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Abstract

We introduce a knowledge-based approach to deep knowledge
discovery from real-world natural language texts. Data mining,
data interpretation, and data cleaning are all incorporated in cy-
cles of quality-based terminological reasoning processes. The
methodology we propose identifies new knowledge items and
assimilates them into a continuously updated domain knowl-
edge base.

Introduction

The work reported in this paper is part of a large-scale
project aiming at the development of SYNDIKATE,
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(Hahn, Schnattinger, & Romacker 1996). Two real-world
application domains are currently under active investigation
— test reports on information technology products (101 doc-
uments with 10° words) and, the major application, med-
ical reports (approximately 120,000 documents with 107
words). The task of the system is to aggressively assimi-
late any facts, propositions and evaluative assertions it can
glean from the source texts and feed them into a shared text
knowledge pool. This goal is actually even more ambitious
than the MUC task (for a survey, cf. (Grishman & Sund-
heim 1996)) which requires mapping natural language texts
onto a highly selective and fixed set of knowledge templates
in order to extract factual knowledge items only.

Given that only a few of the relevant domain concepts
can be supplied in the hand-coded initial domain knowledge
base, a tremendous concept learning problem arises for text
knowledge acquisition systems. Any other KDD system
running on natural language text input for the purpose of
knowledge extraction also faces the challenge of an open
set of knowledge templates; even more so when it is specifi-
cally targeted at new knowledge items. In order to break the
high complexity barrier of a system integrating text under-
standing and concept learning under realistic conditions, we
supply a natural language parser (Neuhaus & Hahn 1996)
that is inherently robust and has various strategies to get
nearly optimal results out of deficient, i.e., underspecified
knowledge sources in terms of partial, limited-depth pars-
ing. The price we pay for this approach is underspecifica-
tion and uncertainty associated with the knowledge we ex-
tract from texts. To cope with these problems, we build on
expressively rich knowledge representation models of the
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underlying domain (Hahn, Klenner, & Schnattinger 1996).
Accordingly, we provide a start-up core ontology (such as
the Penman Upper Model (Bateman et al. 1990)) in the
format of terminological assertions. The task of the module
we describe in this paper is then to position #new knowledge
items which occur in a text in that concept hierarchy and to
link them with valid conceptual roles, role fillers and role
filler constraints; hence, deep knowledge discovery.

Concept hypotheses reflecting different conceptual read-
ings for new knowledge items emerge and are updated on
the basis of two types of evidence. First, we consider the
type of lmgmstzc constructlon in which an unknown lexical
ll.\al].l UUUWD lll. 61 I.GAI, \muuc WU aaauULG Lhab u"ic bUlllUAl dlld
type of grammatical construction forces a particular inter-
pretation on the unknown item); second, conceptual criteria
are accounted for which reflect structural patterns of con-
sistency, mutual justification, analogy, etc. of concept hy-
potheses with concept descriptions already available in the
domain knowledge base. Both kinds of evidence are repre-
sented by a set of quality labels. The general concept learn-
ing problem can then be viewed as a quality-based deci-
sion task which is decomposed into three constituent parts:
the continuous generation of quality labels for single con-
cept hypotheses (reflecting the reasons for their formation
and their significance in the light of other hypotheses), the
estimation of the overall credibility of single concept hy-
potheses (taking the available set of quality labels for each
hypothesis into account), and the computation of a.prefer-
ence order for the entire set of competing hypotheses (based
on these accumulated quality judgments) to select the most
plausible ones. These phases directly correspond to the ma-
jor steps underlying KDD procedures (Fayyad, Piatetsky-
Shapiro, & Smyth 1996), viz. data mining, data interpreta~
tion, and data cleaning, respectively.

A Scenario for Deep Knowledge Discovery

In order to illustrate our problem, consider the following
knowledge discovery scenario. Suppose, your knowledge
of the information technology domain tells you that Aquar-
ius is a company. In addition, you incidentally know that
ASI-168 is a computer system manufactured by Aquarius.
By convention, you know absolutely nothing about Me-
galine. Imagine, one day your favorite computer maga-
zine features an article starting with “The Megaline unit by
Aquarius ..”. Has your knowledge increased? If so, what
did you learn already from just this phrase?
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cus here on the issues of learning accuracy and the learning
rate. Due to the given learning environment, the measures
we apply deviate from those commonly used in the machine
learning community. In concept learning algorithms like
IBL (Aha, Kibler, & Albert 1991) there is no hierarchy of
concepis. Hence, any prediction of the class membership
of a new instance is either true or false. However, as such
hierarchies naturally emerge in terminological frameworks,
a prediction can be more or less precise, i.e., it may ap-
proximate the goal concept at different levels of specificity.
This is captured by our measure of learning accuracy which
takes into account the conceptual distance of a hypothesis
to the goal concept of an instance rather than simply relat-
ing the number of correct and false predictions, as in IBL.

In our approach, learning is achieved by the refinement
of multiple hypotheses about the class membership of an
instance. Thus, the measure of learning rate we propose
is concerned with the reduction of hypotheses as more and
more information becomes available about one particular
new instance. In contrast, IBL-style algorithms consider
only one concept hypothesis per learning cycle and their
notion of learning rate relates to the increase of correct pre-
dictions as more and more instances are being processed.

We considered a total of 101 texts taken from a corpus
of information technology magazines. For each of them 5
to 15 learning steps were considered. A learning step is
operationalized by the representation structure that results
from the semantic interpretation of an utterance which con-
tains the unknown lexical item. Since the unknown item is
usually referred to several times in a text, several learning
steps result. For instance, the learning steps associated with
our scenario are given by: MEGALINE INST-OF UNIT and
MEGALINE PRODUCT-OF AQUARIUS.

Learning Accuracy

In a first series of experiments, we investigated the learning
accuracy of the system, i.e., the degree to which the sys-
tem correctly predicts the concept class which subsumes
the target concept under consideration. Learning accuracy
for a single lexical item (LA) is here defined as (n being
the number of concept hypotheses for that item):

(0433 ifFP, =0
LA = Z —— with LA; == {SP"CP.
ie{l.. n} FP,+ DPF; else

SP; specifies the length of the shortest path (in terms of
the number of nodes traversed) from the TOP node of the
concept hierarchy to the maximally specific concept sub-
suming the instance to be learned in hypothesis ¢; C P; spec-
ifies the length of the path from the TOP node to that con-
cept node in n'y'}‘)Ol.néSiS i which is common both for the
shortest path (as defined above) and the actual path to the
predicted concept (whether correct or not); F P; specifies
the length of the path from the TOP node to the predicted (in
this case false) concept and D P; denotes the node distance
between the predicted node and the most specific concept
correctly subsuming the target in hypothesis ¢, respectively.
As an example, consider Fig. 1. If we assume MEGALINE

to stand for a COMPUTER, then hypothesizing HARDWARE
(correct, but too general) receives an LA = .75 (note that
OBIECT ISA ToP), while hypothesizing PRINTER (incor-
rect, but still not entirely wrong) receives an LA = .6.

Fig. 2 depicts the learning accuracy curve for the en-
tire data set. It starts at LA values in the interval be-
tween 48% to 54% for LA —, LA TH and LA CB in the
first learning step. AL
LA CB gives the [T ™
accuracy rate for o4
the full qualiﬁ- 08
cation calculus o7
including thresh- 5 %7
old and credibility — ,|
criteria, LA TH o4}

considers linguis- ozt
tic criteria only, %I
ol v
while LA — de- 123456 78 910111213 14 15

Learning steps

picts the accuracy Figure 2: Learning Accuracy

values  without
incorporating quality criteria at all, though terminological
reasoning is still employed. In the final step, LA rises up
to 79%, 83% and 87% for LA -, LA TH and LA CB,
respectively. Hence, the pure terminological reasoning
machinery which does not incorporate the qualification
calculus always achieves an inferior level of learning
accuracy than the learner equipped with it.

Learning Rate

The learning accuracy focuses on the predictive power
and validity of the learning procedure. By considering
the learning rate (LR), we supply data from the step-
wise reduction of alternatives in the learning process. Fig.
3 depicts the mean number of transitively included con-
cepts for all considered hypothesis spaces per learning step

(each concept ALL

hypothesis relates  *°{ .
LRTH —~—

to a concept LRTH -

which transitively 10}
subsumes various
subconcepts; = 00
hence, pruning of
concept subhier-
archies reduces
the number of
concepts  being
considered as hy-
potheses). Note
that the most general concept hypothesis in our example
denotes OBIJECT which currently includes 196 concepts In
generzu, we obseived a SLrOng negatrv’e Sn’)p't‘: of the curve
for the learning rate. After the first step, slightly less than
50% of the included concepts are pruned (with 93, 94 and
97 remaining concepts for LR CB, LR TH and LR -,
respectively). Summarizing this evaluation experiment, the
system yields competitive accuracy rates (a mean of 87%),
while at the same time exhibiting significant and valid
reductions of the predicted concepts.
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Figure 3: Learning Rate
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Related Work

The issue of text analysis is only rarely dealt with in the
KDD community. The reason for this should be fairly obvi-
ous. Unlike pre-structured data repositories (e.g., schemata
and relations in database systems), data mining in textual
sources requires to determine content-based formal struc-
tures in fext strings prior to pumng KDD procedures to
work, Similar to approaches in the field of information
retrieval (Dumais 1990), statistical methods of text struc-
turalization are favored in the KDD framework (Feldman &
Dagan 1995). While this leads to the determination of asso-
ciative relations between lexical items, it does not allow the
identification and relation of particular facts and assertions
about or even evaluations to particular concepts. If this kind
of deep knowledge is to be discovered, sophisticated natural
language processing methodologies must come into play.
Our approach bears a close relationship to the work of,
e.g., (Rau, Jacobs, & Zernik 1989) and (Hastings 1996),
who aim at the automated learning of word meanings from
the textual context using a knowledge-intensive approach.
But our work differs from theirs in that the need to cope
with several competing concept hypotheses and to aim at
a reason-based selection is not an issue in those studies,
In the SCISOR system (Rau, Jacobs, & Zernik 1989),e.g.,
the selection of hypotheses depends only on an ongoing dis-
crimination process based on the availability of linguistic
and conceptual clues, but does not incorporate a dedicated
inferencing scheme for reasoned hypothesis selection. The
difference in learning performance — in the light of our eval-
uation study discussed in the previous section, at least —

amnnnte tn RO sancidaring the diffaranca hatwean T A
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(plain terminological reasoning) and LA CB values (termi-
nological metareasoning based on the qualification calcu-
tus). Acquiring knowledge from real-world textual input
usually provides the learner with only sparse, highly frag-
mentary clues, such that multiple concept hypotheses are
likely to be derived from that input. So we stress the need
for a hypothesis generation and evaluation component as
an integral part of large-scale real-world text understanders
operating in tandem with knowledge discovery devices.

This requirement also distinguishes our approach from
the currently active field of information extraction (IE)
(e.g., (Appelt et al. 1993)). The IE task is defined in terms
of a fixed set of a priori templates which have to be instanti-
ated (i.e., filled with factual knowledge items) in the course
of text analysis. In contradistinction to our approach, no
rew templates have to be created.

Conclusion

We have introduced a new quality-based knowledge dis-
covery methodology the constituent parts of which can be
equated with the major steps underlying KDD procedures
(Fayyad, Piatetsky-Shapiro, & Smyth 1996) — the gener-
ation of quality labels relates to the data mining (pattern
extraction) phase, the estimation of the overall credibility
of a single concept hypothesis refers to the data interpreta-
tion phase, while the selection of the most suitable concept
hypothesis corresponds to the data cleaning mode.
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Our approach is quite knowledge-intensive since knowl-
edge discovery is fully integrated in the text understand-
ing mode. No specialized learning algorithm is needed,
since concept formation is turned into an inferencing task
carried out by the classifier of a terminological reasoning
system. Quality labels can be chosen from any knowledge

qnirrea that caama sanvanian o Atariries anoc Aetnlad

source that seems convenient, thus Cisuring casy auaptaml-
ity. These labels also achieve a high degree of pruning of
the search space for hypotheses in very early phases of the
learning cycle. This is of major importance for considering
our approach a viable contribution to KDD methodology.
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