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Abstract 

Sequences of events are an important special form 
of data that arises in several contexts, including 
telecommunications, user interface studies, and 
epidemiology. We present a general and flex- 
ible framework of specifying classes of generalized 
episodes. These are recurrent combinations of 
events satisfying certain conditions. The frame- 
work can be instantiated to a wide variety of 
applications by selecting suitable primitive con- 
ditions. We present algorithms for discovering 
frequently occurring episodes and episode rules. 
The algorithms are based on the use of minimal 
occurrences of episodes; this makes it possible 
to evaluate confidences of a wide variety of rules 
using only a single analysis pass. We present em- 
pirical results on t,he behavior of t.he algorithms 
on events stemming from a WWW log. 

Introduction 
Sequences of events are a common form of data that can 
contain important knowledge to be discovered. Ex- 
amples of such data are telecommunications network 
alarms, user interface actions, crimes committed by 
a person, occurrences of recurrent illnesses, etc. Re- 
cently, interest in knowledge discovery from sequences 
of events has increased: see, e.g., (Dousson, Ga- 
borit,, & Ghallab 1993; Laird 1993; Wang et al. 1994; 
Morris, Khatib, & Ligozat 1995; Bettini, Wang, Sr; Ja- 
jodia 1996). 

In a previous paper (Mannila, Toivonen, & Verkamo 
1995) we showed how sequences of events can be ana- 
lyzed by locating frequently occurring episodes from 
them. An episode is a combination of events with a par- 
tially specified order; it occurs in a sequence, if there 
are occurrences of the events in an order consistent 
with the given order, within a given time bound. 

In a telecommunication application, the rules found 
using the methods of (Mannila, Toivonen, & Verkamo 
1995) have proven to be useful and they have been in- 
tegrated in alarm handling software (HritGnen et al. 
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1996). However, application studies both in the tele- 
communications domain and elsewhere have shown that 
there is a need for extensions to the methods. 

In this paper we study what types of episodes can 
be efficiently discovered from long sequences of events. 
We present a simple and powerful framework for build- 
ing episodes out of predefined predicates, and describe 
how such episodes can be discovered efficiently. The 
framework allows one to express arbitrary unary con- 
ditions on the individual events, and to pose binary 
conditions on the pairs of events, giving one the possib- 
ility to exactly target the types of event combinations 
that are interesting in the applications. 

The algorithms described in the paper are based on 
mznzm,al occurrences of episodes. In addition to being 
simple and efficient, this formulation has the advantage 
that, t,he confidences and frequencies of rules wit#h dif- 
ferent, time bounds can be obtained quickly, i.e., there 
is no need to rerun the analysis if one only wants to 
modify the time bounds. In case of complicated epis- 
odes, the time needed for recognizing the occurrence of 
an episode can be significant; the use of stored minimal 
occurrences of episodes eliminates unnecessary repeti- 
tion of the recognition effort. 

Episodes: patterns in event sequences 
We use a fairly standard way of modeling events in 
time. Given the set R = {Al, . . . , A,} of event attrib- 
utes with domains DAM,. . . , DA,, an event e over R is 
a (m + 1)-tuple (al, . . . , alnr t), where ai E DA, and t 
is a real number, the tame of e. We refer to the time of 
e by e.T, and to an attribute A E R of e by e.A. An 
event sequence S is a collection of events over R, i.e., 
a relation over RU {T}, where the domain of attribute 
T is the set of real numbers. 

An epasode P on variables {xl,. . . , xk}, denoted 
P(Xl,..., xk), is a conjunction 

i\ Pi(%,Zi), 
i=l 
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where y%,zi E {xi,..., xk} are event variables, and 
each conjunct po2 (x, y) h as one of the forms LY(z.A), 
P(x.A,y.B), or x.T 5 y.T. Here A and B are event 
attributes, o is a predefined unary predicate on DA, 
and p is a predefined binary predicate on DA x Dg. 
We assume that the available unary predicates include 
testing for equality with a constant, and that the binary 
predicates include equality. The size ] P ] of an episode 
P is the number of conjuncts not involving time in P. 

Example 1 In the telecommunications domain, event 
attributes are, e.g., type, module, and sewerzty, indicat- 
ing the type of alarm, the module that sent the alarm, 
and the severity of the alarm, respectively. An episode 
might look as follows: 

x.type = 2356 A y.type = 7401, 

or 
x. type = 2356 A y.type = 7401 A 
x.T 2 y.T A x,module = y.module. 

The first episode indicates that two alarms of type 2356 
and 7401 have to occur, whereas the second says that 
alarm 2356 has to precede 7401 and that the alarms 
have to come from the same module. Specification of, 
e g., this condition was not possible in the framework 
of (Mannila, Toivonen, & Verkamo 1995). 

The episode 

x.type = 2356 A y.type = 7401 A 
nezghbor(x. module, y.module) 

captures the situation when alarms of type 2356 and 
7401 are sent from adjacent modules. 0 

Example 2 In analyzing a WWW log, the events have 
attributes page (the accessed page), host (t,he accessing 
host), and time. An example episode is 

x.page = p1 A y.page = p, A x.host = y.host, 

indicating accesses to p, and p, from the same host. 
n u 

An episode P(xl, . . . , xk) occurs in a sequence of 
events S = (er,..., e,), at znterval [t, t’], if there are 
disjoint events ej, , . . . , elk such that P(e,, , . . , eJk ) is 
true,l and t 5 mz’n,{ej, .T} and t’ 2 max,{eJ, .T}. 

Note that one could write an SQL query that, t,ests 
whether an episode of the above form occurs in a se- 
quence, when the sequence is represented as a relation 
over R U {T}. The evaluation of such a query would, 
however, be quite inefficient, as the sequence form of 

‘For reasons of brevity we omit the standard formal “There is a number of variations for the relationship 
definition of satisfaction of a formula, and just use t.he nota- between t.he intervals; e.g., rules that point backwards in 
tion P(e3,, . . . , eJk) to indicate this. t.ime can be defied in a similar way. 

the data could not easily be used. The recent work 
on sequence data m databases (see (Seshadri, Livny, & 
Ramakrishnan 1996)) p rovides interesting openings to- 
wards the use of database techniques in the processing 
of queries on sequences. 

An occurrence of an episode P at [t, t’] is mz’namal 
if P does not occur at any proper subinterval [u, u’] C 
[t, t’]. The set of (intervals of) minimal occurrences of 
an episode P is denoted by ma(P): 

ma(P) = Ut,t’l I [t,t’l is a minimal occurrence of P}. 

An epzsode rule is an expression P [V] + Q [WI, 
where P and Q are episodes, and V and W are real 
numbers. The informal interpretation of the rule is that, 
if episode P has a minimal occurrence at interval [t, t’] 
with t’ -t 5 V, then episode Q occurs at interval [t , t”] 
for some t” such that t” - t 5 W.’ 

Example 3 An example rule in the WWW log is 

x.page = p1 A y.page = p2 A 

x.host = y.host [60] 

+ x.page = p1 A y.page = p, A 

z.page = p3 A x.host = y host r\ 

y.host = z.host [120] 

expressing that if some host accesses pages pr and pz 
within a minute, page ps is likely to be accessed from 
the same host within two minutes. 0 

An episode P(xl, . . .) xk) is seraal, if P includes con- 
juncts enforcing a tot,al order between the xi’s. The 
episode is parallel, if there are no conditions on the re- 
lative order of the events. 

The frequency freq(P) of an episode P ill a given 
event. sequence S is defined as the number of minimal 
occurrences of P in the sequence S, freq( P) = ]mo( P) 1. 
Given a frequency threshold man-fr, an episode P is 
frequent if freq(P) 1 min-fr. 

The epasode rule dascovery task can now be stat,ed 
as follows. Given an event sequence S, a class S of 
episodes, and time bounds I/ and W, find all frequent 
episode rules ofthe form P [V] + Q [WI, where P, Q E 
E. 

To make episode rule discovery feasible, t,he class of 
episodes has to be restrict,ed somehow. We consider the 
restricted but. interestmg task: of discovermg episodes 
from the following classes Es (l?, A) and &p (r , A) The 
class Es(l?, A) consists of serial episodes with unary 
predicates from r and binary predicates from A. The 
class Ep(r, A) is defined to consist of parallel episodes, 
with predicates from l? and A. 
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Differences to the previous model The episodes 
described in (Mannila, Toivonen, & Verkamo 1995) 
were based on conditions on the event types. That 
is, of our examples only the first episode of Example 1 
would be representable within that framework. In the 
applications it is necessary to be able to state both more 
relaxed and more restricted episode specifications by 
hm,;nm or\nA;t;r,no ,,l,t,rl +r\ a n thn nn+...nnlr +A..- l‘u.” ‘1’6 cl”l,~,“,“llU I~l.zL”~U U”, c.s*, lJL,G II~lJ”Y”IR b”p”- 

logy. That is, binary predicates are necessary. Also, 
there was only one fixed time bound associated with 
a rule. In the applications it is preferable to have two 
bounds, one for the left-hand side and one for the whole 
rule, such as “if A and B occur within 15 seconds, then 
C follows within 30 seconds”. 

One notable difference in the algorithms is that here 
we are able to give methods that can be used to com- 
pute the confidences of rules of the above form for vari- 
ous values of the time bounds; the previous methods 
had to make one pass through the data for each time 
bound. There are also some smaller technical differ- 
ences, e.g., the exact definition of the confidence of a 
rule is somewhat changed (and is now more natural, it 
seems to us). 

The work most closely related to ours is perhaps 
(Srikant & Agrawal 1996). They search in multiple se- 
quences for patterns that are similar to the serial epis- 
odes of (Mannila, Toivonen, & Verkamo 1995) with 
some extra restrictions and an event taxonomy. Our 
mpt.hnrlc ran he avtenrla-l 4th ca tavnnnmv hv o rI;v- .-.vY**vuu VUll U” “I.Y”.lUVU lll”ll u “U’L”“““‘J UJ CA L&II- 
ect application of the similar extensions to association 
rules. Also, our methods can be applied on analyzing 
several sequencies; there is actually a variety of choices 
for the definition of frequency of an episode in a set of 
sequencies. 

There are also some interesting similarities between 
the discovery of frequent episodes and the work done 
on inductive logic programming (see, e.g., (Muggleton 
1992)); a noticeable difference is caused by the sequen- 
tiality of the underlying data model, and the emphasis 
on time-iimited occurrences. Similariy, the probiem of 
looking for one occurrence of an episode can be viewed 
as a constraint satisfaction problem. 

Finding minimal occurrences of 
frequent episodes 

In this section we describe the algorithms used to loc- 
ate the minimum occurrences of frequent episodes from 
the classes Cp and Es. The algorithms are based on the 
idea of first locating minimal occurrences of small epis- 

1~ oaes, and using this information to generate candidates 
for possibly frequent larger episodes. 

An episode P is sample, if it includes no binary pre- 
dicates. Recognition of simple episodes turns out to 

be considerably easier than for arbitrary episodes, as 
is shown by the following two theorems. 

Theorem 4 Finding whether a simple serial or paral- 
lel episode P has an occurrence in an event sequence 
S can be done in time IPllSl. q 

Theorem 5 Finding whether a serial or parallel epis- 
,A, D h,, .,n r\nm%m,.nmrn :, e.m rrrr--+ --I..---- C :- ^_ “Urj 1 IIOX? au “~~UAI~IILS 111 au C”t;lllJ acquallLa 0 Ib all 

NP-complete problem. q 

One should not be discouraged by the NP- 
completeness result, however; the situations used in the 
reduction are highly contrived. It seems that in prac- 
tice episodes similar to the ones in our examples can 
be recognized and discovered fast. 

We move to the discovery alprithm for simple epis- 
odes. Given an episode P = As=1 (pi(yi, 2%)) a subepas- 
ode PI of P determined by a set I 5 (1,. . .,k} is 
simnlv P, - A -/n.IQr. 7 1 l-ho hcanrr n,.nncl&nc nf “..“yL”, . 1 - I \tEl ‘i’z\Y~> “al. .LIIU ULWIS., yrvyu YIb,o YI 

simple episodes are given in the following lemmas. 

Lemma 6 (i) If an episode P is frequent in an event 
sequence S, then all subepisodes PI are frequent. (ii) 
If [t,t’] E ma(P), then PI occurs in [t,t’] and hence 
there is an interval [tr,t$] E mo(PI) such that t 5 tI 5 
t'l < t’. 0 

Lemma 7 Let P be a simple serial episode of size k, 
and let [t, t'] E ma(P). Then there are subepisodes PI 
and PZ of P of size k - 1 such that for some tr E [t, t’[ 
and tz Ejt,i’j we have [t,trj E mo(Pr j and [tz,t’j E 
mo(P2). q 

Note that Lemma 7 does not hold for general epis- 
odes: a minimal occurrence of a general episode does 
not necessarily start .with a minimal occurrence of a 
subepisode. 

Lemma 8 Let P be a simple parallel episode of size k, 
and let [t, t'] E ma(P). Then there are subepisodes PI 
andPzofPofsizek-lsuchthatforsometi,t2,ti,t/2E 
[t,t'] we have [tl,t{] E mo(Pl) and [tz,tL] E mo(Pz), 
and furthermore t = min{t 1, t2) and t’ = max{ti , tk}. 

0 

We use the same algorithm skeleton as in the dis- 
covery of association rules (Agrawal & Srikant 1994; 
Mannila, Toivonen, & Verkamo 1994). Namely, having 
found the set Lk of frequent simple episodes of size k, 
we form the set ck+l of candidate episodes of size k+l, 
i.e., episodes whose all subepisodes are frequent, and 
then find out which candidate episodes P E Ck+l are 
really frequent by forming the set ma(P) 

Aigorithm 9, beiow, discovers aii frequent simpie 
serial episodes. The discovery of simple parallel epls- 
odes is similar; the details of steps 9 and 10 are a bit. 
different. 
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Algorithm 9 Discovery of frequent simple serial epis- tions. A solution is to use in the beginning other pat- 
odes. tern recognition methods. 
Input: An event sequence 5, unary predicates l? and 
binary predicates A, and a frequency threshold min-fr. 
Output: All frequent simple episodes from Cs(l?, A) 
(and their minimal occurrences). 
Method: 

Finding general episodes The recognition problem 
for general episodes is considerably harder than that 
for simple episodes. The difficulty is caused by the 
failure of Lemma 7. Consider as an example the event 
sequence 1. 

2. 
3. 
4. 
5. 
6. 

7. 
8. 
9. 
10. 

11. 
12. 
13. 
14. 

Cl := the set of episodes of size 1 in Es((r, A); 
for all P E Ci compute ma(P); 
Li := {P E Ci ] P is frequent}; 
i := 1; 
while Le # 0 do 

ci+1 := {P [ P E Es@‘, A), all sub- 
episodes of P are in La}; 

i:=i+l; 
for all P E Ci do 

select subepisodes PI and P2; 
compute ma(P) from mo(Pl) and 

mo(P2); 
od; 
Li := {P E Ci ] P is frequent}; 

od; 
for all i and all P E L,, output P and ma(P); 

Finding the minimal occurrences For simple 
serial episodes, the two subepisodes are selected on 
line 9 so that PI contains all events except the last 
one and P2 in turn contains all except the first one. PI 
and P2 also contain all the predicates that apply on the 
events in the episode. The minimal occurrences of P 
are then computed on line 10 by 

mo( P) = {[t , u’] ] there are [t , t’] E mo( PI) and 
[u, u’] E mo(P2) such that t < u, 

t’ < u’, and [t , u’] is minimal}. 

Note the correspondence to Lemma 7. 
For simple parallel episodes, the subepisodes PI and 

Pz contain all events except one; the omitted events 
must be different. Again, PI and Pz contain all the 
applicable predicates. See Lemma 8 for the idea of how 
to compute the minimal occurrences of P. To optimize 
the efficiency, ] mo( PI) I+ I mo( Pp,) I should be minimized. 

The minimal occurrences of a candidate episode P 
can be found in a linear pass over the minimal oc- 
currences of the selected subepisodes PI and P2. The 
time required for one candidate is thus 0( ]mo( PI) 1 + 
!mo(Pz)! + !mo(P)!), which is O(n), where n is the 
length of the event sequence. 

While minimal occurrences of episodes can be loc- 
ated quite efficiently from minimal occurrences, the size 
of the data structures may be even larger than the ori- 
ginal database, especially in the first couple of itera- 

(mm, hostI, 1) ( , vvel, host2,2), (vw2, hosf2,3), 
(wge2, hostl, 4)) (ww3, ho&, 5)) 

and the episode P 

x.host = y.host A y.host = z.host. 

The minimal occurrences of the two (actually equival- 
ent) subepisodes x.host = y.host and y.host = z.host of 
P are at [2,3], whereas ma(P) = {[I, 51). 

While the minimal occurrences of a general episode 
cannot be built as easily from the minimal occurrences 
of subepisodes as for simple episodes, the occurrence 
of subepisodes is still a necessary condition for the oc- 
currence of the whole episode (Lemma 6). We use 
this property to implement a simple exhaustive search 
method for finding minimal occurrences of general epis- 
odes; the use of minimal occurrences of subepisodes 
guarantees that the exhaustive search has to be applied 
only to small slices of the long event sequence. 

Finding minimal occurrences of general epis- 
odes In line 9 of Algorithm 9 choose incomparable 
subepisodes PI and P2 of P such that jmo(P1)1 + 
Imo(Pz) I is as small as possible. Then, for each pair 
of intervals [tl,ti] E mo(Pi) and [tz, ta] E mo(P2) such 
that max(ti, tk) - min(ti, t2) < W search for a min- 
imal occurrence of P in the time interval [max(t{ , ti) - 
W,min(ti,t~)+W]. H ere W is the upper bound on the 
length of minimal occurrences. The search can be done 
using basically exhaustive search, as the sizes of epls- 
odes and the number of events in such small intervals 
are small. We omit the details. 

A problem similar to the computation of frequencies 
occurs in the area of active databases. There triggers 
can be specified as composite events, somewhat similar 
t,o episodes. In (Geham, Jagadish, & Shmueli 1992) it 
is shown how finite automata can be constructed from 
composite events to recognize when a trigger should be 
fired. This method is not practical for episodes since 
the deterministic automata could be very large. 

Finding confidences of rules 
In this section we show how the information about min- 
imal occurrences of frequent episodes can be used to 

Mining with Noise and Missing Data 149 



Number of frequent episodes and informative rules 
man& Time bounds U (s) 

15 30 F)n cl-l 
1131’ 

60 120 I lr n,l nn *‘-.A au, vu 
5899’ 

10, JU, ou, 1m 
50 617 2278 1982 7659 5899 14205 

100 418 217 739 642 1676 2191 1676 3969 
250 111 57 160 134 289 375 289 611 
500 46 21 59 49 80 87 80 138 

Table 1: Experimental results: number of episodes and rules 

obtain confidences for various types of episode rules 
without looking at the data again. 

Recall that an episode rule is an expression P [V] + 
Q [VVj, where P and Q are episodes, and V and W 
are real numbers To find surh rules, first note that 
for the rule to be interesting, also the episode P A Q 
has to be frequent. So rules of the above form can be 
enumerated by looking at all frequent episodes M = 
~ic~aa, and then looking at all partitions of I as I = 
J U K, and forming the left and right-hand sides as 
subepisodes: P = MJ and Q = MI<. The evaluation 
of the confidence of the rule P [V] + Q [W] can be 
aone ir? nne T-,RGQ t.hnwlch t.ho rt.nwtmrm mnlPj and 1-w- “..- .,“b” Y&IV YY~..IVU.“U “““\’ , 

ma(Q), as follows. 
For each [t,t’] E ma(P) with t’ - t < V, locate the 

minimal occurrence [s, s’] of Q such that t 5 s and 
[s, s’] is the first interval in ma(Q) with this property. 
Then check whether st - t 2 W. 

The time complexity of the confidence computation 
is 0( 1 mo( P) I + I ma(Q) I). If one wants t,o find t,he con- 
fidences of rules of the form P [V] + Q [W] for all 
V, W E U for some set of times U, then by usmg a 
table of size IU12 one can in fact evaluate all these in 
time O(imo(Pji+imo(Qji+iUj2j. For reasons ofbrev- 
Ity we omit the details. 

Experimental results 
We have experimented with t,he methods using as test 
dat.a a part of the WWW server log from t,he Depart- 
ment of Computer Science at the University of Hel- 
sinki. The log contains requests to see WWW pages 
at the department’s server; such requests can be made 
by WWW browsers at any host in the Internet.. 

An mwnt. in t.hhp ln,~ ,-ran he CPP,, 2~ rnnciat;nm nf the _--- -. -__1 -.. “.-” “b YUll -1 U-Ill U” ““““L”““lb “1 YI1b 
attributes page, host, and tzme. The number of events 
in our data set is 116308, and it covers three weeks 
in February and March, 1996. In total, 7634 differ- 
ent pages are referred to from 11635 hosts Requests 
for images have been excluded from consideration. For 
simplicity, we only considered t,he page and trme at- 
tributes; we used relatively short, time bounds to re- 
duce the probability of unrelated requests cont,ributing 

Execution times (s) 
m’)rl k T;mo ha..n,lo TT l-1 “0”‘“-J’ Illllcl V”Lul.UU ” (U] 

15,30 I30,60 160,120 1 15,30,60,120 

Table 2: Experimental results: execution times 

to the frequencies. 
We experimented with frequency thresholds min-fr 

bet,ween 50 and 500, and with time bounds between 
15 s and 2 min. (In three cases we used two time 
bounds, i.e., U = {V, W}, and in one case we searched 
simultaneously for all combinations of four time bounds 
in U.) Episode rules discovered with t,hese paramet,ers 
should reveal the paths through which people navigate 
when they know where they want to go. 

Table 1 shows the number of frequent episodes and 
the number of informative rules with confidence at, 
ieast 0.2. (A ruie with time bounds V, W is considered 
informative if its confidence is higher than with time 
bounds V’, W’ where V’ < V and W’ > W.) 

The number of frequent episodes is in the range from 
40 to 6000, and it seems to grow rather fast. when the 
frequency threshold becomes lower. Our dat,a is relat- 
ively dense, and therefore the effect. of the t,ime bounds 
on the number of frequent. episodes is roughly 1inea.r. 
The largest frequent, episodes consist of 7 eve&. Note 
that the method is robust in the sense that. a change 
in one parameter extends or shrinks the collection of 
frequent episodes but does not replace any. 

Table 2 shows the execution times for t,he experi- 
ments on a PC (90 MHz Pentium, 32 MB memory, 
Linux operating system). The data resided in a 3.0 MB 
flat text file. 

The experiments show that the method is efficient,. 
The execution times are between 50 s and 5 min Not,e, 
in particular, that searching for episodes wldh several 



different time bounds (ihe right-most columns in the 
tables) is as fast as searching for episodes with only 
the largest time bound. Minimal occurrences are thus 
a very suitable representation for queries with different 
time bounds. 

Following are some examples of the episode rules 
found (we use the titles of the pages here, or their Eng- 
lish translations, which should be self-explanatory). 

“Department Home Page”, “Spring term 96” [15 s] 
j. “Classes in spring 96” [30 s] (confidence 0 83). In 
other words, in 83 % of the cases where the depart- 
mental home page and the spring term page had been 
accessed within 15 seconds, the classes page was re- 
quested within 30 seconds (that is, within 30 seconds 
from the request for the departmental home page). 

“Research at the department” * “Staff of the de- 
partment” [2 min] (confidence 0.29). (There is no 
time bound for the left-hand side since there is only 
one event .) 

“Department Home Page”, “Department Home Page 
in Finnish”, ‘(Classes in spring 96”, “Basic courses” 
[15 s] + “Introduction to Document Preparation 
(IDP)” , “IDP Course Description”, “IDP Exercises” 
[2 min] (confidence 0.42). 

Experiments with the data set of (Mannila, 
Toivonen, &L Verkamo 1995) show that - with com- 
parable parameters - the present method is as fast or 
faster than the one presented in (Mannila, Toivonen, ” -_ . 
& Verkamo 1995j. ‘The new method has, however, two 
important advantages: the rule formalism is more use- 
ful, and rules with several different time bounds can be 
found with the same effort. 

Concluding remarks 

We have presented a framework for generalized epis- 
odes, and algorithms for discovering episode rules from 
sequences of events. The present framework supplies 
sufficient power for representing desired connections 
between events. 

The work presented here is in many ways prelimin- 
ary. Perhaps the most important extensions are facilit- 
ies for rule querying and compilation, i.e , methods by 
which the user could specify the episode class in high- 
level language and the definition would automatically 
be compiled into a specialization of the algorithm that 
would take advantage of the restrictions on the episode 
class. Other open problems include a theoretical ana- 
lysis of what subclasses of episodes are recognizable 
from episodes in polynomial time, and the combination 
of episode techniques with intensity models. 
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