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Abstract 

We present a comparison of error-based and entropy- 
based methods for discretization of continuous fea- 
tures. Our study includes both an extensive empir- 
ical comparison as well as an analysis of scenarios 
where error minimization may be an inappropriate 
discretization criterion. We present a discretization 
method based on the C4.5 decision tree algorithm and 
compare it to an existing entropy-based discretization 
algorithm, which employs the Minimum Description 
Length Principle, and a recently proposed error-based 
technique. We evaluate these discretization methods 
with respect to C4.5 and Naive-Bayesian classifiers 
on datasets from the UC1 repository and analyze the 
computational complexity of each method. Our re- 
sults indicate that the entropy-based MDL heuristic 
outperforms error minimization on average. We then 
analyze the shortcomings of error-based approaches in 
comparison to entropy-based methods. 
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Although real-world classification and data mining 
tasks often involve continuous features, there exist 
many algorithms which focus on learning only in nomi- 
nal feature spaces (Apte & Hong 1996; Cost & Salzberg 
1993). 

In order to handle continuous features, such algo- 
rithms regularly employ simple discretization methods, 
such as uniform binning of the data, to produce nomi- 
nal features. Such naive discretization of the data can 
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formation may be lost due to the formation of inap- 
propriate bin boundaries. Furthermore, discretization 
itself may be viewed as a form of knowledge discov- 
ery in that critical values in a continuous domain may 
be revealed. It has also been noted by Catlett (1991) 
that for very large data sets (as is common in data 
mining applications), discretizing continuous features 
can often vastly reduce the time necessary to induce 
a classifier. As a result, better discretization methods 
have been developed, but these methods are often not 
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directly compared to each each other, or analyzed for 
when they may be appropriate to employ. 

Dougherty, Kohavi, & Sahami (1995) provided an 
initial comparison of uniform binning, the discretiza- 
tion method proposed by Holte (1993)) and an entropy 
based method proposed by Fayyad & Irani (1993) us- 
ing two induction algorithms: C4.5 (Quinlan 1993) and 
a Naive-Bayesian classifier (Good 1965). Since that 
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method was the most promising method, we compare 
that method to two other methods: C4.5-based dis- 
cretization and error-based discretization. 

The C4.5-based discretization is a new entropy- 
based method that applies C4.5 to each continuous fea- 
ture separately to determine the number of thresholds 
and their values. Hence, we still use an entropy-based 
metric (gain-ratio), but use a different criterion for the 
number of intervals, i.e., determined by pruning as op- 
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The error-based discretization we compare has been 
proposed by Maass (1994) and used in the T2 algo- 
rithm (Auer, Holte, & Maass 1995). Given a num- 
ber of intervals, K, the method constructs the optimal 
discretization of a continuous feature with respect to 
classification error in polynomial time. 

We employ the discretization methods listed above 
in conjunction with C4.5 and Naive-Bayesian classifiers 
as induction algorithms that are run on the discretized 
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method. We also present the computational complex- 
ity of each discretization technique. In light of our em- 
pirical findings, we analyze situations in which error- 
based discretization may be inappropriate. 

Methods 

We briefly describe the induction algorithms and dis- 
cretization methods we compare. 
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Induction Algorithms 

In our experimental study, we test different discretiza- 
tion methods as applied to C4.5 and Naive-Bayesian 
classifiers. C4.5 (Quinlan 1993) is a state-of-the-art 
top-down decision tree induction algorithm. When we 
discretize features, we declare them nominal, thus C4.5 
does a multi-way split on all possible thresholds. 

The Naive-Bayesian induction algorithm computes 
the posterior probability of the classes given the data, 
assuming independence between the features for each 
class. The probabilities for nominal features are es- 
timated using counts and a Gaussian distribution is 
assumed for continuous features (in the undiscretized 
cases). The Naive-Bayesian classifier used in our ex- 
periments is the one implemented in MU++ (Kohavi 
et al. 1994). 

Discretization Algorithms 

We focus on two discretization methods using entropy 
and a recently developed error-based discretization 
method. These methods are described below. A com- 
prehensive review of the existing discretization litera- 
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Fayyad and Irani’s Method First, we consider 
discretization based on an entropy minimization 
heuristic proposed by Fayyad & Irani (1993). The 
method is similar to that of Catlett (1991) but offers a 
more motivated heuristic for deciding on the number 
of intervals. This algorithm uses the class informa- 
tion entropy of candidate partitions to select threshold 
boundaries for discretization. It finds a single thresh- 
old that minimizes the entropy function over all pos- 
sible thresholds; it is then recursively applied to both 
of the partitions induced. The Manamal Descraptaon 
Length Principle (MDLP) is employed to determine a 
stopping criteria for the recursive discretization strat- 
egy. We refer to this algorithm as Ent-MDL. 

In our implementation, each split considered in the 
entropy method takes O(mlogm) time, where m is 
the number of instances and when we assume a fixed 
number of classes. If the method chooses k thresh- 
olds, then at most 2k + 1 threshold computations are 
done. Hence, an upper bound on the time complexity 
is O(kmlog m). This bound could be improved using 
a smarter implementation that would sort only once. 
If we assume that the thresholds form a balanced tree, 
then the time to sort the instances at a given level 
is O(mlogm) and the time bound can be reduced to 
O(log k u mlogm). In practice, we expect the behav- 
ior to be somewhere between these two bounds. The 
space complexity of this method is O(m) because only 
the feature value and label of each instance is stored. 

C4.5 Discretization The C4.5 decision tree induc- 
tion algorithm can also be used as a discretization 
method. In this sense, C4.5 is first applied to each 
continuous feature sepcmrately to build a tree which 
contains binary splits that only test the single con- 
tinuous feature. The C4.5 algorithm uses gain-ratio, 
an entropy-based metric, to determine the partitions 
for discrete intervals. We refer to this new method as 
C,$.S-Disc. 

This method is significantly different from that of 
Fayyad & Irani (1993) in that the latter employs a 
top-down stopping criterion based on MDLP, whereas 
applying C4.5 to a single feature builds a complete 
tree for that feature and then applies pruning to find 
an appropriate number of nodes in the tree (i.e., the 
number of discretization intervals) in a bottom-up ap- 
proach. After the tree for a single feature is built and 
pruned using C4.5, we can simply use the threshold val- 
ues at each node of the induced tree to be the threshold 
values for a discretization of that continuous feature. 
We found that C4.5’~ default pruning confidence (the 
c parameter) was not pruning enough and forced it to 
pruned more heavily in order to prevent forming many 
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1 (down from 25). Minor variations of the c value did 
not have much effect on our experiments. To prevent 
“overfitting” this value, we did not try to optimize it 
for our experiments. 

The time complexity to discretize features using 
C4.5 requires that a full single-feature tree be built 
and then pruned back. The build time dominates the 
pruning time, but even if only k intervals are finally 
returned, many more must be constructed. If we as- 
sume that at least some constant portion p of the in- 
stances (say 10%) are split off each time, then the time 
bound is O(log,~~,-,l m . m log m) because there can 
be at most log,,(,-,) m levels in the tree, each taking 
O(m log m) time. The space complexity of the C4.5 
discretization is O(m) because only the feature value 
and label of each instance must be stored. 

Error-based Discretization Significant work in 
error-based discretization has only recently been car- 
ried out. Maass (1994) developed an algorithm to op- 
timally discretize a continuous feature with respect to 
error on the training set. This algorithm discretizes a 
continuous feature by producing an optimal set of k or 
fewer intervals that results in the minimum error on 
the training set if the instances were to be classified 
using only that single feature after discretization. We 
refer to this algorithm as ErrorMin. The maximum 
number of intervals k is a user-set parameter. 

This method has been implemented as part of the 
T2 induction algorithm (Auer, Holte, & Maass 1995) 

Decision-Tree Q Rule Induction 115 



which induces one or two level decision trees. T2 cir- 
cumvented the difficulty of providing a good justifica- 
tion for the value of Ic by simply setting k to be the 
number of classes plus one. The algorithm employs 
a dynamic programming approach to efficiently com- 
pute the optimal error discretization thresholds. Un- 
der the T2 heuristic the time complexity of the algo- 
rithm is O(m(logm + k2)) and the space complexity 
is O(m + k3), where m is the number of training in- 
stances. 

We used the implementation of this algorithm from 
the T2 induction system, but tried two different ap- 
proaches to setting the value for k. The first approach 
is the one proposed for T2 described above, which we 
call ErrorMin-T2. The second approach is to set k 
to be the same number of intervals proposed by run- 
ning the Ent-MDL method, which allows us to com- 
pare them for the same k values; we call this method 
ErrorMin-MDL. 

Results 
We begin by presenting the experimental results and 
then analyze them. 

Empirical Findings 
Table 1 shows the datasets we chose for our com- 
parison. We chose 17 datasets from the UC1 repos- 
itory (Murphy & Aha 1996) such that each had at 
least one continuous feature. We used lo-fold cross- 
validation to determine error rates for the application 
of each discretization and induction method pair to 
each dataset. It is important to note that in performing 
cross-validation we separately discretized the training 
set for each fold. Discretizing all the data once before 
creating the folds for cross-validation allows the dis- 
cretization method to have access to the testing data, 
which is known to result in optimistic error rates. 

Figure 1 shows the results for C4.5. We report the 
error rate for each discretization method used in con- 
junction with C4.5, normalized by the error rate of 
the original C4.5 run on the data without any prior 
discretization. Thus, the relative error bars below 1.0 
show an improvement over C4.5 without discretization, 
whereas values above 1.0 show a degradation in classi- 
fication performance. More generally, lower values are 
better. Figure 2 shows the analogous table for Naive- 
Bayes, normalized by the error rate for Naive-Bayes 
using the normal distribution (Gaussian) for continu- 
ous features. 

The results for C4.5 show that Ent-MDL does bet- 
ter on average than C4.5 run without discretization, 
lowering error rate in several instances and never sig- 
nificantly increasing it. C4.5 run using Ent-MDL some- 

times significantly outperforms C4.5 alone because dis- 
cretization provides a regularization effect (all the data 
is used to determine the interval boundaries before 
training, as opposed to during training where the 
data is fragmented). The absolute average errors were 
16.01% and 17.50% respectively, with the following p- 
values for the significant differences computed using 
a t-test: Ionosphere improved with p-value = 0.02, 
Glass2 improved with p-value = 0.03, and Cleve im- 
proved with p-value = 0.05. Ent-MDL was, on aver- 
age, also the best performing discretization method of 
the four methods we tried. This is a noteworthy result 
given that this method is entropy-based and does not 
attempt to directly minimize error, our overall objec- 
tive function. Looking at all the discretization algo- 
rithms, error rates increased significantly only in a few 
cases and in many cases they slightly decreased. 

For the ErrorMin method, Hypothyroid and Sick- 
euthyroid degraded significantly. For hypothyroid, the 
relative difference is significant with p-value < 0.0002. 
We examined the discretization methods carefully and 
noted that with only two features: TSH and FTI, the 
error of C4.5 is almost as good as with all the fea- 
tures. The Erroriviin algorithm discretizes the TSH 
feature into only two intervals (for all ten folds) even 
though both heuristics (T2 and MDL) recommended 
three intervals. The reason for this problem is that 
ErrorMin will never create two adjacent intervals with 
the same majority class. We explore the impact of this 
phenomenon in an artificial example. 

As reported in previous work (Dougherty, Kohavi, 
& Sahami 1995), any form of discretization produced 
large improvements over the Naive-Bayesian algorithm 
with the normality assumption for continuous vari- 
ables. Discretization allows for the algorithm to bet- 
ter approximate the true distribution for a continuous 
variable when that distribution is not normal and thus 
computes a more accurate posterior probability for an 
instance to be of a particular class. In the rare cases 
where the continuous features of a domain are in fact 
normally distributed (as is the case with Iris and six 
out of eight features in Diabetes), we find that dis- 
cretieation causes a small increase in error rate, but 
these are much more the exception than the norm. We 
find that when discretization is applied, error rates 
are lower for nine domains, relatively unchanged in 
six domains, and only worse in two domains. All the 
discretization methods performed approximately the 
same, but Ent-MDL was a slight winner on average. 
Also, worth noting is that Naive Bayes run using Ent- 
MDL sometimes significantly outperformed C4.5. For 
example, performance on Anneal, Cleve, and Glass was 
better with p-values less than 0.01, and performance 
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on Breast, Diabetes, Glass, and Heart was better with 
p-values less than 0.05. 

The running times for many of these experiments 
were negligible. The most time intensive datasets to 
discretize using Ent-MDL were Sick-euthyroid and Hy- 
pothyroid, which each took about 31 seconds per fold 
on an SGI Challenge. The longest running time for Er- 
rorMin was encountered with the Glass dataset which 
took 153 seconds per fold to discretize, although this 
was much longer than any other of the datasets exam- 
ined. The ErrorMin method could not be run on the 
Letter domain with 300MB of main memory. 

Error vs. Entropy 

To better understand why the entropy-based methods 
outperformed ErrorMin on some datasets, and why 
ErrorMin would not discretize to the suggested num- 
ber of intervals, we present a simple example to show 
the shortcomings of error-based discretization. 

Consider a Boolean target function f of two continu- 
ous variables, Xr and X2 in the range [0, 11, defined as: 
f(Xl,Xz) = ((Xl < 0.4)A(Xa < 0.75))V(Xz < 0.25). 

The function and its nroiection on Xx are shown in r--s----- 
Figure 3. Note that f has only two intervals of interest 
for X1 (with threshold 0.4), but three intervals of inter- 
est for X2 (with thresholds 0.25 and 0.75). ErrorMin 
is unable to form the three intervals for X2. For this 
function, all instances which have Xs < 0.25 will be 
positive whereas all instances which have X2 >_ 0.75 
will be negative. This leaves a large middle interval 
(0.25 2 X2 < 0.75) where instances will either be la- 
beled positive or negative depending on their value for 
feature XI. Assuming a uniform distribution of in- 
stances, the middle interval will generally have more 
negative instances. As a result, we will have a ma- 
jority of negative instances in two adjacent partitions, 
which is problematic for ErrorMin as the following ob- 
servation shows. 

Observation: ErrorMzn will never generate two ad- 
jacent intervals with the same label. 

The reason is that these two intervals can always be 
collapsed into one interval with no degradation in the 
error. We can thus see an inherent limitation of Er- 
rorMin. The implication is that out of eight possi- 
ble labelings for three intervals in a two-class problem, 
only two are possible with ErrorMin. Entropy-based 
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partition the space as long as the class distribution be- 
tween the different partitions is different. 

We generated 5,000 instances (uniformly randomly 
distributed) from this target concept and ran lo-fold 
cross-validation using ErrorMin-T2 and Ent-MDL. 
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Figure 3: 500 instances from the artificial target concept 
f (top) and its projection on the second feature (bottom). 
Note that in the projection all instances below 0.25 are one 
class, all instances above 0.75 are of the other, and in the 
range 0.25-0.75, they are mixed. 

The ErrorMin- TZ heuristic recommends three inter- 
vals for each feature because this is a two-class prob- 
lem. For X1, ErrorMin-T2 returns three intervals (al- 
though there are really only two) in nine out of the ten 
folds. The second threshold was always very close to 
the edge at 1.0. As mentioned above, ErrorMin-T2 re- 
turns only two intervals for Xs in all ten folds, although 
there are three. The Bayes-error rate for the partitions 
returned by ErrorMin-T2 was 10.24%. Ent-MDL, on 
the other hand, found the correct number of partitions 
and with thresholds very close to the true values. The 
Bayes-error rate for the partitions returned by Ent- 
MDL was 0.02%. 

We conclude that although error-minimization tech- 
n;nr,on ~lwc,xra Gnrl th.a mAmc.1 n,,tit;.-m tn rnrlr.rn I-ho “Iyubu Lu‘.“UJU 11.111 ““C. “y”““cy‘ IJCM Y‘Y‘““ U” I.dUU.db ““b 

training-set error for each feature, entropy-based meth- 
ods might fare better in practice because of feature 
interaction: as long as the distribution is different 
enough, a threshold will be formed, allowing other fea- 
tures to make the final discrimination. 
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Dougherty, Kohavi, & Sahami (1995) describe three 
axes along which discretization methods can be mea- 
sured: supervised vs. unsupervised, global vs. local, and 
static vs. dynamic. The methods examined here are 
supervised, as they make use of the instance label in- 
formation while performing discretization, whereas un- 
supervised methods, such as equal width binning, do 
not. We did not compare unsupervised methods as the 
previous work noted that supervised methods have a 
tendency to work better in practice. 

The distinction between global and local methods 
stems from when discretization is performed. Global 
discretization involves discretizing all continuous fea- 
tures prior to induction. Local methods, on the other 
hand, carry out discretization during the induction 
process, where particular local regions of the instance 
space may be discretized differently (such as when C4.5 
splits the same continuous feature differently down dif- 
ferent branches of a decision tree). All the methods 
compared here are applied globally. In future work 
we aim to measure the effectiveness of these methods 
when applied locally. 

Discretization methods often require a parameter, 
k, indicating the maximum number of intervals to pro- 
duce in discretizing a feature. Static methods, such as 
those examined in this work, perform one discretiza- 
tion pass of the data for each feature and determine 
the value of k for each feature independent of the other 
features. Dynamic methods conduct a search through 
the space of possible k values for all features simul- 
taneously, thereby capturing interdependencies in fea- 
ture discretization. During the course of this study, 
we looked at dynamic versions of several discretization 
methods, using the wrapper approach (John, Kohavi, 
& Pfleger 1994) as a means of searching through the 
space of the number of discretization intervals for all 
variables simultaneously. We found no significant im- 
provement in employing dynamic discretization over 
its static counterpart. 

Our results show that Ent-MDL is slightly superior 
to the other methods for the datasets used. We have 
also described why ErrorMin methods are inappropri- 
ate in cases where features interact, and analyzed the 
time and space complexity of the different algorithms. 
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