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Abstract
Practical clustering algorithms require multiple data scans to
achieve convergence. For large databases, these scans become
prohibitively expensive. We present a scalable clustering
framework applicable to a wide class of iterative clustering.
We require at most one scan of the database. In this work, the
framework is instantiated and numerically justified with the
popular K-Means clustering algorithm. The method is based
on identifying regions of the data that are compressible,
regions that must be maintained in memory, and regions that
are discardable. The algorithm operates within the confines of
a limited memory buffer. Empirical results demonstrate that
the scalable scheme outperforms a sampling-based approach.
In our scheme, data resolution is preserved to the extent
possible based upon the size of the allocated memory buffer
and the fit of current clustering model to the data.  The
framework is naturally extended to update multiple clustering
models simultaneously.  We empirically evaluate on synthetic
and publicly available data sets.

Introduction   
Clustering is an important application area for many fields
including data mining [FPSU96], statistical data analysis
[KR89,BR93,FHS96], compression [ZRL97], vector
quantization, and other business applications [B*96].
Clustering has been formulated in various ways in the
machine learning [F87], pattern recognition [DH73,F90],
optimization [BMS97,SI84], and statistics literature
[KR89,BR93,B95,S92,S86].  The fundamental clustering
problem is that of grouping together (clustering) similar data
items.
The most general approach is to view clustering as a density
estimation problem [S86, S92, BR93].  We assume that in
addition to the observed variables for each data item, there
is a hidden, unobserved variable indicating the “cluster
membership”.  The data is assumed to arrive from a mixture
model with hidden cluster identifiers. In general, a mixture
model M having K clusters Ci, i=1,…,K,  assigns a
probability to a data point x:
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weights.  The problem is estimating the parameters of the
individual Ci, assuming that the number of clusters K is
known. The clustering optimization problem is that of
finding parameters of the individual Ci which maximize the
likelihood of the database given the mixture model. For
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general assumptions on the distributions for each of the K
clusters, the EM algorithm [DLR77, CS96] is a popular
technique for estimating the parameters.  The assumptions
addressed by the classic K-Means algorithm are: 1) each
cluster can be effectively modeled by a spherical Gaussian
distribution, 2) each data item is assigned to 1 cluster, 3) the
mixture weights (Wi)  are assumed equal.  Note that K-
Means [DH73, F90] is only defined over numeric
(continuous-valued) data since the ability to compute the
mean is required. A discrete version of K-Means exists and
is sometimes referred to as harsh EM. The K-Mean
algorithm finds a locally optimal solution to the problem of
minimizing the sum of the L2 distance between each data
point and its nearest cluster center (“distortion”) [SI84],
which is equivalent to a maximizing the likelihood given the
assumptions listed.
There are various approaches to solving the optimization
problem.  The iterative refinement approaches, which
include EM and K-Means, are the most effective.  The basic
algorithm is as follows: 1) Initialize the model parameters,
producing a current model, 2) Decide memberships of the
data items to clusters, assuming that the current model is
correct, 3) Re-estimate the parameters of the current model
assuming that the data memberships obtained in 2 are
correct, producing new model, 4) If current model and new
model are sufficiently close to each other, terminate, else go
to 2).
K-Means parameterizes cluster Ci by the mean of all points
in that cluster, hence the model update step 3) consists of
computing the mean of the points assigned to a given
cluster.  The membership step 2) consists of assigning data
points to the cluster with the nearest mean measured in the
L2 metric.
We focus on the problem of clustering very large databases,
those too large to be “loaded” in RAM.  Hence the data scan
at each iteration is extremely costly. We focus on the K-
Means algorithm although the method can be extended to
accommodate other algorithms [BFR98]. K-Means is a
well-known algorithm, originally known as Forgy’s method
[F65,M67] and has been used extensively in pattern
recognition [DH73, F90]. It is a standard technique used in a
wide array of applications, even as a way to initialize more
expensive EM clustering [B95,CS96,MH98,FRB98, BF98].
The framework we present in this paper satisfies the
following Data Mining Desiderata:
1. Require one scan (or less) of the database if possible: a

single data scan is considered costly, early termination
if appropriate is highly desirable.

2. On-line “anytime” behavior: a “best” answer is always
available, with status information on progress, expected
remaining time, etc. provided

3. Suspendable, stoppable, resumable; incremental
progress saved to resume a stopped job.

From: KDD-98 Proceedings. Copyright © 1998, AAAI (www.aaai.org). All rights reserved. 
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4. Ability to incrementally incorporate additional data
with existing models efficiently.

5. Work within confines of a given limited RAM buffer.
6. Utilize variety of possible scan modes: sequential,

index, and sampling scans if available.
7. Ability to operate on forward-only cursor over a view

of the database. This is necessary since the database
view may be a result of an expensive join query, over a
potentially distributed data warehouse, with much
processing required to construct each row (case).

1 Clustering Large Databases

1.1 A Scalable Framework for Clustering
The scalable framework for clustering is based upon the
notion that effective clustering solutions can be obtained by
selectively storing “important” portions of the database and
summarizing other portions.  The size of an allowable pre-
specified memory buffer determines the amount of
summarizing and required internal book-keeping. We
assume that an interface to the database allows the
algorithm to load a requested number of data points. These
can be obtained from a sequential scan, a random sampling
(preferred), or any other means provided by the database
engine.   The process proceeds as follows:
1. Obtain next available (possibly random) sample from the

DB filling free space in RAM buffer.
2. Update current model over contents of  buffer.
3. Based on the updated model, classify the singleton data

elements as:
a. needs to be retained in the buffer (retained set RS)
b. can be discarded with updates to the sufficient

statistics (discard set DS)
c. reduced via compression and summarized as sufficient

statistics (compression set CS).
4. Determine if stopping criteria are satisfied: If so,

terminate; else go to 1.
We illustrate this process in Figure 1.  A basic insight is that
not all data points in the data are of equal importance to the
model being constructed.  Some data points need to be used
all the time (RS), and these can be thought of as similar to
the notion of support vectors in classification and regression
[V95]. Others are either discardable or reducible to a more
efficient (hopefully equivalent) representation. While the
framework of Figure 1 accommodates
many clustering algorithms, we focus here
on evaluating it for the K-means algorithm.
Its applications to EM is given in [BFR98].

2 Components  of the Scalable
Architecture

The idea is to iterate over (random)
samples of the database and “merge”
information computed over previous
samples with information computed from
the current sample. Let n be the
dimensionality of the data records. We are
assuming the covariance matrix of each
cluster is diagonal. Step 2 of the algorithm
is basically a generalization of the classic
K-Means algorithm which we call
Extended K-means (Section 2.3) operating
over data and sufficient statistics of
previous/reduced data.For K-Means, a

subset of data is represented by its mean and diagonal
covariance matrix.

2.1 Data Compression
Primary data compression determines items to be discarded
(discard set DS). Secondary data-compression takes place
over data points not compressed in primary phase. Data
compression refers to representing groups of points by their
sufficient statistics and purging these points from RAM.
The compressed representation constitutes the set CS. A
group of singleton data elements deemed to be compressed
will be called a sub-cluster.  Finally, any remaining
elements that defy primary and secondary compression are
members of the retained set RS (singleton data points).

2.2 Sub-cluster Sufficient Statistics and Storage
Sub-clusters are compressed by locally fitting a Gaussian.
Let { } nN Rxxx ⊂,,, 21 K  be a set of singleton points to be
compressed.  The sufficient statistics are the triple (SUM,

SUMSQ, N), ∑
=
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for j=1,…,n. From the triple (SUM, SUMSQ, N) the
computations of the sub-cluster mean subx  and covariance
diagonal subs  are straightforward.  For two sub-clusters i

and j, having sufficient statistics ( )iii NSUMSQSUM ,,  and

( )jjj NSUMSQSUM ,, , respectively, if merged will have:

( )jijiji NNSUMSQSUMSQSUMSUM +++ ,,  for their
sufficient statistics. Let DS = {DS1, DS2,…, DSK } be a list
of K elements where each element stores the sufficient
statistics for the K sub-clusters determined in primary data-
compression phase (Section 3). Similarly, let CS = { CS1,
CS2, …,CSh }  be the list of sufficient statistics triples for
the h sub-clusters determined during the secondary data
compression phase (Section 4).

2.3 Model Update over Sample + Sufficient Statistics
Step 2 of the scalable clustering algorithm outline consists
of performing K-Means iterations over sufficient statistics
of compressed, discarded, and retained points  in RAM. In
the Extended K-Means Algorithm, updates over singleton
points are the same as the classic K-means algorithm
updates. Updates over sufficient statistics involve treating

Figure 1 Overview of the Scalable Clustering Framework
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each triplet (SUM, SUMSQ, N) as a data point with the
weight of N items.  The details are given in [BFR98].  Upon
convergence of the Extended K-Means, if some number of
clusters, say k < K have no members, then they are reset to
the singleton data in the buffer that are furthest from their
respective cluster centroids. Iterations are resumed until
convergence over the RAM buffer contents.

3 Primary Data-Compression
Primary data compression is intended to discard data points
unlikely to change cluster membership in future iterations.
With each cluster j we associate the list DSj that
summarizes the sufficient statistics for the data discarded
from cluster j.  Two methods for primary data compression
exist.  One is based upon thresholding the Mahalanobis
radius [DH73] around an estimated cluster center and
compressing all data points within that radius. The
Mahalanobis distance from point x to the mean of a
Gaussian x  with covariance matrix S  is:

∑
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diagonal covariance matrix. The idea of first primary
compression approach (PDC1) is to determine a
Mahalanobis radius r which collapses p% of the newly
sampled singleton data points assigned to cluster j.  All data
items within that radius are sent to the discard set DSj. The
sufficient statistics for data points discarded by this method
are merged with the DSj of points previously compressed in
this phase on past data samples.
The second primary compression method (PDC2) creates a
“worst case scenario” by perturbing the cluster means
within computed confidence intervals.  For each data point
in the buffer, perturb the K estimated cluster means within
their respective confidence intervals so that the resulting
situation is a “worst case scenario” for a given singleton
data point.  Let the data point belong to cluster j. The
perturbation consists of moving the mean of cluster j as far
away from the data point as possible within its confidence
interval and moving the mean of cluster ji ≠  as near to the
data point as possible.  If, after the resulting perturbation,
the data point is still nearest to the perturbed center j, then it
enters the set of points to be discarded DSj.  This approach
is motivated by the assumption that the mean is unlikely to
move outside of the computed confidence interval.  If the
assignment of a given data point to a cluster remains fixed
even if the current configuration of estimated cluster means
change in a worst way, we assume that this assignment is
robust over future data samples, and discard this point.
Confidence Interval Computations:  To obtain a
confidence interval for a mean in n-dimensions , n
univariate confidence intervals are computed.  The level of
confidence of each of the n intervals is determined by
exploiting the Bonferroni inequality [S84].  Let ljµ  be the j-

th component of the mean nl R∈µ .  We wish to determine
l
j

l
j UL <  such that ],[ l

j
l
j UL  is the univariate confidence

interval on njl
j ,...,1, =µ  such that the probability that all

l
jµ  fall within their respective interval is greater than or

equal to α−1 .  Hence, we wish to satisfy:
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 Hence it suffices that the univariate intervals are computed

with confidence 
n

α
.

4 Secondary Data-Compression
The purpose of secondary data-compression is to identify
“tight” sub-clusters of points amongst the data that we
cannot discard in the primary phase.  If singleton points
designating a sub-cluster always change cluster assignment
together, the cluster means can be updated exactly by the
sufficient statistics of this sub-clusters. The length of the list
CS varies depending on the density of points not
compressed in the primary phase. Secondary data-
compression has two fundamental parts: 1) locate candidate
“dense” portions of the space not compressed in the primary
phase, 2) applying a “tightness” (or “dense”) criterion to
these candidates.  Candidate sub-clusters are determined by
applying the vanilla K-means algorithm with a larger
number of clusters k2 > K, initialized by randomly selecting
k2 elements of the items in the buffer. Secondary data-
compression takes place over all of the remaining singleton
data (from all clusters and not for each individual cluster).
Once k2 sub-clusters are determined, the “tightness” criteria
requiring all the sub-cluster covariances are bounded by the
threshold β is applied.  Consider one of the k2 sub-clusters
containing N

~
elements and described by the triple:

( )NSUMSQSUM
~

,, . Let SUM
N

xsub ⋅= ~
1

, then if

( ) ( )[ ] β≤
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
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
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−⋅
=

2
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~
~
1

max jsubj
nj

xNSUMSQ
NK

, the sub-cluster

is “tight”. Now suppose that k3 ≤ k2 sub-clusters pass this
filter. These k3 sub-clusters are then merged with existing
clusters in CS and with each other. This is performed by
using hierarchical agglomerative clustering over the k3 +
|CS| clusters. The nearest two sub-clusters are determined,
and merged if their merge results in a new sub-cluster that
does not violate the tolerance condition (see Section 2 for
how the post-merge sufficient statistics are obtained), the
merged sub-cluster is kept and the smaller ones removed.

5 One Scan, Many Solutions
The scheme presented involves updating a single model
over a database. However, the machinery developed for
compression and sufficient reduced representation also
admits the possibility of updating multiple models
simultaneously, within a single data scan.
K-means, as well as many other members of the iterative
clustering algorithms, are well-known to be extremely
sensitive to initial starting condition [DH73, F90]. In
another paper, we study the initialization problem [BF98].
However, standard practice usually calls for trying multiple
solutions from multiple random starting points. To support
standard practice in clustering, we support the ability to
explore multiple models. The key insights for this
generalization are: 1) Retained points RS and the sets CS
(representing local dense structures) are shared amongst the
all models; 2) Each model, say Mi, will have its own
discarded data sets DSMi (K sets, one for each cluster for
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each model) -- if there are m models, there are a m×K
discard sets; 3) The sufficient statistics for discarded data
sets DSMi for one of the models Mi are simply viewed as
members of the global CS by all models other than Mi.
Space requirements do not permit the presentation of the
multiple model update.  But the following provides insight.
The overall architecture remains the same as the one shown
in Figure 1, except that model updating and data
compression steps are now performed over multiple models.
Besides the 3 observations above, there is one data
compression item worthy of further discussion:  data discard
order when multiple models are present.  The algorithm
decides on an individual data point basis which discard set
fits it best. A data point that qualifies as a discard item for
two models simply goes to the discard set of the model that
it “fits” best. A data point  cannot be allowed to enter more
than one discard set else it will be accounted multiple times.
Let x qualify as a discard item for both models M1 and M2.
If it were admitted to both, then model M1 will “feel” the
effect of this point twice: once in its own DS1 and another
time when it updates over DS2 which will be treated as part
of CS as far as M1 is concerned. Similarly for M2. By
entering in one discard set, say DS1, the point x still affects
M2 when M2 updates over CS (through DS1).

5.1 Complexity and Scalability Considerations
If, for a data set D, a clustering algorithm requires Iter(D)
iterations to cluster it, then time complexity is |D| * Iter(D).
A small subsample S ⊆ D, where |S| << |D|, typically
requires significantly fewer iteration to cluster. Empirically,
it is reasonable to expect that Iter(S) < Iter(D). hence total
time required to cluster n samples of size m is generally less
than time required to cluster a single set of  n×m data points.
The algorithm we presented easily scales to large databases.
The only memory requirement is to hold a small sub-sample
in RAM. All clustering (primary and secondary) occurs over
the contents of the buffer. The approach can be run with a
small RAM buffer and can effectively be applied to large-
scale databases, as presented below.  We have observed that
running multiple solutions typically results in improved
performance of the compression schemes since the synergy
between the models being explored allow for added
opportunity for compression. In turn this frees up more
space in the buffer and allows the algorithm to maximize its
exposure to new data during model updates.
We prefer to obtain a random sample from the database
server. While this sounds simple, in reality this can be a
challenging task. Unless one can guarantee that the records
in a database are not ordered by some property, random
sampling can be as expensive as scanning the entire
database (using some scheme such as reservoir sampling,
e.g. [J62]). In a database environment, a data view (i.e. the
entity familiar to machine learning researchers) may not be
materialized. It can be a result of query involving joins,
groupings, and sorts. In many cases database operations
impose special ordering on the result set, and “randomness”
of the resulting database view cannot be assumed. In the
case that random sampling is not available, it may be
desirable to seed our scheme with true random samples,
obtained by some other means, in the first few buffers.

6 Evaluation on Data Sets
The most straightforward way to “scale” an algorithm to a
large database is to work on a sample of the data. Hence our
comparisons will be mainly targeted at showing that our

proposed scalable approach indeed performs better than
simple random sampling. Clustering is particularly sensitive
to choice of sample. Due to lack of space, we omit
demonstration of this and more formal arguments for this
increased sensitivity. See [BFR98] for more details. Our
synthetic data sets (Section 6.1) are purposefully chosen so
that they present a best-case scenario for a sampling-based
approach. Demonstrating improvement over random
sampling in this scenario is more convincing than scenarios
where true data distributions are not known.

6.1 Synthetic Data Sets
Synthetic data was created for dimension d = 20, 50 and
100.  For a given value of d, data was sampled from 5, 50,
and 100 Gaussians (hence K=5 at d=20, K=d otherwise)
with elements of their mean vectors (the true means) •  were
sampled from a uniform distribution on [-5,5].  Elements of
the diagonal covariance matrices were sampled from a
uniform distribution on [0.7,1.5].  Hence these are fairly
well-separated Gaussians, an ideal situation for K-Means.
A random weight vector W with K elements is determined
such that the components sum to 1.0, then Wj*(total number
of data points) are sampled from Gaussian j, j=1,…,K.
It is worthwhile emphasizing here the fact that data drawn
from well-separated Gaussians in low dimensions are
certainly a “best-case” scenario for the behavior of a random
sampling based approach to scaling the K-means algorithm.
Note that we are not introducing noise, and moreover we are
providing the algorithm with the correct number of clusters
K. In many real world data sets, the scenario is not “best-
case”, hence the behavior is likely worse (and indeed it is).

6.1.1 Experimental Methodology
The quality of an obtained clustering solution can be
measured by how well it fits the data, or to measure the
estimated means to the true Gaussian means generating the
synthetic data. Measuring degree of fit of a set of clusters to
a data set can be done using distortion1 or log-likelihood of
the data given the model. Log-likelihood assumes the K-
means model represents a mixture of K-gaussians with
associated diagonal covariances and computes probability of
data given the model. Comparing distance between one
solution and another clustering solution requires the ability
to “match up” the clusters in some optimal way prior to
computing the distance between them. Suppose we want to
measure the distance between a set of clusters obtained and
the true Gaussian means.  Let Kll ,,1, K=µ  be the K true

Gaussian means and let Klx l ,,1, K= be the K means
estimated by some clustering algorithm.  A “permutation”

π is determined that minimizes: ∑
=

−
K

l

ll x
1

2

)(πµ . The

“score” is simply this quantity divided by K, giving the
average distance between the true Gaussian means and a
given set of clusters.

6.1.2 Results
The solutions we compare are the following:  the solution
provided by our scalable scheme (ScaleKM), the solution
obtained by on-line K-means (OKM), and the solution
obtained by the sampler K-means (sampKM)  working on a
sample equal to the size of the buffer given ScaleKM. Note

                                                          
1 Distortion is the sum of the L2 distances squared between
the data items and the mean of their assigned cluster



Scaling Clustering Algorithms to Large Databases Bradley, Fayyad and Reina

             5

that the ultimate goal is to find a solution closer to the true
generating means.
Our goal is to demonstrate that the method scales well as
one increases dimensionality and number of clusters
(parameters being estimated by clustering).  We fist show
results for the 20-D and 50-D data sets.  Shown are distance
to true solutions (Dtruth), ratios of Dtruth relative to best
solutions (best are in bold), and change in log likelihood (∆
likelihood) as measured from best solution. These results
represent averages over 10 randomly chosen starting points.
The sampling solution is given a chance to sample 10
different random samples from the population. Hence
random sampler results are over 100 total trials. ScaleKM is
given a buffer size given as a percentage of size of data set.
It is worthy of note that results show scalable algorithm has
robust behavior, even as its RAM buffer is limited to a very
small sample. On-line K-means does not do well at all on
these data sets.  Measuring Distortion results in trends that
follow Log likelihood.

Results on the 100-D data sets, with 100 dimensions and
100 clusters are given in Table 2.

6.2 Results on Real-World Data Sets
We present computational results on 2 publicly available
“real-world” data sets. We are primarily interested in large
databases. By large we mean hundreds of dimensions and
tens of thousands to millions or records.  It is for these data
sets that our method exhibits the greatest value. We used a
large publicly available data set available from Reuters
News Service.  We also wanted to demonstrate some of the
results on Irvine machine Learning Repository data sets. For
the majority of the data sets, we found that these data sets
are too easy: they are low dimensional and have a very
small number of records.

6.2.1 Experiments
The “quality” of the solution
must be determined. Unlike the
case of the synthetic data, we
cannot measure distance to true
solution here since “truth” is not
known.   However, we can use
average class purity within each
cluster as one measure of quality.
The other measure, which is not
dependent on a classification, is
the distortion of the data given
the clusters. Quality scoring
methods are: distortion, log-
likelihood, and information gain.
The latter estimates  the “amount
of information” gained by

clustering the database as measured by the reduction in class
entropy.  Recall that the class labels of the data are known,
and an “ideal” clustering is I which clusters are “pure” in
terms of the mix of classes appearing within them. This is
scored by weighted entropy off the entire clustering:

Weighted Entropy(K) )(
)(

1

kropyClusterEnt
N

kSizeK

k
∑

=





= .

Information Gain = Total Entropy – Weighted Entropy(K).

6.2.2 REV Digits Recognition Dataset
This dataset consists of 13711 data items in 64 dimensions.
Each record represents the gray-scale level of an 8 x 8
image of a handwritten digit and each record is tagged as
being in one of ten classes (one for each digit).
REV Results
The scalable K-Mean algorithm was run with a RAM buffer
equivalent to 10% of REV dataset size.  Comparisons are
made with the Online K-Mean Algorithm [M67] (OKM)
and with the K-Means algorithm operating over 10 random
samples of size 10%. The results are averaged over 10
randomly chosen initial solutions (100 trials). We also ran
the same experiments but using only 1% buffer sizes (1%
samples). Results are shown in Table 3.  One can also
compare best solutions against best solutions. For the 1%
buffer size, the best solution for SKM is 0.56 gain versus a
best gain of 0.38 for the sampler K-means. For OKM, the
best gain was 0.26.   In the 10% case, even though the
sampler did badly 90% of the time, it managed to find the
best solution (0.57) once. The scalable method produced
solutions, that are 2.2 times more “informative” than
random sampling solutions, and 1.6 to 2 times better than
on-line Kmeans. Note that our memory requirements can be
driven really low and still maintain performance.

6.2.3 Reuters  Information Retrieval Dataset
The Reuters text classification database is derived from the
original Reuters-21578 data set made publicly available as

Table 3. Results for REV Digits Data Set.
Method Ave

InfoGain
Std
dev

SKM(10% buffer) 0.320594 ±0.018
sample10% x 10 0.1470409 ±0.051

SKM-(1% buffer) 0.4015526 ±0.138
Sample 1% x 10 0.1816977 ±0.047

OKM 0.1957754 ±0.083

Table 1. Results on Synthetic Data in 20 and 50 Dimensions
20 D - 20K points, 5 clusters 50D - 50K points, 10 clusters

Algorithm Dtruth ratio
Dtruth

∆
likelihood

Dtruth ratio
Dtruth

∆
likelihood

OKM 187.0 30.4 -214390.3 73.1 6.4 -1673147.1

ScaleKM (10%) 9.3 1.5 -53134.2 11.5 1.0 0

ScaleKM (5%) 9.0 1.5 -54609.1 13.1 1.1 -31288.2

ScaleKM (1%) 6.2 1.0 0.0 15.8 1.4 -186094.2

SampKM(1%) 173.5 28.2 -166075.9 25.0 2.2 -249467.9

SampKM (10%) 173.5 28.2 -163766.5 17.3 1.5 -80536.5

SampKM (5%) 173.5 28.2 -163887.2 19.5 1.7 -129124.6

Table 2. Results for 100-D Data.
Method Dtruth ratio

Dtruth

OKM 324.7 1.8
ScaleKM (10%) 198.5 1.1
ScaleKM (5%) 197.2 1.1
ScaleKM (1%) 181.6 1.0
SampKM(1%) 261.0 1.4
SampKM (10%) 253.8 1.4
SampKM (5%) 255.9 1.4
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part of the Reuters Corpus, through Reuters, Inc., Carnegie
Group and David Lewis (See: http://www.research.att.Com
/~lewis /reuters21578 /README.txt for more details on this
data set.  This data consists of 12,902 documents. Each
document is a news article about some topic: e.g. earnings,
commodities, acquisitions, grain, copper, etc. There are 119
categories, which belong to some 25 higher level categories
(there is a hierarchy on categories). The Reuters database
consists of word counts for each of the 12,902 documents.
There are hundreds of thousands of words, but for purposes
of our experiments we selected the 302 most frequently
occurring words, hence each instance has 302 dimensions
indicating the integer number of times the corresponding
word occurs in the given document.  Each document in the
IR-Reuters database has been classified into one or more
categories.  We use K=25 for clustering purposes to reflect
the 25 top-level categories. The task is then to find the best
clustering given K=25.
Reuters Results
For this data set, because clustering the entire database
requires a large amount of time, we chose to only evaluate
results over 5 randomly chosen starting conditions. Results
are shown in Table 4. The chart shows a significant decrease
in the total distortion measure. We show ratios of distortion
as measured on the data. Note that on-line K-means in this
case failed to find a good solution from any of the 5 initial
points given it. We did manage to find some starting points
(manually) that resulted in better clustering, but the
comparison here must be made over exactly the same initial
5 points given the other methods. Distortion is roughly 30%
better with the scalable approach than the corresponding
random sampling based approach. One can also measure the
degree of fit using the log-likelihood of the data given the
model derived by K-means (25 Gaussians with diagonal
covariances).  If a model does not fit data well, log
likelihood goes extremely negative (and overflows). This

happened with on-line K-means and the sampling based
approaches. The scalable runs produced finite likelihoods on
all samples indicating that a better model was found.
Since each document belongs to a category (there are 117
categories), we can also measure the quality of the achieved
by any clustering by measuring the gain in information
(reduction in cluster impurity) about the categories that each
cluster gives (i.e. pure clusters are informative). The
information gain for the scalable scheme was on average
13.47 times better than solution obtained by sampling
approaches. If one compares best against best, we get that
best scalable solution was 4.5 times better than the best
random sampling solution.  On-line K-means failed to
converge on any good solutions (from all 5 starting points, it
landed on solutions that put all the data in one cluster, hence
did not improve impurity at all. Hence we cannot give a
ratio. Again, given better (manually chosen) starting points,
on-line Kmeans can be made to converge on better
solutions.

7 Related Work
Since K-Means has historically been applied to small data
sets, the state of the practice appears to be to try out various
random starting points. Traditionally, K-Means is used to
initialize more expensive algorithms such as EM [B95].  In
fact, other methods to initialize EM have been used,
including hierarchical agglomerative clustering (HAC)
[DH73, R92] to set the initial points. Hence our choice of
comparing against the random starting points approach.
However, regardless of where a starting point comes from,
be it prior knowledge or some other initialization scheme,
our method can be used as an effective and efficient scalable
means to proceed to a solution.
In statistics, all schemes we are aware of appear to be
memory-based. A book dedicated to the topic of clustering
large data sets [KR89] presents algorithm CLARA for
clustering “large databases”. However the algorithm is
limited to 3500 cases maximum [KR89, p. 126].  The only
options available in this literature to scale to large databases
are random sampling and on-line K-means [M67]. We
compare against both these methods in Section 6.  On-line
K-means essentially works with a memory buffer of one
case. As we show in the results section, this methods does
not compare well with other alternatives.
Within the data mining literature, the most relevant
approach is BIRCH [ZRL97]. Other scalable clustering
schemes include CLARANS [NH94] and DBSCAN
[EKX95]. The latter two are targeted at clustering spatial
data primarily. In [ZRL97] they compare against these
schemes and demonstrate higher efficiency. The
fundamental difference between BIRCH and the method
proposed here are: 1) the data-compression step is
performed prior to and independent of the clustering; 2)
there is no notion of an allocated memory buffer in BIRCH,
hence depending on data memory usage can grow
significantly 3) BIRCH requires at least 2 scans of the data
to perform clustering; 4) statistics maintained represent a
simpler local model (strictly spherical Gaussians) with
many more models built than our scheme requires. Our
extended notion of 3 classes of data: RS, CS, and DS can be
viewed as a generalization of BIRCH’s all-discard strategy.
We were not able to perform a comparative study with
BIRCH, although this is certainly our plan. In BIRCH the
expensive step is the maintenance and updating of the CF-
tree. In our case the updates are much simpler. However,

Table 4. Results for Reuters Data.
Method Log

Likelihood
SKM-(10% buffer) -790.2K
SKM-(5% buffer) -871.3K
SKM-(1% buffer) -903.8K
sample10% -4803.0K
Sample5% -35082.9K
Sample 1% -81843.8K
OKM -1908.2K
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our scheme requires a secondary clustering step which
IRCH does not have. Again, secondary clustering in our
case is limited to a small sample of the data. While we
suspect our total run times will be lower than BIRCH’s due
to the fact that we require one or less data scans instead of
two, and we do not have to maintain the large CF-tree
structure. However, this claim needs to be supported by an
empirical evaluation on similar machines and the same data
sets.
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