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Abstract 

Efficient discover of association rules in large 
databases is a we 1 studied problem and several ap- 1y 
proaches have been proposed. However, it is non triv- 
ial to maintain the association rules current when the 
database is updated since, such updates could inval- 
idate existing rules or introduce new rules. In this 
paper, we propose an incremental updating technique 
btied on tie ittive borders, for the maintenance of aS- 
sociation ru es when new transaction data is added to f 
or deleted from a  transaction database. An impor- 
tant feature of our algorithm is that it requires a full 
scan(exactly one) of the whole database only if the 
database update causes the negative border of the set 
of large itemsets to expand. 

Introduction 
Database m ining, or knowledge discovery in 

databases (KDD) has recently attracted t remendous 
amount  of attention in the database research commu- 
nity because of its wide applicability in many areas, 
including decision support! market strategy and  finan- 
cial forecast. One  of the important characteristics of 
the database m ining problem is handl ing large volumes 
of data. Further, the rules discovered from a  database --I- --P--J. Al-- uruy reutx~ ~1x5 CiZP3lt SiEikie O f the dizt&hizSe. ITi OF  
der to make the rules discovered reliable and useful, 
large volumes of data need  to be  collected and  ana- 
lyzed over a  period of time. This entails the devel- 
opment  of techniques to handle large volumes of data, 
and  to ma intain rules over a  significantly long period of 
time. Therefore, efficient algorithms to update, ma in- 
tain and  manage  the discovered rules are central to the 
database m ining technology. 

The  problem of m ining association rules over bas- 
lmt &ha xxrs~ intrm-hrd in fAm~~.ml Tmielinaki and a."" -vu- ,. YY I--Y*v...."I.. -a. \"~'.a., .a-, --*-.".--Y-.-, -a-u 
Swami 1993)  and  several algorithms have been  pro- 
posed (Agrawal and  S&ant 1994; Savasere, Om iecin- 
ski, and  Navathe 1995; Toivonen 1996). These algo- 
rithms provide efficient mechanisms for finding large 
itemsets (itemsets with the user specified m inimum 
support) and  the association rules are computed 
from the lar 
database cou d  7  

e  itemsets. Updates to the transaction 
potentially invalidate existing rules or 
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introduce new rules. The  problem of updat ing the as- 
sociation rules can be  reduced to finding the new set 
of large itemsets. After that, the new association rules 
can be  computed using the new large itemsets. A sim- 
ple solution to the update problem is to re-compute the 
large itemsets of the whole updated database. This is 
clearly inefficient because all the computations done  
initially for finding the old large itemsets are wasted. ---- _- 
An algorithm, FUP (Fast Update), for updating the 
large itemsets has been  developed for the addition of 
new transactions to the database (Cheung et al. 1996). 
It is based on  the Apriori algorithm and  needs O(n) 
passes over the database where n  is the size of the 
maximal large itemset. 

In this paper, we present an  algorithm to find the 
new large itemsets with m inimal recomputation when 
new transactions are added  to or deleted from the 
transaction database. The  important characteristics 
of our algorithm are the following: 

Along with the large itemsets, we also ma intain the 
negative border (Toivonen 1996)r. The  algorithm 
uses negative borders to decide when to scan the 
whole database and  it can be  used in conjunction 
with any level-wise algorithm like Apriori or Parti- 
tinn "A.,... 
We first compute the large itemsets of the increment 
database. The  algorithm requires a  full scan of the 
whole database only if the negative border of the 
large itemsets expands, that is, if an  itemset outside 
the negative border gets added  to the large itemsets 
or its negative border. Even in such cases, it requires 
only one  I/O  pass over the whole data set. 
The  algorithm can be easily parallelized with min- 
imal communicat ion and  synchronization between 
the orocessinn nodes. This is narticularly impor- 
tant-since lark volumes of data heed  to be  handled. 
However, we are not including the details of paral- 
lelization in this paper  due  to space lim itations. 

FeIdcan et -al. concurrently developed a similar 
approach for discovering frequent sets in incremental 
databases (Feldman et al. 1997). The  rest of the paper  
is organized as follows: We  develop our incremental up- 
dation algorithm in the next section. The  experimental 
results and  a  comparison of our incremental algorithm 

‘Note that the negative border can be maintained while 
computing the large itemsets without any additional com- 
putation overhead. 
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with FUP is presented next. The last section concludes 
the paper and outlines possible extensions. 

Incremental upckxkxg of association 

In this section we develop an efficient method for up- 
dating the association rules when the database is up- 
dated. Since we deal mainly with basket data, database 
update effectively means addition of new transactions 
to the database or deletion of existing transactions. 
Assuming that the two thresholds, minimum support A nl\nGA,-.,\nc. rln. nn+ nh.,m,-m +hn ..,A.nta nrnhlom r..r.m anu Ir”IIIIuCjllLcs, U” U”U LLLa.qjC “Us upuawz pvur-au LOJU 
be reduced to finding the new set of large itemsets. 
After that, the new association rules can be computed 
from the new large itemsets. In this paper we concen- 
trate on updating the large itemsets. Before we explain 
the algorithm in detail, we explain some results which 
aid in presenting the algorithm. 
Computing N&d(L) from L 

In this subsection, we explain how to compute the 
negative border (n/ad(L)) of a set of large itemsets L. 
This can be accomplished by repeating the join and 
prune steps of the aptiori-gen function in the apriori 
algorithm (Agrawal and Srikant 1994 . This computai 
tion can be done using only the set o 4 large itemsets L 
and the database need not be scanned. 
Definition 1 The negative border A&d(L), of a coL 
lection of items& L i s defined as fpllows: Given a 
colEection L 5 P(R) of sets, closed wath respect to the 
set inclusion relation, the negative border Nl3d(L) of L 
consists of the minimal itemsets X C R not in L (Man- 
nila and Toivonen 1996). 

The apriori-gen function takes as argument Lk-1, 
the set of all large (Ic-1)-itemsets. It returns a superset 
of the set of all large Bitemsets. 

function apriori-gen(Le-1) 
for-each p and q E &-.I do 

zf p.iteml = q.ii!eml ,..., p.itemk-2 = q.itemk-2 
and v.itemk-1 < q.itemk-1 then insert 
p.iterGl, p.item2 

fOT each C E ck 
, . . . ,p.itimk-l,q.itemk-1 into ck 

delete c from ck if some (k - l)-subset of C is not 
in .?&1 

Figure 1: A high-level description of the apriori-gen 
function 

The negative border consists of all itemsets that were 
candidates of the level-wise method which did not have 
enough support. That is, NBd(Lk) = Ck - LI, where 
ck is the set of candidate Ic-itemsets, Lk is the set of 
large Ic-itemsets and NBd(Lk) is the set of k-itemsets 
in Nad(L). Therefore, LkU Nad(Lk) = ck. The 
apm’ori-gen function uses oniy Lb-1 to compute &. 
Lemma 1 All 1-itemsets should be present in LU 
NBd(L). 
Addition of new transactions 

When new transactions are added to the database, 
an old large itemset could potentially become small in 
the updated database. Similarly, an old small itemset 
could potentially become large in the new database. 

function negativeborder-gen(L) 
S 

P 
lit Li?to Ll,+:!,..., L, where n is the size of the 

fo~%eP3~,stet. ffkdo 
compute ck+l using uprioTi-gen(&) 

LU A&Z(L) = Ui=2,...,rr+l ck UIl where 11 is the set 
of 1-itemsets. 

Figure 2: A high-level description of the 
negativeborder-gen function 

In order to solve the update problem efficiently, we 
maintain the large itemset and the negative border 
along with their support count in the database. That 
is, for every s E L U NI3d(L , we maintain s.count. 
In the rest of this section, d B denotes the original 
database, db denotes the transactions that are newly 
added and DB+ denotes the updated database. Also 
LDB, Ldb and LDB+ denotes the large itemset and 
NBd(LDB), NBd Ldb) and NZ?d LDB+) 

6 
denotes the 

negative border o the ori inal 
database and the updated if 

6 atabase, increment 
atabase respectively. 

Lemma 2 Let s be any itemset such that s # LDB. 
Then s E LDB+ only ifs E Ldb. 
Proof: Assume that there exists an itemset s such 
that s E LDB+, s @ LDB and -‘: $ Ld”. ~~~ to,-($) 
and t&(s) be the number of transactions in DB and 
db respectively containing the itemset s. Also let tDB 
and tdb be the total number of transactions in DB and 
db respectively. Since s # LDB and s # Ldb, 

tDB (s) tdb(S) 

tDB 
< m&Support and - 

tdb 
< minsupport. 

From these two equations, it can be shown that 

tDB (8) + tdb(S) 

tDB + tdb 
< minsupport 

Therefore, s @ LDBf which is a contradiction. 0 
Lemma 3 Let s be an itemset such that s E NI?d(L). 
Then all possible subsets of s must be present in L. 
Proof: For a contradiction, let t be an itemset such 
that t C s and t $?! L. By the definition of negative 
border, NBd(L) consists of the mine’mal itemsets not 
in L. Since t $ L, s is not a minimal itemset not 
in L. Therefore s cannot be in NBd(L), which is a 
contradiction. cl 
Theorem 1 Let s be an itemset such that s $Z LDB U 
Nl?d(LDB) and s E LDB+. Then there exists an item- 
.-..a .A ,....A .a,+ + r I r rrnafrDB\ ..,..J z n- rDB+ 3Gb I, D’UGI‘ Cl‘U‘ 0 c a, ‘ c ,” UU(JJ 1 (LILLL L e u 
That is, some subset of s has moved from Nt3d(LDBj 
to LDB’ 
Proof: Since s E LDB+ all possible subsets of s 
should be in LDBS. But Lll the subsets of s cannot 
be in LDB because if that was the case, then s should 
be present in at least NBd(LDB) if not in LDB itself. 
By our assumption, s $ L DB UNBd(LDB). Therefore, 
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there exists an itemset t such that t C s and t $ LDB. 
Now we have two cases. 
Case i : t E Ni3d(LDB). 
In this case, t E LDB+ since s E LDBf and t c s. 
Therefore, we have found a subset of s which has moved 
from N13d(LDB) to LDB+. 
Case ii : t # N13d(LDB). 
That is, t $! LDB UNad(LDB). But, we know that 
t E LDB+ since s E LDB+ and t c s. Therefore, 
t r$ LDB U N13d(LDBl and t E LDBf and hence we 
c& apply the th6oredrecursively on t. Note that the 
size of t is less than the size of s since t c s. 

When this is applied recursively, there are two possi- 
bilities. First is, for some subset oft, case i holds true 
in which case, there is a subset of t which has moved 
from N13d(LDB) to LDB+, and hence the theorem is 
proved. Otherwise, t will finally become a 1-itemset. 
By Lemma 1, we know that all I-itemsets are present 
in LDB U N13d(LDB). Since t 6 LDB, t E NBd(LDB) 
which contradicts the assumption for case ii. That is, 
case ii is not possible if t is a 1-itemset. 0 

By theorem 1, if none of the itemsets move from the 
negative border to the large itemset, we do not need 
to scan the whole database. Even in cases where some 
itemsets move from the negative border to the large 
itemset, a complete database scan is required only if ..----A- L ̂ ^^__^^ the negative border aqJL%lKls uecaLlse, for aii ihe item- 
sets in the negative border, we can derive the updated 
support count easily. 

We maintain the support count for all itemsets in the 
large itemset and the negative border. First, we com- 
pute the large itemset in db using a level-wise algorithm 
like Apriori or Partition. Simultaneously we count the 
support for all itemsets in LDB U N13d(LDB) in db. If 
an itemset t E LDB does not have minimum support 
in DB U db, then t is removed from LDB. This can be 
easily checked since we know the support count for t 
in DB and db. The change in LDB could potentially 
change Nf3d(LDB) also. Therefore, we have to recom- 
pute the negative border using the negativeborder-gen 
function explained in subsection . 

On the other hand there could be some new item- 
sets which become large in the updated database. Let 
s be an itemset which gets added to the large itemset 
of the updated database. By Lemma 2, we know that 
s has to be in Ldb. We also know by theorem 1 that 
some subset of s must move from N13d(LDB) to LDB’. 
For each itemset s E Ldb, we check if s gets the min- 
imum support to move from NZ3d(LDB) to LDBf. If 
none of the itemsets in Nl?d(LDB) gets the minimum 
support, no new itemsets will be added to LDBf. If 
some itemsets in N#d(LDB) gets the minimum sup- 
port move them to LDB+ and recompute the negative 
border. If LDB+ U Nl?d(LDB+) # LDB U NBd(LDB), 
we have to find the negative border ciosure of L”“+ 
and scan the entire database once to find the up- 
dated large itemset and negative horder. The nega- 
tive border closure of L is found by repeatedly finding 
L = L U Nl3d 

During the a 
L) until L does not grow. 

in the ne 
atabase scan, all the itemsets which are 

in L UN 
ative border closure that were not originally 

B d(L) are used as the candidate itemsets and 

function Update-Large-Itemset(LDB, NBd(LDB), db) 

//DB and db denote the number of transactions in 
the original database and the increment database 
respectively. 

Compute Ldb 
for each itemset a E LDB 

h(8) = number of 
LDB+ = 4 
for each itemset a E LDB do 

if (tDB(3) + tdb(8)) > TlZiTt3UjJ * (DB -I- db) then 
LDB+ = ~~~~ u .s 

for each itemset a <idb do 
ifs # LDB and a E NBd(LDB) and (tDB(8) -I- 

t&(8)) 1 minaup * (DB -I- db) then . __ - - . 
DB+ =GDB+~~ ’ 

if i$kd$$+;fnen 
negativeborder-gen(LDB+) 

else N13d(LDBJr)= NBd(LDB) 
if iDz FD%fd(LDB) # LDB+ U M3d(LDB+) then 

repeat 
compute S = 5’ U NBd(S) 

until S does not grow 
LDB+ = {Z E Slaupport(z) 1 minsup} 
//support(x) is the support count of x in DB U db 
JvBd(L DB+) = negativeborder-gen(LDB+) 

Figure 3: A high-level description of the Update-Large- 
Itemset function 

their support count is computed. The candidate set 
can further be pruned by applying an optimization 
while finding the negative border closure. It can be 
observed that an itemset which is not large in the in- 
crement database (db) cannot get added to the updated 
set of large itemsets. Therefore, such itemsets can be 
pruned at each step of the negative border closure com- 
putation to get the pruned negative border closure. 
However, the support count of these pruned itemsets 
should also be found since they may potentially be in 
the updated negative border. 
Deletion of existing transactions 

Similar to the case where new transactions are added 
to the database, the large itemset and its negative bor- 
der could potentially change when some existing trans- 
actions are deleted from the database. As in the former 
case, we maintain the large itemset and the negative 
border along with their support count in the database. 
Let DB- denote the updated database and LDB- and 
N13d(LDB-) denote its large itemset and negative bor- 
der respectively. 

Lemma 4 &St s be an itemset such that s E LDB. 
Then s # LuD- only ifs E Lao. That is a large itemaet 
s will become small only if s E Ldb. 

This lemma can be proved in the same way as 
lemma 2. 

The al 
negative % 

orithm to compute the large itemset and the 
order of DB- is similar to the one in the case 

where new transactions are added to the database. 
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Experimental Results 
We conducted a set of experiments to compare the 

performance of our incremental algorithm. The ex- 
periments were performed on a Sun SPARCstation 4 
running SunOS 5.5. In this section, we report on the 
results of some of those experiments. 

The experiments were performed on synthetic data 
generated using the same technique as in (Agrawal and 
Srikant 1994). The dataset used for the baseline exper- 
iment was T10.14.DlOOK (Mean size of a transaction 
= 10, Mean size of maximal potentially large itemsets 
= 4, Number of transactions = 100 thousand). The 
increment database is created as follows: We generate 
100 thousand transactions, of which (100 -d thousand 
is used for the initial computation and d t h ousand is 
used as the increment, where d is the fractional size (in 
r\mnnd..~mn\ ,4 +hn :mmnmont prjr L~UUa.Ejrs, "L "I1.2 U&b,1 cxll-cjll". 

18 

16 

14 

12 
s" 

1 ': 

6 

4 

2 

0 
2.0 1.5 

sl;;pon Th%old cin"k$ 
0.33 0.25 

Figure 4: Performance Ratio 

We compare the execution time of the incremental 
algorithm with respect to running Apriori on the whole 
data set. Figure 4 shows the speed up of the incre- 
mental algorithm over Apriori for different minimum 
support thresholds. We report the results for incre- 
ment sizes of l%, 2%, 5% and 10%. From the 
it can be seen that the incremental al orithm ac 

raph, 

1 
a ieves 

speed up of about 3 to 20. The algorit m shows better 
speed up for medium support threshold than low and 
high support thresholds. At high support thresholds, 
the number of large itemsets is less and hence it is less 
costly to run Apriori on the whole database. At low 
support thresholds., the probability of the negative bor- 
der expanding is higher and as a result the incremental 
algorithm may have to scan the whole database. Also, 
the speed up is hi 
the incremental a gorithm needs to process less data. K 

her for smalier increment sizes since 

Comparison with FUP 
The framework of FUP (Cheung et al. 1996) is sim- 

ilar to that of Apriori and contains a number of iter- 
ations. Each iteration is associated with a complete 
scan of the whole database and in iteration Ic all the 
large k-itemsets are found. The candidate sets for it- 
eration k + 1 are generated based on the large itemsets t-,,.,A :n :+.w.n+;nn I ~hnonoe-l.,nnCl7TTP nxro,. An&w; l”UllU 111. llocx a.UI”U m . 
can be main1 

.&AII.z oyzcx4 up"vr A "A "VljA LLyIAvII 

ber of candi B 
attributed to the reduction in the num- 

ate itemsets. It uses the lar e itemset of 
the original database to filter and prune t % e candidate 

itemsets generated by Apriori. However, FUP may re- 
quire 0(n) passes over the database where n is the size 
of the maximal large itemset. 

The most important feature of our incremental up- 
dation algorithm is that the whole database is scanned 
only when required (and that too only once), thereby 
reducing the I/O requirements drastically. Computing 
the negative border ciosure may increase the size of the 
candidate set. However, a majority of those itemsets 
would have been present in the original negative bor- 
der or large itemset. Only those itemsets which were 
not covered by the negative border need to be checked 
against the whole database. As a result, the size of 
the candidate set in the final scan could potentially be 
much smaller as compared to FUP. 

Conclusions 
ZT, 1 we nave presented an eificient, incrementai updation 

algorithm for the maintenance of the association rules 
discovered by database mining. Our algorithm strives 
to reduce the I/O requirements for updating the set 
of large itemsets. This is achieved by maintaining the 
large itemsets and the negative border along with their 
support counts. The whole database is scanned only if 
reauired and that too just once. This incremental UP- 

daiion technique can be used in conjunction with aiiy 
of the level-wise algorithms like Apriori and Partition. 
Further? our algorithm is applicable to addition as well 
as deletion of transactions. 
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