”uuu memh.dlm Rmct,m _ ..-.. --_ ._.- __.. 

Figure 2: The linear membership function 

the following expressions where s and 1 have the same 
meanings as in Figure 1. 

k=&> 1 
a = -heft + 2, 

1 
b = kx,ie/,t + - 2 

Einrejt(x) = kx + a 

lin,i,ht(x) = -kx + b 

Zin(x) = MAX(0, MTN{l,linr,ft(z),Ein,i,ht(~)}} 

With the polynomial membership function (see Fig- 
ure 3), the fuzzy borders are defined by a third-degree 
polynomial. 

P&lejt (g) = wejtx3 + &+x2 + Cleft2 + 4ejt 

Polyright (z) = %ghtZ3 + bightX2 + Crightx + dright 

where 
1 

aft = aright = -- 
4&)3 

b aide = -3a sidexside 

cside = saside(x:ide - (lS)2) 

d side = -a(&de - 3X:,ide(ls)2 + 2(ls)3) 
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Figure 3: The polynomial membership function 

Figure 4: The arctan membership function 

and side E {left, right), XSi& is the sharp border on 
each side, and I and s are the original interval length 
and the spread respectively. 

if Xleft - IS 5 2 5 X:left + Is 
if Xright - Is < x < Xright + IS 
if xleft + 1s 5 X 5 xTight - t.5 
otherwise 

The third membership function (see Figure 4) is the 
arctan function. The spread of the interval is used to 
indicate the flatness or linearity of the curve, and the 
fuzzy membership of an interval takes the minimum 
of the membership from the left and the one from the 
right. The function used to calculate the membership 
is: 

arctan = M IN{ ;atrnqx -5yt) + ;, 

+an( 2  -;;igh t) + ;I* 

330 KDD-95 


