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Abstract 

In data mining the goal is to develop methods for dis- 
covering previously unknown regularities from data- 
bases. The resulting models are interpreted and eval- 
uated by domain experts, but some model evaluation 
criterion is needed also for the model construction pro- 
cess. The optimal choice would be to use the same 
criterion as the human experts, but this is usually im- 
possible as the experts are not capable of expressing 
their evaluation criteria formally. On the other hand, 
it seems reasonable to assume that any model pos- 
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captures some structure of the reality. For this reason, 
in predictive data mining the search for good models 
is guided by the expected predictive error of the mod- 
els. In this paper we describe the Bayesian approach 
to predictive data mining in the finite mixture model- 
ing framework. The finite mixture model family is a 
natural choice for domains where the data exhibits a 
clustering structure. In many real world domains this 
seems to be the case, as is demonstrated by our exper- 
imental results on a set of public domain databases. 

Data mining aims at extracting useful information from 
databases by discovering previously unknown regular- 
ities from data (Fayyad et al. 1996). In the most 
general context, finding such interesting regularities is 
a process (often called knowledge discovery in data- 
bases) which includes the interpretation of the extrac- 
ted patterns based on the domain knowledge available. 
Typically the pattern extraction phase is performed by 
a structure searching program, and the interpretation 
phase by a human expert. The various proposed ap- 
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structure to be discovered (association rules (Agrawal 
et al. 1996), Bayesian networks (Spirtes, Glymour, 
& Scheines 1993), functional dependencies (Mannila & 
Raihg 1991), prototypes (Hu & Cercone 1995) etc.), 
and in the search methodology used for discovering 
such structures. A large body of the data mining re- 
search is exploratory in nature, i.e., search for any kind 
of structure in the database in order to understand the 
domain better. 

Akin to the practice of multivariate exploratory ana- 
lysis in social sciences (Basilevsky 1994), much of the 
work in the data mining area relies on a task-specific 
expert assessment of the model goodness. We depart 
from this tradition, and assume that the discovery pro- 
cess is performed with the expected prediction capabil- 
ity in mind. Consequently, we are trying to answer the 
question “Which of the models best explains a given 
database?” by addressing the (in many practical cases 
more pertinent) question “Which of the models yields 
the best predictions for future observations from the 
same process which generated the given database?” in 
our work the evaluation criteria in the model construc- 
tion process is based directly on the expected predictive 
capability of the models, not on more implicit criteria 
embedded in the search algorithm. The use of predict- 
iveness as a model selection criteria can be justified by 
the observation that a model with a good predictive 
capability must have captured some regularities that 
also reflect properties of the data generating process. 
We call this approach predictive data mining. Predict- 
ive data mining is relevant in a wide variety of applica- 
tion areaS from credit card fraud detection and sales 1____ -2_-L _- ____ -----1 -1_- __-2-- --1--1____ L_- c-__I$. 
support systems to industrial process control. Our 
current work is motivated by large scale configuration 
problems (e.g., building large generators) where prop- 
erties of new configurations can be predicted using the 
regularities in the existing configuration database. 

For estimating the expected predictive performance, 
there exist theoretical measures (see e.g., (Wallace & 
Freeman 1987; Rissanen 1989; Raftery 1993)) which 
offer a solid evaluation criterion for the models, but 
such measures tend to be hard to compute for high- 
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era1 approximations to these criteria could be used, 
but many of them are inaccurate with small data- 
bases as pointed out in (Kontkanen, Myllymtiki, & 
Tirri 1996a). Alternatively we can choose some pre- 
diction problem, and evaluate prediction error empir- 
ically by using the available database. An example of 
such a prediction task would be to predict an unknown 
attribute value of a data item, given a set of some 
other instantiated attributes. It should be observed 

From: KDD-96 Proceedings. Copyright © 1996, AAAI (www.aaai.org). All rights reserved. 



that we do not assume that the set of predicted at- ation from the sample database in the model con- 
tributes are fixed in advance during the discovery pro- struction process. Bayesian approach also makes a 
cess - prediction can be seen as a pattern completion clear separation between the search component and the 
task, where the errors in incomplete pattern comple- model measure, and allows therefore modular combin- 
tion can be used as a model measure for the goodness ations of different search algorithms and model evalu- 
of the modei. in this work we adopt the empirical ap- ation criteria. Our approach is akin to the AutoCiass 
proach and use the crossvalidation method (Stone 1974; system (Cheeseman et aE. 1988), which has been suc- 
Geisser 1975) for model selection on a set of public do- cessfully used for data mining problems, such as Land- 
main databases. Sat data clustering (Cheeseman & Stutz 1996). 

In the work presented below we have adopted the ba- 
sic concepts from the general framework of exploring 
computational models of scientific discovery (Shrager 
& Langley 1990). G iven a database, we do not at- 
tempt to discover arbitrary structures, but restrict the 
possible patterns (models) to be members of a pre- 
defined set, which we call the model space. Examples 
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ciation rules with a fixed set of attributes, or a set of 
all finite mixture distributions (Everitt & Hand 1981; 
Titterington, Smith, & Makov 1985). A choice of a 
model space necessarily introduces prior knowledge to 
the search process. We would like the model space to be 
simple enough to allow tractable search, yet powerful 
enough to include models with good prediction capab- 
ilities. Therefore in the current work we have restricted 
ourselves to a simple, computationally efficient set of 
probabilistic models from the family of finite mixtures. 
Intuitively this choice reflects our a priori assumption 
that the real life data is generated by several distinct 
processes, which is revealed as a cluster structure in 
the data. 

A finite mixture model for a set of random variables 
is a weighted sum of a relatively small number of inde- 
pendent mixing distributions. The main advantage of 
using finite mixture models lies in the fact that the com- 
putations for probabilistic reasoning can be implemen- 
ted as a single pass computation (see the next section). 
Finite mixtures have also a natural means to model 
multimodal distributions and are universal in the sense 
that they can approximate any distribution arbitrarily 
close as long as a sufficient number of component dens- 
ities can be used. Finite mixture models can also be 
seen to offer a Bayesian solution to the case matching 
and case adaptation problems in instance-based reas- 
oning (see the discussion in (Tirri, Kontkanen, & Myl- 
lymgki 1996)), i.e., they can also be viewed as a theoret- 
ically sound representation language for a “prototype” 
model space. This is interesting from the a priori know- 
ledge acquisition point of view, since in many cases the 
domain experts seem to be able to express their expert 
knowledge very easily by usina nrntntvnical examnles ~ T----.IIT---.- --~-~~~c~~~ 
or distributions, which can then be coded as mixing 
distributions in our finite mixture framework. 

In the case of finite mixtures, the model search prob- 
lem can be seen as searching for the missing values of 
the unobserved latent clustering variable in the dataset. 
The model construction process consists of two phases: 
model class selection and model class parameter selec- 
tion. The model class selection can be understood as 
finding the proper number of mixing distributions, i.e., 
the nnmhar of clll~t~r~ in the rlata SD~CP. and the model .L-- ----_--- -- ---C.lI--L ___ L-- -21-z Lr2-2, --_- 
class parameter selection as fmding the attribute value 
probabilities for each mixture component. The model 
search problem in this framework is only briefly out- 
lined in this paper - a more detailed exposition can 
be found in (Kontkanen, Myllymiiki, & Tirri 199613; 
1996a). One should observe that theoretically the cor- 
rect Bayesian approach for obtaining maximal predict- 
ive accuracy would be to use the sum of outcomes of 
all the possible different models, weighted by their pos- 
terior probability, i.e., in our case a “mixture of all the 
mixtures”. This is clearly not feasible for data min- 
ing considerations, since such a moclei can hardiy be 
given any useful semantic interpretation. We therefore 
use only a single, maximum a posteriori probability 
(MAP) model for making predictions. The feasibility 
of this approach is discussed in (Cheeseman 1995). 

Bayesian inference by finite mixture 
models 

In our predictive data mining framework the problem 
domain is modeled by m discrete random variables 
Xl,..., X,. A data instantiation dis a vector in which 
all the variables Xi .have been assigned a value, 

ci= (Xl =xl,...,Xn. =xm), 

where xi E {zil, . . . , mini }. Correspondingly we can 
view the database D as a random sample (~$1, . . . , C&N), 
i.e., a set of N i.i.d. (independent and identic- 
ally distributed) data instantiations, where each Jj is 
sampled from P, the joint distribution of the variables 
(Xl ,**.,-Jw 

In our work we assume that the database D is gen- 

In order to find probabilistic models for making good 
predictions, we follow the Bayesian approach (Gel- 
man et al. 1995; Cheeseman 1995), as it offers a 
solid theoretical framework for combining both (suit- 
ably coded) a priori domain information and inform- 
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their own distributions, and that each data vector ori- 
ginates from exactly one of these mechanisms. Thus the 
instantiation space is divided into K clusters, each of 
which consists of the data vectors generated by the cor- 
responding mechanism. From the assumptions above 
it follows that a natural candidate for a probabilistic 
model family is the family of finite mixtures (Everitt 
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& Hand 1981; Titterington, Smith, & Makov 1985), 
where the problem domain probability distribution is 
approximated as a weighted sum of mixture distribu- 
tions: 

(1) P(4 = 5 (w = YkNdl y = Yk)) * 
k=l 

Here the values of the discrete clustering rundona vari- 
able Y correspond to the separate clusters of the instan- 
tiation space, and each mixture distribution P(dl Y = 
Yk) models one data generating mechanism. Moreover, 
we assume that the problem domain data is tightly 
clustered so that the clusters can actually be regarded 
as points in the instantiation space, and data vectors 
belonging to the same cluster represent noisy versions 
of that (unknown) point. Therefore we can assume that 
the variables Xi inside each cluster are independent by 
which (1) becomes 

P(d) = P(X1 = Xl). . . ) x, = 2,) 

= P(Y=yk)~P(x~=zilY=yk) 

i=l 

In our model both the cluster distribution P(Y) and 
the intra-class conditional distributions P(XilY = Yk) 
are multinomial. Thus a finite mixture model can be 
defined by first fixing K, the model class (the number 
of the mixing distributions), and then by determining 
the values of the model parameters 0 = (a, Cp), 0 E 51, 
wherea=(al,... , QK), ak = p(y = i/k), and 

~=(~ii,...,~~m,...,~Kl,...,~Km), 

@ki = (4ki1, * - * ,4kin, ), 

where C$kil = P(Xi = ziz[Y = yk). 
Given a finite mixture model 0 that models the 

cluster structure of the database, predictive inference 
can be performed in a computationally efficient man- 
ner. The Bayesian approach to predictive inference 
(see e.g., (Bernard0 & Smith 1994)) aims at predicting 
unobserved future quantities by means of already ob- 
served quantities. More precisely, let Z = {il, . . . , it} 
be the indices of the instantiated variables, and let 
x = {Xi. = Z&E8,S = l,..., t} denote the corres- 
ponding assignments. Now we want to determine the 
distribution 

The conditional predictive distribution of Xi can 
clearly be calculated in time O(Ktni), where K is the 
number of clusters, t the number of instantiated vari- 
ables and ni the number of values of Xi. Observe that 
K is usually small compared to the sample size N, and 
thus the prediction computation can be performed very 
efficiently (Myllymgki & Tirri 1994). 

The predictive distributions can be used for classific- 
ation and regression tasks. In classification problems, 
we have a special class variable X, which is used for 
classifying data. In more general regression tasks, we 
have more than one variable for which we want to com- 
pute the predictive distribution, given that the values 
of the other variables are instantiated in advance. As 
in the configuration problems mentioned earlier, finite 
mixture models can also be used for finding the most 
probable value assignment combination for all the un- 
instantiated variables, given the values of the instan- 
tiated variables. These assignment combinations are 
useful when modeling actual objects such as machines, 
where probability information is in any case used to 
select a proper configuration with instantiated values 
for all the attributes. 

Learning finite mixture models from 
data 

In the previous section we described how the prediction 
of any variable could be made given a finite mixture 
model. Here we will briefly outline how to learn such 
models from a given database D. Let D = (d , . . . , &) 
be a database of size N. By learning we mean here the 
problem of constructing a single finite mixture model 
MK (0) which represents the problem domain distribu- 
tion P as accurately as possible in terms of the predic- 
tion capability. This learning process can be divided 
into two separate phases: in the first phase we wish to 
determine the optimal value for K, the number of mix- 
ing distributions (the model class), and in the second 
phase we wish to find MAP parameter values 6 for the 
chosen model class. 

In the Bayesian framework, the optimal number of 
mixing distributions (clusters) can be determined by 
evaluating the posterior probability for each model 
class MK given the data: 

P(MxlD) oc P(DIMK)P(MK), K = 1,. . . ,iV, 

where the normalizing constant P(D) can be omit- 
ted since we only need to compare different model 
classes. The number of clusters can safely be assumed 
to be bounded by N, since otherwise the sample size is 
clearly too small for the learning problem in question. 
Assuming equal priors for the model classes, they can 
be ranked by evaluating the evidence P(DIMK) (or 
equivalently the stochastic complexity (Rissanen 1989)) 
for each model class. This term is defined as a multidi- 
mensional integral and it is usually very hard to eval- 
uate, although with certain assumptions, the evidence 
can in some cases be determined analytically (Heck- 
erman, Geiger, & Chickering 1995; Kontkanen, Myl- 
lym%ki, & Tirri 1996a). In the experimental results 
presented in the next section we chose another ap- 
proach and estimated the prediction error empirically 
by using the crossvalidation algorithm (Stone 1974; 
Geisser 1975). 
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dataset size #attrs #CVfolds #clusters success rate (%) 
Australian 690 15 10 17 87.2 
Diabetes VL-zQ “0 c-7 (“0 9 12 20 iV.b 

German credit 1000 21 10 23 74.1 

Table 1: Description of the experiments. 

Figure 4: Crossvalidation results with the Glass data- 
base. 

Figure 5: Crossvalidation results with the Heart Dis- 
ease database. 

Figure 6: Crossvalidation results with the Hepatitis 
database. 

Figure 7: Crossvalidation results with the Iris database. 
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