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Abstract 

We apply DOGMA, a GA-based theory revision 
system, to MDL-based rule enhancement in su- 
pervised concept learning. The system takes as 
input classification data and a rule-based classifi- 
cation theory, produced by some rule-based lear- 
ner, and builds a second model of the data. The 
search for the new model is guided by a MDL- 
based complexity measure. The proposed metho- 
rlnlnuv “f&-8 a nart.i.d sn111t.ion j-j&h t;Q bhe !oc;ll -----.I - ~-“-- I-------- 
minima trap of fast greedy learners, and to the 
time complexity problem of GA-based learners. 
As an example we show how the system impro- 
ves rules produced by C4.5. 

Introduction 
GAS have been used in both propositional and rela- 
tional learning, e.g. (DeJong, Spears, & Gordon 1993; 
Grefenstette, Ramsey, & Schultz 1990; Giordana & Ne- 
ri 1996; Augier, Venturini, & Kodratoff 1995; Heka- 
naho 1995). GAS are, in general, successful in avoi- 
ding local minima and produce often near optimal so- 
lution. However, this is done under a heavy compu- 
tational burden. In the other extreme of computatio- 
nal complexity we have fast, more or less greedy, con- 
cept learners, like (Quinlan 1993; Clark & Niblett 1989; 
Cohen 1995). These systems learn fairly good classifi- 
cation theories with only a fraction of the time required 
by GAS. However, a fast greedy learner might get trap- 
ped in local minima, which might sometimes be quite 
far from the global minimum. 

In this paper we apply the GA-based theory revision 
system DOGMA (Domain Oriented Genetic MAchine) 
(Hekanaho 1996) to MDL-based theory revision of de- 
cision rules. To do so we first produce a classification 
theory using a rule-based learner. In the second step 
we use the first theory as a background theory in DOG- 
MA. In this case we have selected C4.5Rules (Quinlan 
1993) as the initial learner. DOGMA takes as input 
preclassified data and a rule-based theory of the da- 
ta, and tries to build a new, enhanced theory, that 
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more accurately models the same data. Unlike most 
theory revision systems, e.g. (Donoho & Rendell 1995; 
Ourston & Mooney 1990), we don’t focus on the refine- 
ment of the theory, rather we build a completely new 
theory, using substructures from the initial theory. 

The Rule Representation Language 
The rule language Cl of DOGMA is a first-order langu- 
age similar to the one used in the REGAL system 
(Giordana & Neri i996) and to the ‘v’is language 
of Michalski (Michalski 1983). A rule is expressed 
without its head as a conjunction of predicates li- 
ke P(zl,. .-,G,[Q,. . . ) wm]), where Z~‘S are variables 
and [WI, . . . , v,] is a disjunction of constants wi. The 
symbol * may be used to collapse a set of values. For 
example, if a relation of distance rarely takes other va- 
lues than 0, 1 and 2, we can define a predicate dist for 
values [0, 1,2, *]. 

The full language Lc~ can be restricted to k-CiVF w- 
les. A k-CNF rule allows maximally k values in the 
internal disjunctions. Thus formula (1) below is a k- 
CNF rule, for k 2 2, but is not a l-CNF rule. 

The Language Template 
The formulae in the language Cr are mapped into bit- 
strings using a language template A. A is the maximal 
conjunctive formula representable by the GA. Every 
predicate in A contains all possible values [VI,. . . , uk] 
(possibly with *). A s an example consider the langua- 
ge template A in Figure 1. All concept description are 
obtained by deleting some part of A. For example 

coEor(z, [T, w]) A shupe(z, [tr, *]) (1) 
is obtained by deleting the size predicate and some 
internal disjunctions from the template. The formulae 
are mapped to bitstrings by setting each bit to 1 iff 
the mrr~~nnnrlincr VCA~ITP in nrecent. in the nrcsl;rato in A ULA” “‘LL”“y’~uA~‘~ l WIU” A” yA”Y”“” AIL “IAV y/IvuL”uY’ L&A Aa. 

Thus a 0 in the bitstring means that the corresponding 
value isn’t in the internal disjunction. Consequently, a 
substring corresponding to all the values of a predicate 
consisting of only O’s is illegal and is automatically 
rewritten as a substring of 1’s. For example mapping 
formula (1) to a bitstring using the language template 
in Figure 1 produces 1010111101. 
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color(x,[r,b,w,gl) I\ size(x,[s,m,ll) 

, (IA) , (/,I 

A shape(x,[tr,ro,*]) 

Figure 1: A language template and a bitstring 

Background Knowledge 
The background rules have the following structure: 

c : h(z) +- p1 (x, [Ql, * - * 7 WI), . . . ,P&, [%l, * * . , %j]) 

where c indicates the concept class in which the rule 
may be used. 

DOGMA filters the background rules through the 
language template A to produce ba&grozrncd chromo- 
somes. This is done by removing the head of each 
rule, as well as all predicates that are not a part of the 
A. Then it turns the remaining predicates to the same 
form as the corresponding ones in A. Now the rules 
are formulae in ,Ci and can be mapped to bitstrings. 

As an wnmnle let A &n&e t,he ]q~qe t,emp]& .a.Y .+*A V”U”uy* AYY .A 
in Figure 1 and consider the following rules: 

h(z) f- coior(5 b, sl), size(c, [ml), shupe(z, [tr, sq]). 
h(x) t coZor(z, [r, WI), size(s, [m]),position(a:, [1,2]). 

Filtering these rules through A results in the following 
background chromosomes: 

coZor(z, [r,g]), size(x, [ml), shape(s, [tr, *I), 
coZor(x, [r, w]), size(z, [r-n]). 

The Genetic Algorithm 
DOGMA combines the hybrid Michigan/Pittsburgh 
methodology of JGA (Hekanaho 1995) with special 
stochastic operators, which induce knowledge from a 
background theory. The system supports two distinct 
levels with accompanying operators. The lower level 
has fixed length chromosomes, which encode rules and 
are manipulated by genetic operators. On the higher 
level the chromosomes are combined into genetic fami- 
lies, which encode classification theories. Background 
knowledge is incorporated into the learning process by 
background seeding, which creates new chromosomes 
from the background chromosomes. 

DOGMA is a parallel program where each class can 
be run in parallel, and furthermore, each class may 
have several parallel GA-populations. 

Speciation 
In order to keep some structure in the learning pro- 
cess DOGMA uses speciation of the chromosomes. The 
chromosomes are divided into species according to whi- 
ch background chromosomes they may use. A spe- 
cies corresponds to a single background chromosome. 
The speciation of chromosomes is used in three ways. 

Firstly, it’s used to control mating of chromosomes of 
different species. Secondly, speciation affects the GA 
through background seeding; each chromosome may 
use background seeding only from its own background 
chromosome. And finally, speciation is also used while 
merging chromosomes into families. The families are 
symbiotic, this means that chromosomes of the same 
species can’t be merged into the same family. 

Genetic operators 
The genetic operators, working with genetic chromo- 
somes, are mating, mutation, crossover, seeding, and 
background seeding. The crossover operators are inhe- 
rited from REGAL. We use four different crossovers, 
the well-known two-point and universal crossovers as 
well as a generalizing and a specializing crossover. The 
last two operators are specifically designed keeping in 
mind the specific requirements of concept learning. 

Given two parent bitstrings si and sz the generali- 
zing crossover first selects a set of predicates from A 
and locates the substrings corresponding to the selec- 
ted predicates in sr and sz. It then creates the off- 
springs by doing a bitwise or operation on the located 
l.:c.. ,c n IJlbS “I 51 and sg. TX,. -..,.,:,l:“:,, ..I,. _^^.I A.. .-.^ ..l,” 1: IIIC Sl.‘~L’Q’ILIII’~ LI”DD”YGI. W”lL3 II- 

ke the generalizing one, but instead of a bitwise or it 
performs a bitwise and. 

The seed operator generates a bitstring covering at 
least one random positive training example. Seeding 
works by generating a random bitstring, which is then 
changed minimally so that it covers the selected ex- 
ample. Background seeding is identical to seeding, ex- 
cept that it generates the initial bitstring by selecting 
random bits from a background chromosome. 

Family operators 
DOGMA follows the metaphor of competing families, 
thus fitness as well as selection and replacement are 
lifted to the level of families. In addition we use ope- 
rators that break or merge families. 

The break operator splits randomly a family into two 
separate families. The counterpart of break is join, 
that merges two families of symbiotic chromosomes in- 
to a single family. Because of the symbiotic require- 
ments join puts at most one chromosome of each speci- 
es into the new combined family. The operator is made 
slightly more sophisticated by adding directed joining 
and seeding into it. When a family is to be joined, a 
random uncovered positive example is chosen and join 
searches for a suitable family that covers this example. 
A fn-:l., :, ,..;+,hl, :f :C h-0 n ,.hmnmnonma ,f 3 nor,, i-x umr,qy ID UUI”a.“AG II I” ucbu (Y bIII”~II”u”III~ “L Lb AL=** 

species that covers the example. If no suitable family 
is found then a suitable single chromosome family is 
made through seeding or background seeding. 

In addition to join, we use another family building 
operator called make-family. This is a global operator 
that builds a family by selecting useful chromosomes, 
of different species, from the population. 
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We can freely mix the family operators with the ge- 
netic ones. Currently, for each generation of the GA 
population, we apply first the genetic operators and 
then the family operators. 

MDL-based Fitness 
TE_e Ned version of DOGMA is allczmanterl with a __.___ _L “-o-‘--J-- 
MDL-based fitness function, The MDL principle (Ris- 
sanen 1989) advocates that the best theory for descri- 
bing some data is the one that minimizes the descrip- 
tion length of both the theory and the data. The de- 
scription length associated with a theory T consists of 
a theory cost, i.e. the length of the encoding of T, and 
of the exception cost, which is the encoding of the data 
falsely classified by T. According to the MDL princi- 
ple the best theory T is the one that has the minimal 
total description length of the theory and the excep- 
tions. The encoding scheme we use is the one used by 
Quinlan in (Quinlan 1995). 

The MDL-based fitness function 
To turn the MDL measure into a fitness function we 
compare the MDL against the total exception length, 
i.e. against the MDL of an empty theory. 

f MDL= I- 
MDL 

MAX LENGTH 

However, we cannot use this fitness measure directly, 
the reason being that the encoding scheme treats all 
exceptions, i.e. both false positives and false negatives, 
equally. While this is perfectly reasonable in compar- 
ing final theories, it is not necessarily so while learning 
theories. In our case we need to be able to give a re- 
alistic fitness also to theory fragments. A good theory 
fragment is a partial theory that has a relatively low 
false positive rate. Such a theory fragment is a good 
building block, in the sense that it may be merged with 
other fragments to form a good complete theory. 

Our solution to this problem is to use the MDL- 
based fitness when we are close to complete theories, 
and to gradually fall off to other fitness measures if the 
11...- :.- --- L-- 1..,- .__- 1-L- __ 2 _^^__ I-C--C rneories are boo i~~corrqxe~e 01 IIIL;UIIYML~U~. 

f = if (fprute 2 1 A tprate > 1) then ~ML)L 
else if (tprate 1 1) then ffP 
else if (fprate > 1) then ftP 
else ffp * ftp 

ffp = fMDLxfprate+confx(l-fpfate) 
fprate 

ftp = 
fMDLxtpVatC+COnf X(1-tpTUte 

tprate 

The MDL-based fitness is applied when the rate of fal- 
se positives is better than in the background theory 
and the rate of true positives high enough. Otherwise 
the fitness is reduced by a consistency measure ffp or 
by a completeness ftp, so that the total fitness drops. 
The appropriate levels of tprate and fprute are deri- 
ved directly from the background theory. conf is the 

inverse of the pessimistic error rate used by Quinlan 
in (Quinlan 1993) to estimate the error rate of a single 
C4.5 rule or leaf. However, it could be any measure 
that gives a realistic fitness to a theory fragment as a 
building block. 

Emthical Evaluation ~-~-I~ __ _ ~~~ ~ 
In order to evaluate DOGMAS abilities to improve on 
classification rules, we apply DOGMA to rules genera- 
ted by C4.5Rules in eight UC1 problems, measuring the 
predictive accuracy, number of rules, and description 
length of the both initial and final classification theori- 
es. We measured also the response time T of DOGMA, 
defined as T = mm(Q), where Tij is the evaluation 
time of process j in class i. The time is expressed in 
minutes and comes from runs on a Sun Ultra 2 Model 
2170. Note that all classes are treated independently 
ant-l ~2x1 ha lmmd in nnrall~l li’nr t.ho rco-mrterl PY- U&AU “WA& U” I~IYIAAYU AAL y.“LcyAA”A. A VL “LAY AvyvLY”.. “I. 

periments we have used one process per class, except 
for letter domain for which we used two processes per 
class. In all domains except in letter, the rule langu- 
age of DOGMA was defined to be l-CNF rules, since 
this is the default used by C4.5. For the letter domain 
we used the subset option of C4.5 and the full rule 
language of DOGMA. 

As can be seen from Table 1 the final rules produced 
by DOGMA have consistently shorter description leng- 
ths than the corresponding C4.5 rules?. Although the 
improvement in accuracy is not statistical significant 
in a single domain, the results are at least indicative 
since the accuracy is improved in all domains except 
in Breast Cancer. The number of rules tends to drop, 
especially when there are many rules, although there 
is more variation than in the description lengths. 

200 : 

,oo dL~~ -_._.. 1.111--1 ‘.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2: The MDL coding length of the best theory 
in each generation for different background seed rates 
in the Tic-tac-toe domain, class negative. 

‘The MDL for C4.5 in Congress voting and Lympho- 
graphy are quite high, due to the fact the C4.5 doesn’t 
always produce.rules for all classes. 
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n Domain IA FA I IR I FR I IL I FL I T I M fl 
Breast cancer 70.3 (64.4,76.2) 68.2 (58.4,78.0) 10.7 10.4 434.6 432.6 7.0 cv 
Chess 98.9 (98.1,99.4) 99.4 (98.7,99.7) 23.0 21.0 452.9 378.0 76.7 TT 
Congress voting 95.8 (94.3,97.3) 

(75.2,77.2j 
96.3 (95.4,97.2) 6.0 7.9 431.7 220.5 1.9 cv 

Letter 76.2 77.0 (76.0,78.0) 248.0 214.0 36561.9 36051.6 317.7 TT 
Lymphography 77.7 (72.1,83.3) 80.4 (75.6,85.3) 9.7 12.2 226.1 187.3 2.1 cv 
Splice junction 92.3 (90.5,93.8) 94.5 (92.9,95.8) 89.0 71.0 1847.7 1830.2 321.6 TT 
Splice 12 positions 93.1 (91.4,94.5) 94.6 (93.9,95.8) 90.0 70.0 1605.6 1592.3 116.7 TT 
Tic-tat-toe 1 98.5 (97.1,99.9) 99.5 (99.0,100.0) 22.0 20.0 288.9 175.5 10.3 cv II 

Table 1: Results from eight UC1 domains. IA and FA stand for the test set accuracy percentages of the initial C4.5 
theory and of the final theory. IR, FR, IL, and FL give the number of rules and description lengths of the initial 
vs. final theory. T column gives the response time of DOGMA. M is the evaluation method, where TT is a single 
train and test set and CV a lo-fold crossvalidation. For the accuracies we give also the 95% confidence intervals. 

A background seed rate controls the average amount 
of bits that are copied from the background chromo- 
somes. To show an example of the effect of different 
background seed rates we run DOGMA for 100 genera- 
tions, with different background seed rates, in the Tic- 
&-toe domain. The initial C4.5 rules are quite easily 
improved, see Figure 2, even when no background see- 
ding is used. The best result is achieved with a 50 % 
1 -I-~.- ~.... .I ~. Jlr.. ._ -_L. oackgrouna seeaing rabe. The 80 % rate does slightly 
worse, which suggests that the initial rules become too 
dominant in this case and hinder the search for new 
shorter theories. 

Conclusions 
We have described how to use the GA-based theory 
revision system DOGMA to enhance rule-based clas- 
sification theories. In our methodology we first use a 
fast concept learner to produce a first approximation 
of the data, and then improve the result in DOGMA 
using a MDL-based measure, to gain a second approxi- 
mation of the data. The methodology itself is of course 
not limited to C4.5 as a preprocessor or to MDL as a 
model selection method. We could in principal have 
used other rule learners and other fitness measures. 
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